Acessibilidade / Reportar erro

RNA sequencing and gene co-expression network of in vitro matured oocytes and blastocysts of buffalo

Abstract

In reproductive technologies, uncovering the molecular aspects of oocyte and embryo competence under different conditions is crucial for refining protocols and enhancing efficiency. RNA-seq generates high-throughput data and provides transcriptomes that can undergo additional computational analyses. This study presented the transcriptomic profiles of in vitro matured oocytes and blastocysts produced in vitro from buffalo crossbred (Bubalus bubalis), coupled with gene co-expression and module preservation analysis. Cumulus Oophorus Complexes, obtained from slaughterhouse-derived ovaries, were subjected to in vitro maturation to yield metaphase II oocytes (616) or followed in vitro fertilization and culture to yield blastocysts for sequencing (526). Oocyte maturation (72%, ±3.34 sd) and embryo development (21.3%, ±4.18 sd) rates were obtained from three in vitro embryo production routines following standard protocols. Sequencing of 410 metaphase II oocytes and 70 hatched blastocysts (grade 1 and 2) identified a total of 13,976 genes, with 62% being ubiquitously expressed (8,649). Among them, the differentially expressed genes (4,153) and the strongly variable genes with the higher expression (fold-change above 11) were highlighted in oocytes (BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4) and blastocysts (APOA1, KRT18, ANXA2, S100A14, SLC34A2, PRSS8 and ANXA2) as representative indicators of molecular quality. Additionally, genes exclusively found in oocytes (224) and blastocysts (2,200) with specific biological functions were identified. Gene co-expression network and module preservation analysis revealed strong preservation of functional modules related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. However, cell cycle and amino acid transport modules exhibited weak preservation, which may reflect differences in embryo development kinetics and the activation of cell signaling pathways between buffalo and bovine. This comprehensive transcriptomic profile serves as a valuable resource for assessing the molecular quality of buffalo oocytes and embryos in future in vitro embryo production assays.

Keywords:
blastocyst; buffalo; oocyte; RNA-seq; co-expression networks

Introduction

In buffalo, the in vitro production protocols often yield low rates of nuclear maturation and poor morphological quality in oocytes and blastocysts compared to other livestock animals (Di Francesco et al., 2012Di Francesco S, Novoa MVS, Vecchio D, Neglia G, Boccia L, Campanile G, Zicarelli L, Gasparrini B. Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons. Theriogenology. 2012;77(1):148-54. http://doi.org/10.1016/j.theriogenology.2011.07.028. PMid:21872310.
http://doi.org/10.1016/j.theriogenology....
; Gasparrini et al., 2014Gasparrini B, Neglia G, Di Palo R, Vecchio D, Albero G, Esposito L, Campanile G, Zicarelli L. Influence of oocyte donor on in vitro embryo production in buffalo. Anim Reprod Sci. 2014;144(3-4):95-101. http://doi.org/10.1016/j.anireprosci.2013.11.010. PMid:24374181.
http://doi.org/10.1016/j.anireprosci.201...
; Baruselli et al., 2020Baruselli PS, Carvalho JGS, Elliff FM, Silva JCBD, Chello D, Carvalho NAT. Embryo transfer in buffalo (Bubalus bubalis). Theriogenology. 2020;150:221-8. http://doi.org/10.1016/j.theriogenology.2020.01.037. PMid:31996292.
http://doi.org/10.1016/j.theriogenology....
; Kumar et al., 2023Kumar S, Chaves MS, da Silva AFB, Vale WG, Filho STR, Ferreira-Silva JC, Melo LM, de Figueiredo Freitas VJ. Factors affecting the in vitro embryo production in buffalo (Bubalus bubalis): a review. Vet Med (Praha). 2023;68(2):45-56. http://doi.org/10.17221/48/2022-VETMED.
http://doi.org/10.17221/48/2022-VETMED...
)⁠. Buffalo oocytes and embryos exhibit unique cellular morphology, nuclear maturation ⁠⁠(Santos et al., 2002Santos SSD, Dantas JK, Miranda MS, Biondi FC, Ohashi OM. Cinética da maturação nuclear in vitro de oócitos bubalinos. Braz J Vet Res Anim Sci. 2002;39(5):266-70. http://doi.org/10.1590/S1413-95962002000500009.
http://doi.org/10.1590/S1413-95962002000...
; Neglia et al., 2003Neglia G, Gasparrini B, Caracciolo Di Brienza V, Di Palo R, Campanile G, Presicce GA, Zicarelli L. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology. 2003;59(5–6):1123-30. http://doi.org/10.1016/S0093-691X(02)01170-6. PMid:12527061.
http://doi.org/10.1016/S0093-691X(02)011...
; Marin et al., 2019aMarin DFD, de Souza EB, de Brito VC, Nascimento CV, Ramos AS, Rolim ST Fo, da Costa NN, Cordeiro MDS, Santos SDSD, Ohashi OM. In vitro embryo production in buffaloes: from the laboratory to the farm. Anim Reprod. 2019a;16(2):260-266. http://doi.org/10.21451/1984-3143-AR2018-0135. PMid: 33224285.
http://doi.org/10.21451/1984-3143-AR2018...
), and developmental kinetics (Neglia et al., 2003Neglia G, Gasparrini B, Caracciolo Di Brienza V, Di Palo R, Campanile G, Presicce GA, Zicarelli L. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology. 2003;59(5–6):1123-30. http://doi.org/10.1016/S0093-691X(02)01170-6. PMid:12527061.
http://doi.org/10.1016/S0093-691X(02)011...
; Gasparrini et al., 2014Gasparrini B, Neglia G, Di Palo R, Vecchio D, Albero G, Esposito L, Campanile G, Zicarelli L. Influence of oocyte donor on in vitro embryo production in buffalo. Anim Reprod Sci. 2014;144(3-4):95-101. http://doi.org/10.1016/j.anireprosci.2013.11.010. PMid:24374181.
http://doi.org/10.1016/j.anireprosci.201...
) aspects.

Adapting the in vitro microenvironment in a specie specific manner is essential for improving In Vitro Embryo Production (IVEP) performance (Lonergan et al., 2006Lonergan P, Fair T, Corcoran D, Evans AC. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology. 2006;65(1):137-52. http://doi.org/10.1016/j.theriogenology.2005.09.028. PMid:16289260.
http://doi.org/10.1016/j.theriogenology....
; Marin et al., 2019bMarin DFD, da Costa NN, Santana PPB, de Souza EB, Ohashi OM. Importance of lipid metabolism on oocyte maturation and early embryo development: can we apply what we know to buffalo? Anim Reprod Sci. 2019b;211:106220. http://doi.org/10.1016/j.anireprosci.2019.106220. PMid:31785645.
http://doi.org/10.1016/j.anireprosci.201...
; Wang et al., 2023aWang H, Chen W, Shen P, Feng Y, Shi D, Lu F. Follistatin (FST) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Reprod Domest Anim. 2023a;58(12):1718-31. http://doi.org/10.1111/rda.14490. PMid:37917549.
http://doi.org/10.1111/rda.14490...
). Investigating the molecular aspects of oocyte and embryo competence and understanding species-specific differences may help identify areas for protocol adaptation to enhance IVEP in a particular species.

In this context, the molecular aspects of in vitro maturation and embryo development in buffalo were initially explored using microarray (Kandil et al., 2010Kandil OM, Ghanem N, Abdoon ASS, Hölker M, Phatsara C, Schellander K, Tesfaye D. Transcriptional analysis of buffalo (Bubalus bubalis) oocytes during in vitro maturation using bovine cDNA microarray. Reprod Domest Anim. 2010;45(1):63-74. http://doi.org/10.1111/j.1439-0531.2008.01238.x. PMid:19144006.
http://doi.org/10.1111/j.1439-0531.2008....
; Kumar et al., 2012Kumar P, Verma A, Roy B, Rajput S, Ojha S, Anand S, Yadav P, Arora J, De S, Goswami SL, Datta TK. Effect of varying glucose concentrations during In Vitro maturation and embryo culture on efficiency of In Vitro embryo production in buffalo. Reprod Domest Anim. 2012;47(2):269-73. http://doi.org/10.1111/j.1439-0531.2011.01849.x. PMid:21762215.
http://doi.org/10.1111/j.1439-0531.2011....
; Abdoon et al., 2014Abdoon AS, Gabler C, Holder C, Kandil OM, Einspanier R. Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes. Theriogenology. 2014;82(8):1055-67. http://doi.org/10.1016/j.theriogenology.2014.07.008. PMid:25156970.
http://doi.org/10.1016/j.theriogenology....
) and RNA sequencing (RNA-seq) approaches (Strazzullo et al., 2014Strazzullo M, Gasparrini B, Neglia G, Balestrieri ML, Francioso R, Rossetti C, Nassa G, De Filippo MR, Weisz A, Di Francesco S, Vecchio D, D’Esposito M, D’Occhio MJ, Zicarelli L, Campanile G. Global transcriptome profiles of italian mediterranean buffalo embryos with normal and retarded growth. PLoS One. 2014;9(2):e90027. http://doi.org/10.1371/journal.pone.0090027. PMid:24587197.
http://doi.org/10.1371/journal.pone.0090...
; Sood et al., 2019Sood TJ, Lagah SV, Mukesh M, Singla SK, Chauhan MS, Manik RS, Palta P. RNA sequencing and transcriptome analysis of buffalo (Bubalus bubalis) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol Reprod Dev. 2019;86(9):1149-67. http://doi.org/10.1002/mrd.23233. PMid:31304661.
http://doi.org/10.1002/mrd.23233...
; Capra et al., 2020Capra E, Lazzari B, Russo M, Kosior MA, Valle GD, Longobardi V, Stella A, Consiglio AL, Gasparrini B. Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep. 2020;10(1):13557. http://doi.org/10.1038/s41598-020-70546-5. PMid:32782284.
http://doi.org/10.1038/s41598-020-70546-...
; Capra et al., 2022Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep. 2022;12(1):14886. http://doi.org/10.1038/s41598-022-18438-8. PMid:36050481.
http://doi.org/10.1038/s41598-022-18438-...
; Goel et al., 2022Goel P, Malpotra S, Shyam S, Kumar D, Singh MK, Palta P. Global MicroRNA expression profiling of buffalo (Bubalus bubalis) embryos at different developmental stages produced by somatic cell nuclear transfer and in-vitro fertilization using RNA Sequencing. Genes (Basel). 2022;13(3):453. http://doi.org/10.3390/genes13030453. PMid: 35328007.
http://doi.org/10.3390/genes13030453...
). RNA-seq estimates gene expression by quantifying the number of reads derived from each gene (Mortazavi et al., 2008Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621-8. http://doi.org/10.1038/nmeth.1226. PMid:18516045.
http://doi.org/10.1038/nmeth.1226...
)⁠⁠⁠. This method has been used to study oocyte competence (Feuerstein et al., 2012Feuerstein P, Puard V, Chevalier C, Teusan R, Cadoret V, Guerif F, Houlgatte R, Royere D. Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PLoS One. 2012;7(7):e40449. http://doi.org/10.1371/journal.pone.0040449. PMid:22848380.
http://doi.org/10.1371/journal.pone.0040...
; Bunel et al., 2015Bunel A, Jorssen EP, Merckx E, Leroy JL, Bols PE, Sirard MA. Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus-oocyte complexes with high or low developmental potential. Theriogenology. 2015;83(2):228-37. http://doi.org/10.1016/j.theriogenology.2014.09.019. PMid:25442391.
http://doi.org/10.1016/j.theriogenology....
; Luo et al., 2016Luo F, Jia R, Ying S, Wang Z, Wang F. Analysis of genes that influence sheep follicular development by different nutrition levels during the luteal phase using expression profiling. Anim Genet. 2016;47(3):354-64. http://doi.org/10.1111/age.12427. PMid:26970339.
http://doi.org/10.1111/age.12427...
; Du et al., 2018Du L, Gu T, Zhang Y, Huang Z, Wu N, Zhao W, Chang G, Xu Q, Chen G. Transcriptome profiling to identify key mediators of granulosa cell proliferation upon FSH stimulation in the goose (Anser cygnoides). Br Poult Sci. 2018;59(4):416-21. http://doi.org/10.1080/00071668.2018.1459474. PMid:29723039.
http://doi.org/10.1080/00071668.2018.145...
; Wang et al., 2023bWang J, Chen H, Zhang Y, Jiang S, Zeng X, Shen H. Comprehensive analysis of differentially expressed CircRNAs in the ovaries of low- and high-fertility sheep. Animals (Basel). 2023b;13(2):236. http://doi.org/10.3390/ani13020236. PMid: 36670776.
http://doi.org/10.3390/ani13020236...
)⁠⁠⁠⁠⁠ and embryo competence (Bauer et al., 2010Bauer BK, Isom SC, Spate LD, Whitworth KM, Spollen WG, Blake SM, Springer GK, Murphy CN, Prather RS. Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus In Vitro-. Biol Reprod. 2010;83(5):791-8. http://doi.org/10.1095/biolreprod.110.085936. PMid:20668257.
http://doi.org/10.1095/biolreprod.110.08...
; Redel et al., 2012Redel BK, Brown AN, Spate LD, Whitworth KM, Green JA, Prather RS. Glycolysis in preimplantation development is partially controlled by the warburg effect. Mol Reprod Dev. 2012;79(4):262-71. http://doi.org/10.1002/mrd.22017. PMid:22213464.
http://doi.org/10.1002/mrd.22017...
; Cao et al., 2014Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics. 2014;15(1):4. http://doi.org/10.1186/1471-2164-15-4. PMid:24383959.
http://doi.org/10.1186/1471-2164-15-4...
; Kropp and Khatib, 2015aKropp J, Khatib H. Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci. 2015a;98(9):6552-63. http://doi.org/10.3168/jds.2015-9510. PMid:26142856.
http://doi.org/10.3168/jds.2015-9510...
, 2015bKropp J, Khatib H. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development. Front Genet. 2015b;6:273. http://doi.org/10.3389/fgene.2015.00273. PMid:26379701.
http://doi.org/10.3389/fgene.2015.00273...
; Milazzotto et al., 2016Milazzotto MP, Goissis MD, Chitwood JL, Annes K, Soares CA, Ispada J, Assumpção MEOÁ, Ross PJ. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol Reprod Dev. 2016;83(4):324-36. http://doi.org/10.1002/mrd.22619. PMid:26822777.
http://doi.org/10.1002/mrd.22619...
; Boroviak et al., 2018Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development. 2018;145(21):dev167833. http://doi.org/10.1242/dev.167833. PMid: 30413530.
http://doi.org/10.1242/dev.167833...
; Sood et al.; 2019Sood TJ, Lagah SV, Mukesh M, Singla SK, Chauhan MS, Manik RS, Palta P. RNA sequencing and transcriptome analysis of buffalo (Bubalus bubalis) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol Reprod Dev. 2019;86(9):1149-67. http://doi.org/10.1002/mrd.23233. PMid:31304661.
http://doi.org/10.1002/mrd.23233...
; Li et al., 2020Li Y, Sun J, Ling Y, Ming H, Chen Z, Fang F, Liu Y, Cao H, Ding J, Cao Z, Zhang X, Bondioli K, Jiang Z, Zhang Y. Transcription profiles of oocytes during maturation and embryos during preimplantation development in vivo in the goat. Reprod Fertil Dev. 2020;32(7):714-25. http://doi.org/10.1071/RD19391. PMid:32317096.
http://doi.org/10.1071/RD19391...
; Goel et al., 2022Goel P, Malpotra S, Shyam S, Kumar D, Singh MK, Palta P. Global MicroRNA expression profiling of buffalo (Bubalus bubalis) embryos at different developmental stages produced by somatic cell nuclear transfer and in-vitro fertilization using RNA Sequencing. Genes (Basel). 2022;13(3):453. http://doi.org/10.3390/genes13030453. PMid: 35328007.
http://doi.org/10.3390/genes13030453...
)⁠⁠ across various species. Moreover, to investigate in vitro maturation (Reyes et al., 2015Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Mol Reprod Dev. 2015;82(2):103-14. http://doi.org/10.1002/mrd.22445. PMid:25560149.
http://doi.org/10.1002/mrd.22445...
; Gilchrist et al., 2016Gilchrist GC, Tscherner A, Nalpathamkalam T, Merico D, LaMarre J. MicroRNA expression during bovine oocyte maturation and fertilization. Int J Mol Sci. 2016;17(3):396. http://doi.org/10.3390/ijms17030396. PMid:26999121.
http://doi.org/10.3390/ijms17030396...
; Angel-Velez et al., 2023Angel-Velez D, Meese T, Hedia M, Fernandez-Montoro A, De Coster T, Pascottini OB, Van Nieuwerburgh F, Govaere J, Van Soom A, Pavani K, Smits K. Transcriptomics reveal molecular differences in equine oocytes vitrified before and after In Vitro maturation. Int J Mol Sci. 2023;24(8):6915. http://doi.org/10.3390/ijms24086915. PMid: 37108081.
http://doi.org/10.3390/ijms24086915...
)⁠⁠⁠ and in vitro embryo development⁠⁠ in mammalian (Østrup et al., 2013Østrup O, Olbricht G, Østrup E, Hyttel P, Collas P, Cabot R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS One. 2013;8(4):e61547. http://doi.org/10.1371/journal.pone.0061547. PMid:23637850.
http://doi.org/10.1371/journal.pone.0061...
; Xue et al., 2013Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu J, Horvath S, Fan G. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593-7. http://doi.org/10.1038/nature12364. PMid:23892778.
http://doi.org/10.1038/nature12364...
; Graf et al., 2014Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://doi.org/10.1073/pnas.1321569111. PMid:24591639.
http://doi.org/10.1073/pnas.1321569111...
; Jiang et al., 2015Jiang Z, Dong H, Zheng X, Marjani SL, Donovan DM, Chen J, Tian XC. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons with humans, mice and pigs. Sci Rep. 2015;5(1):17898. http://doi.org/10.1038/srep17898. PMid:26638780.
http://doi.org/10.1038/srep17898...
; Song et al., 2022Song X, Li T, Xiong X, Shan H, Feng T, Cui K, Shi D, Liu Q, Li Z. RNA-seq reveals the underlying molecular mechanism of first cleavage time affecting porcine embryo development. Genes (Basel). 2022;13(7):1251. http://doi.org/10.3390/genes13071251. PMid:35886034.
http://doi.org/10.3390/genes13071251...
; Rabaglino et al., 2023Rabaglino MB, Forde N, Besenfelder U, Havlicek V, Blum H, Graf A, Wolf E, Lonergan P. Maternal metabolic status and in-vitro culture conditions during embryonic genome activation deregulate the expression of energy-related genes in the bovine 16-cells embryo. PLoS One. 2023;18(8):e0290689. http://doi.org/10.1371/journal.pone.0290689. PMid: 37624829.
http://doi.org/10.1371/journal.pone.0290...
)⁠.

This study describes the transcriptomic profile of in vitro matured oocytes and in vitro produced blastocysts of buffaloes through RNA-seq, gene co-expression networks, and module preservation analysis allowing for a comprehensive comparison with the bovine transcriptomes.

Methods

Ethics Committee and In Vitro Embryo Production (IVEP)

The Ethics Committee of the Federal University of Pará (CEUA/UFPA, 2024CEUA/UFPA [homepage on the Internet]. Comitê de Ética da Universidade Federal do Pará; 2024 [cited 2024 May 20]. Available from: https://ceua.ufpa.br/.
https://ceua.ufpa.br/...
) determined that approval was not required for samples obtained from deceased animals. Ovaries were sourced from a government-approved slaughterhouse in accordance with established procedures. The processing of samples for IVEP was conducted following ethical considerations and procedural guidelines. Each biological replicate sequenced in this study was obtained from three IVEP routines.

Buffalo crossbred ovaries were transported in 0.9% sodium chloride solution within a two-hours timeframe at room temperature. In the laboratory, follicular fluid was aspirated from antral follicles (2-8 mm diameter) using a syringe attached to an 18Ga needle. A total of 1142 Cumulus Oophorus Complexes (COCs) displaying homogeneous cytoplasm and three or more layers of compact cumulus cells were selected (Leibfried and First, 1979Leibfried L, First NL. Characterization of bovine follicular oocytes and their ability to mature in vitro. J Anim Sci. 1979;48(1):76-86. http://doi.org/10.2527/jas1979.48176x. PMid:573253.
http://doi.org/10.2527/jas1979.48176x...
), and in vitro matured according to Da Costa et al. (2016)Costa NN, Brito KN, Santana PD, Cordeiro MS, Silva TV, Santos AX, Ramos PC, Santos SS, King WA, Miranda MS, Ohashi OM. Effect of cortisol on bovine oocyte maturation and embryo development in vitro. Theriogenology. 2016;85(2):323-9. http://doi.org/10.1016/j.theriogenology.2015.08.010. PMid:26456184.
http://doi.org/10.1016/j.theriogenology....
. From the cohort that underwent in vitro maturation for first polar body evaluation (n=616), 410 were considered metaphase II oocytes (72%, ±3.34 s.d.). Zona pellucida was removed with 1.5 mg/ml pronase (Merck KGaA, Darmstadt, Germany), and MII oocytes were stored in RNAlater® solution (Ambion®, Thermo Fisher Scientific Inc., Waltham, MA) at -80°C until mRNA isolation (See Supplementary Figure 1a).

A total of 526 COCs in vitro matured oocytes followed in vitro fertilization and embryo culture. Frozen semen from a proven fertility buffalo underwent processing with a discontinuous density gradient Percoll column (GE Healthcare Bio-Sciences, Uppsala, Sweden), and in vitro fertilization according to Parrish et al. (1988)Parrish JJ, Susko-Parrish J, Winer MA, First NL. Capacitation of bovine sperm by heparin. Biol Reprod. 1988;38(5):1171-80. http://doi.org/10.1095/biolreprod38.5.1171. PMid:3408784.
http://doi.org/10.1095/biolreprod38.5.11...
. After 24 hours, presumptive zygotes were incubated in a cumulus cell monolayer in 100-µL droplets of synthetic oviductal fluid (SOF) medium with modifications (Holm et al. 1999Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52(4):683-700. http://doi.org/10.1016/S0093-691X(99)00162-4. PMid:10734366.
http://doi.org/10.1016/S0093-691X(99)001...
). Drops were overlaid with sterile mineral oil and incubated at 38.5°C in a 5% CO2, 20% O2, and 75% N2 atmosphere in humidified air. Blastocyst development was assessed on the 7th day (21.3%, ±4.18 s.d., n=110 blastocysts). Seventy hatched blastocysts of grade 1 and 2 quality, meeting International Society of Embryo Transfers criteria, were selected based on aspects like spherical form, the well-defined blastocele, inner cell mass, and absence of zona pellucida (Stringfellow and Seidel, 1998Stringfellow DA, Seidel SM. Manual of the International Embryo Transfer Society. 3rd ed. Champaign: International Embryo Transfer Society, IETS; 1998.). These hatched blastocysts were stored in RNAlater® solution at -80°C until the mRNA isolation (See Supplementary Figure 1b).

Library Preparation, Sequencing, and Data analysis

Two biological replicates each comprising pools of 205 metaphase II oocytes and 35 hatched blastocysts were sequenced. mRNA isolation was performed using Dynabeads© mRNA Direct Micro Kit (Life Technologies, Carlsbad, CA, USA) and single-end barcoded libraries were prepared with the Ion Total RNA-Seq Kit v2 (Life Technologies) following the manufacturer’s instructions. Each library underwent amplification, quantification on Qubit® 2.0 Fluorometer (Life Technologies) and further sequenced on the Ion ProtonTM System (Life Technologies).

RNA-seq data underwent trimming and filtering with a minimum PHRED quality score threshold of 20, using the FASTX-Toolkit (Hanon Laboratory, 2010Hanon Laboratory [homepage on the Internet]. NY: Cold Spring Harbor Laboratory. FASTX-Toolkit Version 0.0.13; 2010 [cited 2017 Jul 20]. Available from: http://hannonlab.cshl.edu/fastx_toolkit/.
http://hannonlab.cshl.edu/fastx_toolkit/...
), and visualization was performed with the FastQC tool (Babraham Bioinformatics, 2016Babraham Bioinformatics [homepage on the Internet]. Cambridge, UK: Babraham Institute. FastQC A Quality Control tool for High Throughput Sequence Data, Version 0.11.5; 2016 [cited 2017 Jul 20]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
http://www.bioinformatics.babraham.ac.uk...
). The torrent mapping alignment program (TMAP, Life Technologies) was employed to map the reads to the Bos taurus reference genome assembly (Bos_taurus.UMD3.1, Ensemble, release 87), allowing for two mismatches with default parameters. The combination of Burrows-Wheeler Aligner (BWA), Sequence Search and Alignment by Hashing Algorithm (SSAHA), and Super-maximal exact matches (SMEM) algorithm was configured using the “mapall” function to obtain optimal alignments (Torrent Suit Software, 2016Torrent Suit Software [homepage on the Internet]. Mapping Alignment Program 5.2.0 Release; 2016 [cited 2017 Jul 25]. Available from: https://github.com/iontorrent/TS/tree/master/Analysis/TMAP.
https://github.com/iontorrent/TS/tree/ma...
). Mapping and coverage were visualized using CLC Genomics Workbench 4.7.2 software (QIAGEN Bioinformatics, Aarhus, Denmark). All RNA-seq data generated in this study have been deposited, and links to the BioProject accession number PRJNA832476 can be found in the DDBJ BioProject database (NIH, 2022NIH [homepage on the Internet]. National Center for Biotechnology Information. BioProject database, accession number PRJNA832476; 2022 [cited 2022 Apr 26]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/.
https://www.ncbi.nlm.nih.gov/bioproject/...
).

Gene Expression and GO Enrichment Analysis

To determine the total number of genes and perform Gene Ontology (GO) enrichment analysis, each biological replicate was analyzed individually with Cufflinks (Trapnell et al., 2010Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28(5):511-5. http://doi.org/10.1038/nbt.1621. PMid:20436464.
http://doi.org/10.1038/nbt.1621...
)⁠⁠ for estimating relative transcript abundance. Default parameters and the Bos taurus UMD3.1 reference genome were used. Assemblies of each replicate were merged into the merged.gtf file using the Cuffmerge tool. Subsequently, the Cuffdiff tool was run using merged.gtf. Read counts were normalized using the Reads Per Kilobase Million (RPKM) method from the gene_exp_diff file, and genes with RPKM > 0.4 were considered expressed (Ramsköld et al., 2009Ramsköld D, Wang ET, Burge CB, Sandberg R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLOS Comput Biol. 2009;5(12):e1000598. http://doi.org/10.1371/journal.pcbi.1000598. PMid:20011106.
http://doi.org/10.1371/journal.pcbi.1000...
)⁠⁠. Differentially expressed genes (DEG) were determined using HTSeq Count with union mode for read counting (Anders et al., 2015Anders S, Pyl PT, Huber W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-9. http://doi.org/10.1093/bioinformatics/btu638. PMid:25260700.
http://doi.org/10.1093/bioinformatics/bt...
). Normalization and testing for differential expression were performed using the DESeq2 package (Bioconductor, 2001), based on the negative binomial distribution (Love et al., 2014Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. http://doi.org/10.1186/s13059-014-0550-8. PMid:25516281.
http://doi.org/10.1186/s13059-014-0550-8...
)⁠⁠. The false discovery rate was adjusted to 0.05, and genes with an adjusted p-value ≤ 0.05 were considered as differentially expressed (Benjamini and Hochberg, 1995Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289-300. http://doi.org/10.1111/j.2517-6161.1995.tb02031.x.
http://doi.org/10.1111/j.2517-6161.1995....
)⁠⁠⁠⁠.

Similarity analysis among samples was based on the Euclidean distance calculation, and hierarchical gene cluster analysis was generated using regularized logarithm transformation. Coding DNA Sequences (CDS) were obtained through the BioMart tool in the Ensembl database for enriched gene ontology categories. CDS data were uploaded to the GO FEAT tool, a free web platform (GO FEAT, 2017GO FEAT [homepage on the Internet]. In GitHub platform, fabriciopa/gofeat: a rapid web-based functional annotation tool for genomic and transcriptomic data; 2017 [cited 2017 Sep 15]. Available from: https://github.com/fabriciopa/gofeat.
https://github.com/fabriciopa/gofeat...
), which attributes functional annotation based on sequence homology with data in NCBI, Kegg, InterPro, Uniprot, Pfam and SEED databases (Araujo et al., 2018Araujo FA, Barh D, Silva A, Guimarães L, Ramos RTJGO. FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data. Sci Rep. 2018;8(1):1794. http://doi.org/10.1038/s41598-018-20211-9. PMid:29379090.
http://doi.org/10.1038/s41598-018-20211-...
)⁠⁠.

Preservation Module Statistics to compare Buffalo and Bovine Transcriptomic Profiles

The RNA-seq data of bovine was retrieved from the GEO platform (accession number GSE52415), selected based on the similarity of IVEP conditions with the present study (Graf et al., 2014Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://doi.org/10.1073/pnas.1321569111. PMid:24591639.
http://doi.org/10.1073/pnas.1321569111...
). Data preprocessing involved aligning both buffalo and bovine transcriptomes using the same reference genome and normalizing expression data using the VST method. The treated data were used to build independent co-expression networks for buffalo and bovine in the WGCNA package within the R program (Langfelder and Horvath, 2008Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;29(9):559. https://doi:10.1186/1471-2105-9-559. PMID: 19114008.). Briefly, adjacency matrices were built with a soft threshold of 20, and these matrices were employed to calculate the similarity between co-expression forces, resulting in a topological overlap matrix. The Dynamic Hybrid Tree Cut algorithm delineated the branches of the clustering tree, that means the co-expression modules. Eigengene modules, representing the main components of each module, were then used to quantify the similarity between the expression profiles of the modules. Modules with very similar expression profiles (correlation of 0.75, default value) were joined and represented in a dendrogram. The co-expression networks underwent analysis for the correlation of the eigengenes modules, with those exhibiting a correlation greater than 0.9 and p-value < 0.05 considered specific stages.

To access the preservation of buffalo co-expression modules in bovine, the modulePreservation function of the WGCNA package was performed (Langfelder et al., 2011Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLOS Comput Biol. 2011;7(1):e1001057. http://doi.org/10.1371/journal.pcbi.1001057. PMid:21283776.
http://doi.org/10.1371/journal.pcbi.1001...
). The Z-summary value, indicating module preservation, was calculated, where a Z-summary value > 10 denotes strong preservation, Z-summary value between 2 and 10 indicates moderate preservation, and Z-summary < 2 denotes poor preservation. Gene ontology of the co-expression modules was performed using GO.db and AnnotationDBI packages (Bioconductor, 2001Bioconductor [homepage on the Internet]. Open Source Software for Bioinformatics; 2001 [cited 2017 Sep 15]. Available from: https://bioconductor.org/packages/release/BiocViews.html#___Software.
https://bioconductor.org/packages/releas...
) within the R program.

Results

General Characterization of Transcriptome Profiles in Buffalo’s Oocytes and Blastocysts

From the total sequenced reads for oocytes (8,014,809) and blastocysts (27,902,704), approximately 90% (7,252,174 and 24,321,010, respectively) were mapped to the reference genome. Altogether, oocytes and blastocysts expressed 13,976 genes, representing 63% of the bovine genome (22,000 genes) and the estimated buffalo genome (Rehman et al., 2021Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-genome sequencing and characterization of buffalo genetic resources: recent advances and future challenges. Animals (Basel). 2021;11(3):904. http://doi.org/10.3390/ani11030904. PMid:33809937.
http://doi.org/10.3390/ani11030904...
)⁠⁠⁠. Separately, oocytes expressed a total of 12,576 genes, and blastocysts a total of 10,049 genes. Of these, 62% (8,649) were ubiquitously expressed between oocytes and blastocysts (Figure 1A).

Figure 1
General characterization of transcriptome profiles of buffalo in vitro matured oocytes and blastocysts. (A) Venn diagram depicting all expressed genes (RPKM > 0.4). The intersection represents the ubiquitously expressed genes, while cracked areas denote unique genes for oocytes and blastocysts; (B) Classification of protein coding genes in embryos and oocytes based on cellular component ontology at level 4.

Ubiquitously genes accounted for 86% of all genes expressed in oocytes (10,049), and 68,7% of all genes in blastocysts (12,576). These genes were classified as protein coding genes (94.17%), non-coding RNAs (1.75%), pseudogenes (3.76%) and new transcripts like (0.32%). Protein coding genes ubiquitously expressed (8,144) were mainly associated with intracellular components (32.48%), plasma membrane (28.36%), nuclei (13.7%), extracellular exosome components (10.14%), and mitochondrial, Golgi apparatus, endoplasmic reticulum and extracellular components (15%). These protein coding genes were related to 362 biological functions, with 20% (1,729 genes) dedicated to cell maintenance functions such as translation, transcription, intracellular protein transport, signal transduction pathways mediated by GTPase, apoptosis regulation, cytoskeletal organization, DNA repair, replication, and chromatin remodeling. Moreover, blastocysts exhibited an abundance of non-coding RNAs (4.1%) compared to oocytes (1.72%), which may be related to their higher transcriptional activity.

Characterization of genes exclusively expressed in oocytes and blastocysts

Exclusively expressed or unique genes are particularly significant for specific biological functions within a certain cell type (Figure 1A). Oocytes demonstrated 1,400 unique genes, constituting 14% of all expressed genes (10,049), while blastocysts exhibited 3,927 unique genes, representing 32% of all expressed genes (12,576). The subsequent analysis focused on unique genes related with specific biological functions.

In oocytes, 224 unique genes were identified, contributing to 11 biological functions related to embryo development (SLC18A2, SOX*, CDKN1C), cellular differentiation (CCDC88A, SFRP1, MEF2C), regulation of signaling cascades such as JAK-STAT (FLRT*) and MAPK (PELI2), and regulation of transmembrane transport (CFTR, AKAP6, GABR*, GRIN2A, SORT1).

In contrast, blastocysts exhibited 2,200 unique genes across 107 biological functions. These functions encompassed RNA and protein processing, differentiation, cellular proliferation, embryo development, signaling pathways such as TGFβ and BMP, fatty acids and lipids metabolic pathways, and regulation of cytokines (See Supplementary Tables). The cellular component ontology analysis supported these biological functions, revealing that 33% of oocyte-unique genes encoded proteins located in the plasma membrane, suggesting roles in signaling and transmembrane transport. Conversely, 35% of embryo-unique genes were related to exosome-contained proteins, indicating cell-signaling activity and the exchange of molecules between embryoblasts and/or extracellular media (Figure 1B).

Characterization of Differentially Expressed Genes (DEG) and strongly variable genes

Among the ubiquitous genes, 4,153 were identified as Differentially Expressed Genes (DEG), with 3,309 being induced and 844 repressed between buffalo oocytes and blastocysts. These DEG were related to 200 biological functions, including gene expression regulation, intracellular transport of proteins, signal transduction pathways, and cytoskeletal organization. The dissimilarity between oocytes and blastocysts was evident in the Euclidean distance map, resulting in the clustering of them into separate groups, highlighting their distinct expression profiles.

The analysis also identified the strongly variable genes among the DEG. Using Hierarchical Cluster and Heatmap analysis (Figure 2), genes with the highest fold-change (above 11) were selected and categorized into two groups: Group 1, comprising genes highly induced in embryos and repressed in oocytes, and Group 2, including genes highly induced in oocytes and repressed in embryos (Table 1).

Figure 2
Hierarchical cluster and Heatmap of Differentially Expressed Genes (DEG). Oocytes and embryos are grouped into two clusters (n=4,153), with strongly variable genes showing a fold-change above 11.
Table 1
Molecular and biological functions of the strongly variable genes.

Comparison of gene co-expression networks of buffalo and bovine

No specific modules were identified for buffaolo oocytes (r >0.9, p<0.05). However, for blastocysts, seven modules of co-expressed genes were identified in buffalos, with four modules showing strong preservation (Zsummary > 10) and three modules showing weak preservation (Z-summary < 2) in the bovine counterpart. According to gene ontology, the modules strongly preserved in bovine counterparts were related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. In contrast, the weakly preserved modules were linked to the cell cycle and amino acid transport (Figure 3).

Figure 3
Preservation of buffalo co-expression modules in bovine and Gene Ontology. The brown (exosome component), blue (steroid metabolism), cyan (cell proliferation), and steelblue (morphogenesis) modules exhibited Z-summary > 10, indicating strong preservation. The orange and dark red (cell cycle) and salmon (amino acids transport) modules show Z-summary < 2, indicating weak preservation. Gene ontology results are provided for each module.

Discussion

This study delves into the transcriptomic profiles of buffalo oocytes and in vitro produced blastocysts. The total number of genes expressed in buffalo aligns closely with previous reports in cattle, ranging from 10,494 to 13,327 genes in in vitro matured oocytes (Graf et al., 2014Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://doi.org/10.1073/pnas.1321569111. PMid:24591639.
http://doi.org/10.1073/pnas.1321569111...
)⁠⁠⁠⁠, and from 11,501 to 13,724 genes in blastocysts (Chitwood et al., 2013Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ. RNA-seq analysis of single bovine blastocysts. BMC Genomics. 2013;14(1):350. http://doi.org/10.1186/1471-2164-14-350. PMid:23705625.
http://doi.org/10.1186/1471-2164-14-350...
; Graf et al., 2014Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://doi.org/10.1073/pnas.1321569111. PMid:24591639.
http://doi.org/10.1073/pnas.1321569111...
)⁠⁠⁠⁠. Remarkably, oocytes and blastocysts collectively express around half of the buffalo genome (Rehman et al., 2021Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-genome sequencing and characterization of buffalo genetic resources: recent advances and future challenges. Animals (Basel). 2021;11(3):904. http://doi.org/10.3390/ani11030904. PMid:33809937.
http://doi.org/10.3390/ani11030904...
)⁠⁠⁠, and mirrors previous RNA-seq results in cattle⁠⁠⁠⁠, humans, and mice (Xue et al., 2013Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu J, Horvath S, Fan G. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593-7. http://doi.org/10.1038/nature12364. PMid:23892778.
http://doi.org/10.1038/nature12364...
; Jiang et al., 2014Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O’Neill R, Ruan Y, Chen J, Tian X. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics. 2014;15(1):756. http://doi.org/10.1186/1471-2164-15-756. PMid:25185836.
http://doi.org/10.1186/1471-2164-15-756...
)⁠⁠. The overlap in expressed genes between oocytes and embryos, encompassing 62%, primarily revolves around cellular maintenance functions. This concurs with existing report indicating that tissues from humans and mice might share around 75% of mRNAs encoding proteins despite their diverse functional roles (Ramskold et al., 2009Ramsköld D, Wang ET, Burge CB, Sandberg R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLOS Comput Biol. 2009;5(12):e1000598. http://doi.org/10.1371/journal.pcbi.1000598. PMid:20011106.
http://doi.org/10.1371/journal.pcbi.1000...
).

In Vitro maturation related genes expressed in buffalo oocytes

Buffalo oocytes exhibit gene expression linked to plasma membrane functions, encompassing ligand-dependent receptors for estrogen (SFRP1) and gamma-aminobutyric acid (GABR), protein transport channels (SORT1), amino acids (GLRA3), cholesterol (CFTR) and calcium (AKAP6, GRIN2A). Notably, genes related to the cell cycle regulation through MAP kinase (UCHL1) and cyclins (WEE2, NLRPs), which promote the maintenance of oocyte arrest until fertilization and are correlated with oocyte's competence (Tripathi et al., 2010Tripathi A, Kumar KVP, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 2010;223(3):592-600. http://doi.org/10.1002/jcp.22108. PMid:20232297.
http://doi.org/10.1002/jcp.22108...
)⁠. Also, transcripts for transcriptional regulation, translation, and RNA stability were strongly induced been identified as ribonuclease, telomeric, translation, and transcription factors. These transcripts may be related to the regulation of the mRNA storage in oocytes which are known to trigger early embryonic development mechanisms (Tadros and Lipshitz, 2009Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033-42. http://doi.org/10.1242/dev.033183. PMid:19700615.
http://doi.org/10.1242/dev.033183...
; Labrecque and Sirard, 2014Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://doi.org/10.1093/molehr/gat082. PMid:24233546.
http://doi.org/10.1093/molehr/gat082...
)⁠.

Another genes related to cell signaling (BMP15), cell cycle (UCHL1, WEE1, NLRPs), RNA stability regulation (KPNA7, ENSBTAT*), and fertilization (ZP2, ZP4) were strongly induced in buffalo oocytes otherwise repressed in blastocysts. Likewise, karyopherins were highly expressed in in vitro matured oocytes and gradually decreased until the blastocyst stage in pigs. KPNA7 gene encodes a receptor for translocation through nuclear pores and the inhibition of its translation by interference RNA in oocytes decreased blastocyst formation in pigs, thus indicating its role in oocyte competence and embryonic development (Wang et al., 2012Wang X, Park KE, Koser S, Liu S, Magnani L, Cabot RA. KPNA7, an oocyte- and embryo-specific karyopherin α subtype, is required for porcine embryo development. Reprod Fertil Dev. 2012;24(2):382-91. http://doi.org/10.1071/RD11119. PMid:22281085.
http://doi.org/10.1071/RD11119...
)⁠⁠⁠⁠. BMP15, a growth factor, influences granulosa cells, promoting oocyte maturation (Macaulay et al., 2016Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HAS, Gagné D, Sirard M, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol Reprod. 2016;94(1):16. http://doi.org/10.1095/biolreprod.114.127571. PMid:26586844.
http://doi.org/10.1095/biolreprod.114.12...
) and its supplementation in maturation media increased blastocyst formation in cattle (Sudiman et al., 2014Sudiman J, Sutton-McDowall ML, Ritter LJ, White MA, Mottershead DG, Thompson JG, Gilchrist RB. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence. PLoS One. 2014;9(7):e103563. http://doi.org/10.1371/journal.pone.0103563. PMid:25058588.
http://doi.org/10.1371/journal.pone.0103...
)⁠⁠⁠. While ZP2 and ZP4 play a crucial role in sperm binding to zona pellucida and fertilization (Yanagimachi, 1981Yanagimachi R. Mechanisms of fertilization in mammals. In: Mastroianni L, Biggers JD, editors. Fertilization and embryonic development In Vitro. Boston: Springer; 1981. p. 81–182. http://doi.org/10.1007/978-1-4684-4016-4_6.
http://doi.org/10.1007/978-1-4684-4016-4...
). Their expression increases along the oogenesis and has been correlated with the oocyte morphological quality (Canosa et al., 2017Canosa S, Adriaenssens T, Coucke W, Dalmasso P, Revelli A, Benedetto C, Smitz J. Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Mol Hum Reprod. 2017;23(5):292-303. http://doi.org/10.1093/molehr/gax008. PMid:28204536.
http://doi.org/10.1093/molehr/gax008...
)⁠⁠⁠.

Development related genes expressed in buffalo blastocysts

Buffalo blastocysts expressed genes related to cell signaling such as Bmp (FAM83G, TGFB3, RGMB, NODAL, RGMA, DSG4, MAPK3, MEGF8, GDF7), the transforming growth factor beta (TGF-β) superfamily, Wnt (WNT6, WNT11, WNT5A) and Notch pathways (NOV, PDCD10, SLC35C2, ZMIZ1). These pathways play pivotal roles in regulating proliferation, stem cell maintenance, differentiation, and morphogenesis, influencing lineage decisions in the blastocyst (Bernatik et al., 2017Bernatik O, Radaszkiewicz T, Behal M, Dave Z, Witte F, Mahl A, Cernohosky NH, Krejci P, Stricker S, Bryja V. A novel role for the BMP antagonist noggin in sensitizing cells to non-canonical Wnt-5a/Ror2/disheveled pathway activation. Front Cell Dev Biol. 2017;5:47. http://doi.org/10.3389/fcell.2017.00047. PMid:28523267.
http://doi.org/10.3389/fcell.2017.00047...
; Menchero et al., 2017Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: linking cellular phenotypes to lineage decisions. Dev Dyn. 2017;246(4):245-61. http://doi.org/10.1002/dvdy.24471. PMid:27859869.
http://doi.org/10.1002/dvdy.24471...
)⁠⁠. The LRP5 encodes an LDL receptor in the Wnt pathway, while NODAL is a member of the TGF-β superfamily, both genes contribute to inner cell mass and epiblast development (Granier et al., 2011Granier C, Gurchenkov V, Perea-Gomez A, Camus A, Ott S, Papanayotou C, Iranzo J, Moreau A, Reid J, Koentges G, Sabéran-Djoneidi D, Collignon J. Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo. Dev Biol. 2011;349(2):350-62. http://doi.org/10.1016/j.ydbio.2010.10.036. PMid:21047506.
http://doi.org/10.1016/j.ydbio.2010.10.0...
; Tribulo et al., 2017Tribulo P, Leão BCS, Lehloenya KC, Mingoti GZ, Hansen PJ. Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol Reprod. 2017;96(6):1129-41. http://doi.org/10.1093/biolre/iox048. PMid:28575156.
http://doi.org/10.1093/biolre/iox048...
)⁠⁠, moreover embryos that failed to express them do not progress after gastrula, resulting in fetal death in mice (Conlon et al., 1994Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994;120(7):1919-28. http://doi.org/10.1242/dev.120.7.1919. PMid:7924997.
http://doi.org/10.1242/dev.120.7.1919...
; Kelly et al., 2004Kelly OG, Pinson KI, Skarnes WC. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development. 2004;131(12):2803-15. http://doi.org/10.1242/dev.01137. PMid:15142971.
http://doi.org/10.1242/dev.01137...
)⁠⁠.⁠

Proliferation-related genes are usually linked to metabolic regulation, ensuring the production of macromolecules and metabolic energy before mitosis (Vander Heiden et al., 2009Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-33. http://doi.org/10.1126/science.1160809. PMid:19460998.
http://doi.org/10.1126/science.1160809...
)⁠⁠⁠⁠. Buffalo blastocysts expressed the mTOR complex activator (LAMTOR1) also an amino-acid carrier (SLC34A2) which activate the mTOR (mammalian target of rapamycin) signaling pathway (Rebsamen et al., 2015Rebsamen M, Pochini L, Stasyk T, de Araujo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudasheskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KVM, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477-81. http://doi.org/10.1038/nature14107. PMid:25561175.
http://doi.org/10.1038/nature14107...
)⁠⁠. mTOR induces aerobic glycolysis and increases the uptake of nutrients resulting in proliferative behavior (Murakami et al., 2004Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004;24(15):6710-8. http://doi.org/10.1128/MCB.24.15.6710-6718.2004. PMid:15254238.
http://doi.org/10.1128/MCB.24.15.6710-67...
; Redel et al., 2015Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reprod Fertil Dev. 2015;27(4):655-66. http://doi.org/10.1071/RD14293. PMid:25765074.
http://doi.org/10.1071/RD14293...
; Spate et al., 2015Spate LD, Brown A, Redel BK, Whitworth KM, Prather RS. PS48 can replace bovine serum albumin in pig embryo culture medium, and improve in vitro embryo development by phosphorylating AKT. Mol Reprod Dev. 2015;82(4):315-20. http://doi.org/10.1002/mrd.22474. PMid:25776657.
http://doi.org/10.1002/mrd.22474...
)⁠⁠. Lipid metabolism genes, including leptin transmembrane receptors (LEP), low-density lipoproteins (LRP5), and enzymes for fatty acid modification (FA2H) and oxidation (ACOT8) were also expressed. Notably, the APOA1 gene was strongly induced in buffalo and encodes an apolipoprotein-A1 major component of high-density lipoprotein. The knockdown of APOA1 was correlated with fewer implantation sites in mice females (Jia et al., 2016Jia J, Gou J, Zhao X, Yi T, Li Z. Apolipoprotein A1 and heterogeneous nuclear ribonucleoprotein E1 implicated in the regulation of embryo implantation by inhibiting lipid peroxidation. Reprod Biomed Online. 2016;33(5):635-45. http://doi.org/10.1016/j.rbmo.2016.07.011. PMid:27567428.
http://doi.org/10.1016/j.rbmo.2016.07.01...
)⁠⁠⁠.

Buffalo blastocysts also expressed genes related to interferon-γ and interleukin production (RHGEF2, CD226, PRKD2, MAVS), secretion (FAR4, LRRC32, RGCC), embryo development and implantation (KRT18, ANXA2, S100A14, SLC34A2, PRSS8, ANXA2, ENSBTAT*). Studies using RNA interference to disrupt keratin 18 (KRT18), the cell adhesion molecule annexin A2 (ANXA2), and metalloproteinase (S100A14) mechanisms were detrimental to blastocyst formation in bovine (Goossens et al., 2010Goossens K, Tesfaye D, Rings F, Schellander K, Hölker M, Van Poucke M, Zeveren AV, Lemahieu I, Soom AV, Peelman LJ. Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod Fertil Dev. 2010;22(2):395-404. http://doi.org/10.1071/RD09080. PMid:20047725.
http://doi.org/10.1071/RD09080...
) and decreased the number of in vivo implantation sites in mice (Wang et al., 2015Wang B, Ye TM, Lee KF, Chiu PCN, Pang RTK, Ng EHY, Yeung WSB. Annexin A2 acts as an adhesion molecule on the endometrial epithelium during implantation in mice. PLoS One. 2015;10(10):e0139506. http://doi.org/10.1371/journal.pone.0139506. PMid:26444699.
http://doi.org/10.1371/journal.pone.0139...
). S100A14, ANXA2, serine protease (PRSS8), and amino acid transmembrane transport (SLC34A2) were previously reported to play a role in implantation (Shibasaki et al., 2009Shibasaki Y, Etoh N, Hayasaka M, Takahashi M, Kakitani M, Yamashita T, Tomizuka K, Hanaoka K. Targeted deletion of the tybe IIb Na+-dependent Pi-co-transporter, NaPi-IIb, results in early embryonic lethality. Biochem Biophys Res Commun. 2009;381(4):482-6. http://doi.org/10.1016/j.bbrc.2009.02.067. PMid:19233126.
http://doi.org/10.1016/j.bbrc.2009.02.06...
; Ruan et al., 2012Ruan YC, Guo JH, Liu X, Zhang R, Tsang LL, Dong JD, Chen H, Yu MK, Jiang X, Zhang XH, Fok KL, Chung YW, Huang H, Zhou WL, Chan HC. Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nat Med. 2012;18(7):1112-7. http://doi.org/10.1038/nm.2771. PMid:22729284.
http://doi.org/10.1038/nm.2771...
; Wang et al., 2015Wang B, Ye TM, Lee KF, Chiu PCN, Pang RTK, Ng EHY, Yeung WSB. Annexin A2 acts as an adhesion molecule on the endometrial epithelium during implantation in mice. PLoS One. 2015;10(10):e0139506. http://doi.org/10.1371/journal.pone.0139506. PMid:26444699.
http://doi.org/10.1371/journal.pone.0139...
)⁠⁠. In mice, embryos secreted the serine protease trypsin that triggered cell signaling and decidualization in endometrial cells (Ruan et al., 2012Ruan YC, Guo JH, Liu X, Zhang R, Tsang LL, Dong JD, Chen H, Yu MK, Jiang X, Zhang XH, Fok KL, Chung YW, Huang H, Zhou WL, Chan HC. Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nat Med. 2012;18(7):1112-7. http://doi.org/10.1038/nm.2771. PMid:22729284.
http://doi.org/10.1038/nm.2771...
)⁠⁠⁠⁠. ANXA2 interacts with S100A14 creating a protein complex, which may facilitate cell adhesion interactions for implantation (Myrvang et al., 2013Myrvang HK, Guo X, Li C, Dekker LV. Protein interactions between surface annexin A2 and S100A10 mediate adhesion of breast cancer cells to microvascular endothelial cells. FEBS Lett. 2013;587(19):3210-5. http://doi.org/10.1016/j.febslet.2013.08.012. PMid:23994525.
http://doi.org/10.1016/j.febslet.2013.08...
)⁠. These genes may be related to the mechanism of implantation in buffalo, as blastocysts interact with endometrium⁠⁠⁠ cells through the secretion of signal molecules, regulating implantation and conceptus development (Bazer, 2013Bazer FW. Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotechnol. 2013;4(1):23. http://doi.org/10.1186/2049-1891-4-23. PMid:23800120.
http://doi.org/10.1186/2049-1891-4-23...
).

Comparison of gene co-expression networks of In Vitro blastocysts of buffalo and bovine

Herein, gene co-expression networks and preserved modules analysis were employed to compare buffalo and bovine, particularly their gene co-expression relations. This methodology, previously applied in pre-implantation embryos of human, mice, bovine, marmoset, and goats (Xue et al., 2013Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu J, Horvath S, Fan G. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593-7. http://doi.org/10.1038/nature12364. PMid:23892778.
http://doi.org/10.1038/nature12364...
; Jiang et al., 2014Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O’Neill R, Ruan Y, Chen J, Tian X. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics. 2014;15(1):756. http://doi.org/10.1186/1471-2164-15-756. PMid:25185836.
http://doi.org/10.1186/1471-2164-15-756...
; Boroviak et al., 2018Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development. 2018;145(21):dev167833. http://doi.org/10.1242/dev.167833. PMid: 30413530.
http://doi.org/10.1242/dev.167833...
; Li et al., 2020Li Y, Sun J, Ling Y, Ming H, Chen Z, Fang F, Liu Y, Cao H, Ding J, Cao Z, Zhang X, Bondioli K, Jiang Z, Zhang Y. Transcription profiles of oocytes during maturation and embryos during preimplantation development in vivo in the goat. Reprod Fertil Dev. 2020;32(7):714-25. http://doi.org/10.1071/RD19391. PMid:32317096.
http://doi.org/10.1071/RD19391...
), highlighted evolutionarily conservation in the embryonic development program across mammalian. Buffalo and bovine blastocysts exhibited a strong correlation in co-expression modules related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. This suggests that these cellular functions are orchestrated by well-preserved clusters of genes, interacting in a co-expression network during embryo development.

The strong preservation of the exosome component module, implicated in immune stimulation and embryo implantation (Chen et al., 2022Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The role of extracellular vesicles in embryo implantation. Front Endocrinol (Lausanne). 2022;13:809596. http://doi.org/10.3389/fendo.2022.809596. PMid:35154016.
http://doi.org/10.3389/fendo.2022.809596...
), underscores its crucial role in both buffalo and bovine blastocysts. Furthermore, the strong preservation of cell proliferation, morphogenesis, and steroid metabolism modules aligns with their correlation to embryo formation and tissue differentiation (Basson, 2012Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol. 2012;4(6):a008151. http://doi.org/10.1101/cshperspect.a008151. PMid:22570373.
http://doi.org/10.1101/cshperspect.a0081...
), also cell growth and division as steroid biosynthesis is essential for generating new cell membranes (Singh et al., 2013Singh P, Saxena R, Srinivas G, Pande G, Chattopadhyay A. Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One. 2013;8(3):e58833. http://doi.org/10.1371/journal.pone.0058833. PMid:23554937.
http://doi.org/10.1371/journal.pone.0058...
).

However, poor preservation of certain modules indicates differential co-expression relations during embryo development. For instance, the cell cycle module was poorly preserved, potentially explaining differences in the kinetics of embryo development between buffalo and bovine (Gasparrini et al., 2014Gasparrini B, Neglia G, Di Palo R, Vecchio D, Albero G, Esposito L, Campanile G, Zicarelli L. Influence of oocyte donor on in vitro embryo production in buffalo. Anim Reprod Sci. 2014;144(3-4):95-101. http://doi.org/10.1016/j.anireprosci.2013.11.010. PMid:24374181.
http://doi.org/10.1016/j.anireprosci.201...
). Similarly, the amino acid transport module, critical for cell homeostasis (Zhang et al., 2017Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol. 2017;8:10. http://doi.org/10.1186/s40104-016-0139-z. PMid:28127425.) and signaling pathway activation (Kim et al., 2011Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod. 2011;84(1):62-9. http://doi.org/10.1095/biolreprod.110.085738. PMid:20844282.
http://doi.org/10.1095/biolreprod.110.08...
; Rebsamen et al., 2015Rebsamen M, Pochini L, Stasyk T, de Araujo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudasheskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KVM, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477-81. http://doi.org/10.1038/nature14107. PMid:25561175.
http://doi.org/10.1038/nature14107...
; Redel et al., 2015Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reprod Fertil Dev. 2015;27(4):655-66. http://doi.org/10.1071/RD14293. PMid:25765074.
http://doi.org/10.1071/RD14293...
).

Conclusion

In conclusion, this study provides a comprehensive transcriptome profile of in vitro matured oocytes and blastocysts from buffaloes. Prominent candidates for in vitro oocyte competence include BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4. Similarly, genes KRT18, ANXA2, S100A14, SLC34A2, PRSS8, ANXA2, LRP5, NODAL, MEGF8, LAMTOR1, APOA1, LEP, and ANXA6 emerge as potential candidates for in vitro embryo competence. The strong preservation of gene co-expression networks in blastocysts suggests a similarity in embryonic development programs between buffalo and bovine species.

Acknowledgments

This study was supported by grants from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Bubras Investments and Participation.

  • Financial support: The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowship awarded to Santana PDPB.
  • How to cite: Santana PDPB, Pinheiro KC, Pereira LCS, Andrade SS, Aburjaile FF, Ramos PCA, Souza EB, Costa NN, Cordeiro MS, Santos SSD, Miranda MS, Ramos RTJ, Silva ALC. RNA sequencing and gene co-expression network of in vitro matured oocytes and blastocysts of buffalo. Anim Reprod. 2024;21(2):e20230131. https://doi.org/10.1590/1984-3143-AR2023-0131

References

  • Abdoon AS, Gabler C, Holder C, Kandil OM, Einspanier R. Seasonal variations in developmental competence and relative abundance of gene transcripts in buffalo (Bubalus bubalis) oocytes. Theriogenology. 2014;82(8):1055-67. http://doi.org/10.1016/j.theriogenology.2014.07.008 PMid:25156970.
    » http://doi.org/10.1016/j.theriogenology.2014.07.008
  • Anders S, Pyl PT, Huber W. HTSeq: a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166-9. http://doi.org/10.1093/bioinformatics/btu638 PMid:25260700.
    » http://doi.org/10.1093/bioinformatics/btu638
  • Angel-Velez D, Meese T, Hedia M, Fernandez-Montoro A, De Coster T, Pascottini OB, Van Nieuwerburgh F, Govaere J, Van Soom A, Pavani K, Smits K. Transcriptomics reveal molecular differences in equine oocytes vitrified before and after In Vitro maturation. Int J Mol Sci. 2023;24(8):6915. http://doi.org/10.3390/ijms24086915 PMid: 37108081.
    » http://doi.org/10.3390/ijms24086915
  • Araujo FA, Barh D, Silva A, Guimarães L, Ramos RTJGO. FEAT: a rapid web-based functional annotation tool for genomic and transcriptomic data. Sci Rep. 2018;8(1):1794. http://doi.org/10.1038/s41598-018-20211-9 PMid:29379090.
    » http://doi.org/10.1038/s41598-018-20211-9
  • Babraham Bioinformatics [homepage on the Internet]. Cambridge, UK: Babraham Institute. FastQC A Quality Control tool for High Throughput Sequence Data, Version 0.11.5; 2016 [cited 2017 Jul 20]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
    » http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
  • Baruselli PS, Carvalho JGS, Elliff FM, Silva JCBD, Chello D, Carvalho NAT. Embryo transfer in buffalo (Bubalus bubalis). Theriogenology. 2020;150:221-8. http://doi.org/10.1016/j.theriogenology.2020.01.037 PMid:31996292.
    » http://doi.org/10.1016/j.theriogenology.2020.01.037
  • Basson MA. Signaling in cell differentiation and morphogenesis. Cold Spring Harb Perspect Biol. 2012;4(6):a008151. http://doi.org/10.1101/cshperspect.a008151 PMid:22570373.
    » http://doi.org/10.1101/cshperspect.a008151
  • Bauer BK, Isom SC, Spate LD, Whitworth KM, Spollen WG, Blake SM, Springer GK, Murphy CN, Prather RS. Transcriptional profiling by deep sequencing identifies differences in mRNA transcript abundance in in vivo-derived versus In Vitro-. Biol Reprod. 2010;83(5):791-8. http://doi.org/10.1095/biolreprod.110.085936 PMid:20668257.
    » http://doi.org/10.1095/biolreprod.110.085936
  • Bazer FW. Pregnancy recognition signaling mechanisms in ruminants and pigs. J Anim Sci Biotechnol. 2013;4(1):23. http://doi.org/10.1186/2049-1891-4-23 PMid:23800120.
    » http://doi.org/10.1186/2049-1891-4-23
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289-300. http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
    » http://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Bernatik O, Radaszkiewicz T, Behal M, Dave Z, Witte F, Mahl A, Cernohosky NH, Krejci P, Stricker S, Bryja V. A novel role for the BMP antagonist noggin in sensitizing cells to non-canonical Wnt-5a/Ror2/disheveled pathway activation. Front Cell Dev Biol. 2017;5:47. http://doi.org/10.3389/fcell.2017.00047 PMid:28523267.
    » http://doi.org/10.3389/fcell.2017.00047
  • Bioconductor [homepage on the Internet]. Open Source Software for Bioinformatics; 2001 [cited 2017 Sep 15]. Available from: https://bioconductor.org/packages/release/BiocViews.html#___Software
    » https://bioconductor.org/packages/release/BiocViews.html#___Software
  • Boroviak T, Stirparo GG, Dietmann S, Hernando-Herraez I, Mohammed H, Reik W, Smith A, Sasaki E, Nichols J, Bertone P. Single cell transcriptome analysis of human, marmoset and mouse embryos reveals common and divergent features of preimplantation development. Development. 2018;145(21):dev167833. http://doi.org/10.1242/dev.167833 PMid: 30413530.
    » http://doi.org/10.1242/dev.167833
  • Bunel A, Jorssen EP, Merckx E, Leroy JL, Bols PE, Sirard MA. Individual bovine in vitro embryo production and cumulus cell transcriptomic analysis to distinguish cumulus-oocyte complexes with high or low developmental potential. Theriogenology. 2015;83(2):228-37. http://doi.org/10.1016/j.theriogenology.2014.09.019 PMid:25442391.
    » http://doi.org/10.1016/j.theriogenology.2014.09.019
  • Canosa S, Adriaenssens T, Coucke W, Dalmasso P, Revelli A, Benedetto C, Smitz J. Zona pellucida gene mRNA expression in human oocytes is related to oocyte maturity, zona inner layer retardance and fertilization competence. Mol Hum Reprod. 2017;23(5):292-303. http://doi.org/10.1093/molehr/gax008 PMid:28204536.
    » http://doi.org/10.1093/molehr/gax008
  • Cao S, Han J, Wu J, Li Q, Liu S, Zhang W, Pei Y, Ruan X, Liu Z, Wang X, Lim B, Li N. Specific gene-regulation networks during the pre-implantation development of the pig embryo as revealed by deep sequencing. BMC Genomics. 2014;15(1):4. http://doi.org/10.1186/1471-2164-15-4 PMid:24383959.
    » http://doi.org/10.1186/1471-2164-15-4
  • Capra E, Kosior MA, Cocchia N, Lazzari B, Del Prete C, Longobardi V, Pizzi F, Stella A, Frigerio R, Cretich M, Consiglio AL, Gasparrini B. Variations of follicular fluid extracellular vesicles miRNAs content in relation to development stage and season in buffalo. Sci Rep. 2022;12(1):14886. http://doi.org/10.1038/s41598-022-18438-8 PMid:36050481.
    » http://doi.org/10.1038/s41598-022-18438-8
  • Capra E, Lazzari B, Russo M, Kosior MA, Valle GD, Longobardi V, Stella A, Consiglio AL, Gasparrini B. Seasonal effects on miRNA and transcriptomic profile of oocytes and follicular cells in buffalo (Bubalus bubalis). Sci Rep. 2020;10(1):13557. http://doi.org/10.1038/s41598-020-70546-5 PMid:32782284.
    » http://doi.org/10.1038/s41598-020-70546-5
  • CEUA/UFPA [homepage on the Internet]. Comitê de Ética da Universidade Federal do Pará; 2024 [cited 2024 May 20]. Available from: https://ceua.ufpa.br/
    » https://ceua.ufpa.br/
  • Chen K, Liang J, Qin T, Zhang Y, Chen X, Wang Z. The role of extracellular vesicles in embryo implantation. Front Endocrinol (Lausanne). 2022;13:809596. http://doi.org/10.3389/fendo.2022.809596 PMid:35154016.
    » http://doi.org/10.3389/fendo.2022.809596
  • Chitwood JL, Rincon G, Kaiser GG, Medrano JF, Ross PJ. RNA-seq analysis of single bovine blastocysts. BMC Genomics. 2013;14(1):350. http://doi.org/10.1186/1471-2164-14-350 PMid:23705625.
    » http://doi.org/10.1186/1471-2164-14-350
  • Conlon FL, Lyons KM, Takaesu N, Barth KS, Kispert A, Herrmann B, Robertson EJ. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development. 1994;120(7):1919-28. http://doi.org/10.1242/dev.120.7.1919 PMid:7924997.
    » http://doi.org/10.1242/dev.120.7.1919
  • Costa NN, Brito KN, Santana PD, Cordeiro MS, Silva TV, Santos AX, Ramos PC, Santos SS, King WA, Miranda MS, Ohashi OM. Effect of cortisol on bovine oocyte maturation and embryo development in vitro. Theriogenology. 2016;85(2):323-9. http://doi.org/10.1016/j.theriogenology.2015.08.010 PMid:26456184.
    » http://doi.org/10.1016/j.theriogenology.2015.08.010
  • Di Francesco S, Novoa MVS, Vecchio D, Neglia G, Boccia L, Campanile G, Zicarelli L, Gasparrini B. Ovum pick-up and in vitro embryo production (OPU-IVEP) in Mediterranean Italian buffalo performed in different seasons. Theriogenology. 2012;77(1):148-54. http://doi.org/10.1016/j.theriogenology.2011.07.028 PMid:21872310.
    » http://doi.org/10.1016/j.theriogenology.2011.07.028
  • Du L, Gu T, Zhang Y, Huang Z, Wu N, Zhao W, Chang G, Xu Q, Chen G. Transcriptome profiling to identify key mediators of granulosa cell proliferation upon FSH stimulation in the goose (Anser cygnoides). Br Poult Sci. 2018;59(4):416-21. http://doi.org/10.1080/00071668.2018.1459474 PMid:29723039.
    » http://doi.org/10.1080/00071668.2018.1459474
  • Feuerstein P, Puard V, Chevalier C, Teusan R, Cadoret V, Guerif F, Houlgatte R, Royere D. Genomic assessment of human cumulus cell marker genes as predictors of oocyte developmental competence: impact of various experimental factors. PLoS One. 2012;7(7):e40449. http://doi.org/10.1371/journal.pone.0040449 PMid:22848380.
    » http://doi.org/10.1371/journal.pone.0040449
  • Gasparrini B, Neglia G, Di Palo R, Vecchio D, Albero G, Esposito L, Campanile G, Zicarelli L. Influence of oocyte donor on in vitro embryo production in buffalo. Anim Reprod Sci. 2014;144(3-4):95-101. http://doi.org/10.1016/j.anireprosci.2013.11.010 PMid:24374181.
    » http://doi.org/10.1016/j.anireprosci.2013.11.010
  • Gilchrist GC, Tscherner A, Nalpathamkalam T, Merico D, LaMarre J. MicroRNA expression during bovine oocyte maturation and fertilization. Int J Mol Sci. 2016;17(3):396. http://doi.org/10.3390/ijms17030396 PMid:26999121.
    » http://doi.org/10.3390/ijms17030396
  • GO FEAT [homepage on the Internet]. In GitHub platform, fabriciopa/gofeat: a rapid web-based functional annotation tool for genomic and transcriptomic data; 2017 [cited 2017 Sep 15]. Available from: https://github.com/fabriciopa/gofeat
    » https://github.com/fabriciopa/gofeat
  • Goel P, Malpotra S, Shyam S, Kumar D, Singh MK, Palta P. Global MicroRNA expression profiling of buffalo (Bubalus bubalis) embryos at different developmental stages produced by somatic cell nuclear transfer and in-vitro fertilization using RNA Sequencing. Genes (Basel). 2022;13(3):453. http://doi.org/10.3390/genes13030453 PMid: 35328007.
    » http://doi.org/10.3390/genes13030453
  • Goossens K, Tesfaye D, Rings F, Schellander K, Hölker M, Van Poucke M, Zeveren AV, Lemahieu I, Soom AV, Peelman LJ. Suppression of keratin 18 gene expression in bovine blastocysts by RNA interference. Reprod Fertil Dev. 2010;22(2):395-404. http://doi.org/10.1071/RD09080 PMid:20047725.
    » http://doi.org/10.1071/RD09080
  • Graf A, Krebs S, Zakhartchenko V, Schwalb B, Blum H, Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc Natl Acad Sci USA. 2014;111(11):4139-44. http://doi.org/10.1073/pnas.1321569111 PMid:24591639.
    » http://doi.org/10.1073/pnas.1321569111
  • Granier C, Gurchenkov V, Perea-Gomez A, Camus A, Ott S, Papanayotou C, Iranzo J, Moreau A, Reid J, Koentges G, Sabéran-Djoneidi D, Collignon J. Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo. Dev Biol. 2011;349(2):350-62. http://doi.org/10.1016/j.ydbio.2010.10.036 PMid:21047506.
    » http://doi.org/10.1016/j.ydbio.2010.10.036
  • Hanon Laboratory [homepage on the Internet]. NY: Cold Spring Harbor Laboratory. FASTX-Toolkit Version 0.0.13; 2010 [cited 2017 Jul 20]. Available from: http://hannonlab.cshl.edu/fastx_toolkit/
    » http://hannonlab.cshl.edu/fastx_toolkit/
  • Holm P, Booth PJ, Schmidt MH, Greve T, Callesen H. High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology. 1999;52(4):683-700. http://doi.org/10.1016/S0093-691X(99)00162-4 PMid:10734366.
    » http://doi.org/10.1016/S0093-691X(99)00162-4
  • Jia J, Gou J, Zhao X, Yi T, Li Z. Apolipoprotein A1 and heterogeneous nuclear ribonucleoprotein E1 implicated in the regulation of embryo implantation by inhibiting lipid peroxidation. Reprod Biomed Online. 2016;33(5):635-45. http://doi.org/10.1016/j.rbmo.2016.07.011 PMid:27567428.
    » http://doi.org/10.1016/j.rbmo.2016.07.011
  • Jiang Z, Dong H, Zheng X, Marjani SL, Donovan DM, Chen J, Tian XC. mRNA levels of imprinted genes in bovine in vivo oocytes, embryos and cross species comparisons with humans, mice and pigs. Sci Rep. 2015;5(1):17898. http://doi.org/10.1038/srep17898 PMid:26638780.
    » http://doi.org/10.1038/srep17898
  • Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O’Neill R, Ruan Y, Chen J, Tian X. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics. 2014;15(1):756. http://doi.org/10.1186/1471-2164-15-756 PMid:25185836.
    » http://doi.org/10.1186/1471-2164-15-756
  • Kandil OM, Ghanem N, Abdoon ASS, Hölker M, Phatsara C, Schellander K, Tesfaye D. Transcriptional analysis of buffalo (Bubalus bubalis) oocytes during in vitro maturation using bovine cDNA microarray. Reprod Domest Anim. 2010;45(1):63-74. http://doi.org/10.1111/j.1439-0531.2008.01238.x PMid:19144006.
    » http://doi.org/10.1111/j.1439-0531.2008.01238.x
  • Kelly OG, Pinson KI, Skarnes WC. The Wnt co-receptors Lrp5 and Lrp6 are essential for gastrulation in mice. Development. 2004;131(12):2803-15. http://doi.org/10.1242/dev.01137 PMid:15142971.
    » http://doi.org/10.1242/dev.01137
  • Kim JY, Burghardt RC, Wu G, Johnson GA, Spencer TE, Bazer FW. Select nutrients in the ovine uterine lumen. VII. Effects of arginine, leucine, glutamine, and glucose on trophectoderm cell signaling, proliferation, and migration. Biol Reprod. 2011;84(1):62-9. http://doi.org/10.1095/biolreprod.110.085738 PMid:20844282.
    » http://doi.org/10.1095/biolreprod.110.085738
  • Kropp J, Khatib H. Characterization of microRNA in bovine in vitro culture media associated with embryo quality and development. J Dairy Sci. 2015a;98(9):6552-63. http://doi.org/10.3168/jds.2015-9510 PMid:26142856.
    » http://doi.org/10.3168/jds.2015-9510
  • Kropp J, Khatib H. mRNA fragments in in vitro culture media are associated with bovine preimplantation embryonic development. Front Genet. 2015b;6:273. http://doi.org/10.3389/fgene.2015.00273 PMid:26379701.
    » http://doi.org/10.3389/fgene.2015.00273
  • Kumar P, Verma A, Roy B, Rajput S, Ojha S, Anand S, Yadav P, Arora J, De S, Goswami SL, Datta TK. Effect of varying glucose concentrations during In Vitro maturation and embryo culture on efficiency of In Vitro embryo production in buffalo. Reprod Domest Anim. 2012;47(2):269-73. http://doi.org/10.1111/j.1439-0531.2011.01849.x PMid:21762215.
    » http://doi.org/10.1111/j.1439-0531.2011.01849.x
  • Kumar S, Chaves MS, da Silva AFB, Vale WG, Filho STR, Ferreira-Silva JC, Melo LM, de Figueiredo Freitas VJ. Factors affecting the in vitro embryo production in buffalo (Bubalus bubalis): a review. Vet Med (Praha). 2023;68(2):45-56. http://doi.org/10.17221/48/2022-VETMED
    » http://doi.org/10.17221/48/2022-VETMED
  • Labrecque R, Sirard MA. The study of mammalian oocyte competence by transcriptome analysis: progress and challenges. Mol Hum Reprod. 2014;20(2):103-16. http://doi.org/10.1093/molehr/gat082 PMid:24233546.
    » http://doi.org/10.1093/molehr/gat082
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;29(9):559. https://doi:10.1186/1471-2105-9-559. PMID: 19114008.
  • Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLOS Comput Biol. 2011;7(1):e1001057. http://doi.org/10.1371/journal.pcbi.1001057 PMid:21283776.
    » http://doi.org/10.1371/journal.pcbi.1001057
  • Leibfried L, First NL. Characterization of bovine follicular oocytes and their ability to mature in vitro. J Anim Sci. 1979;48(1):76-86. http://doi.org/10.2527/jas1979.48176x PMid:573253.
    » http://doi.org/10.2527/jas1979.48176x
  • Li Y, Sun J, Ling Y, Ming H, Chen Z, Fang F, Liu Y, Cao H, Ding J, Cao Z, Zhang X, Bondioli K, Jiang Z, Zhang Y. Transcription profiles of oocytes during maturation and embryos during preimplantation development in vivo in the goat. Reprod Fertil Dev. 2020;32(7):714-25. http://doi.org/10.1071/RD19391 PMid:32317096.
    » http://doi.org/10.1071/RD19391
  • Lonergan P, Fair T, Corcoran D, Evans AC. Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology. 2006;65(1):137-52. http://doi.org/10.1016/j.theriogenology.2005.09.028 PMid:16289260.
    » http://doi.org/10.1016/j.theriogenology.2005.09.028
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. http://doi.org/10.1186/s13059-014-0550-8 PMid:25516281.
    » http://doi.org/10.1186/s13059-014-0550-8
  • Luo F, Jia R, Ying S, Wang Z, Wang F. Analysis of genes that influence sheep follicular development by different nutrition levels during the luteal phase using expression profiling. Anim Genet. 2016;47(3):354-64. http://doi.org/10.1111/age.12427 PMid:26970339.
    » http://doi.org/10.1111/age.12427
  • Macaulay AD, Gilbert I, Scantland S, Fournier E, Ashkar F, Bastien A, Saadi HAS, Gagné D, Sirard M, Khandjian ÉW, Richard FJ, Hyttel P, Robert C. Cumulus cell transcripts transit to the bovine oocyte in preparation for maturation. Biol Reprod. 2016;94(1):16. http://doi.org/10.1095/biolreprod.114.127571 PMid:26586844.
    » http://doi.org/10.1095/biolreprod.114.127571
  • Marin DFD, de Souza EB, de Brito VC, Nascimento CV, Ramos AS, Rolim ST Fo, da Costa NN, Cordeiro MDS, Santos SDSD, Ohashi OM. In vitro embryo production in buffaloes: from the laboratory to the farm. Anim Reprod. 2019a;16(2):260-266. http://doi.org/10.21451/1984-3143-AR2018-0135 PMid: 33224285.
    » http://doi.org/10.21451/1984-3143-AR2018-0135
  • Marin DFD, da Costa NN, Santana PPB, de Souza EB, Ohashi OM. Importance of lipid metabolism on oocyte maturation and early embryo development: can we apply what we know to buffalo? Anim Reprod Sci. 2019b;211:106220. http://doi.org/10.1016/j.anireprosci.2019.106220 PMid:31785645.
    » http://doi.org/10.1016/j.anireprosci.2019.106220
  • Menchero S, Rayon T, Andreu MJ, Manzanares M. Signaling pathways in mammalian preimplantation development: linking cellular phenotypes to lineage decisions. Dev Dyn. 2017;246(4):245-61. http://doi.org/10.1002/dvdy.24471 PMid:27859869.
    » http://doi.org/10.1002/dvdy.24471
  • Milazzotto MP, Goissis MD, Chitwood JL, Annes K, Soares CA, Ispada J, Assumpção MEOÁ, Ross PJ. Early cleavages influence the molecular and the metabolic pattern of individually cultured bovine blastocysts. Mol Reprod Dev. 2016;83(4):324-36. http://doi.org/10.1002/mrd.22619 PMid:26822777.
    » http://doi.org/10.1002/mrd.22619
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621-8. http://doi.org/10.1038/nmeth.1226 PMid:18516045.
    » http://doi.org/10.1038/nmeth.1226
  • Murakami M, Ichisaka T, Maeda M, Oshiro N, Hara K, Edenhofer F, Kiyama H, Yonezawa K, Yamanaka S. mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells. Mol Cell Biol. 2004;24(15):6710-8. http://doi.org/10.1128/MCB.24.15.6710-6718.2004 PMid:15254238.
    » http://doi.org/10.1128/MCB.24.15.6710-6718.2004
  • Myrvang HK, Guo X, Li C, Dekker LV. Protein interactions between surface annexin A2 and S100A10 mediate adhesion of breast cancer cells to microvascular endothelial cells. FEBS Lett. 2013;587(19):3210-5. http://doi.org/10.1016/j.febslet.2013.08.012 PMid:23994525.
    » http://doi.org/10.1016/j.febslet.2013.08.012
  • Neglia G, Gasparrini B, Caracciolo Di Brienza V, Di Palo R, Campanile G, Presicce GA, Zicarelli L. Bovine and buffalo in vitro embryo production using oocytes derived from abattoir ovaries or collected by transvaginal follicle aspiration. Theriogenology. 2003;59(5–6):1123-30. http://doi.org/10.1016/S0093-691X(02)01170-6 PMid:12527061.
    » http://doi.org/10.1016/S0093-691X(02)01170-6
  • NIH [homepage on the Internet]. National Center for Biotechnology Information. BioProject database, accession number PRJNA832476; 2022 [cited 2022 Apr 26]. Available from: https://www.ncbi.nlm.nih.gov/bioproject/
    » https://www.ncbi.nlm.nih.gov/bioproject/
  • Østrup O, Olbricht G, Østrup E, Hyttel P, Collas P, Cabot R. RNA profiles of porcine embryos during genome activation reveal complex metabolic switch sensitive to in vitro conditions. PLoS One. 2013;8(4):e61547. http://doi.org/10.1371/journal.pone.0061547 PMid:23637850.
    » http://doi.org/10.1371/journal.pone.0061547
  • Parrish JJ, Susko-Parrish J, Winer MA, First NL. Capacitation of bovine sperm by heparin. Biol Reprod. 1988;38(5):1171-80. http://doi.org/10.1095/biolreprod38.5.1171 PMid:3408784.
    » http://doi.org/10.1095/biolreprod38.5.1171
  • Rabaglino MB, Forde N, Besenfelder U, Havlicek V, Blum H, Graf A, Wolf E, Lonergan P. Maternal metabolic status and in-vitro culture conditions during embryonic genome activation deregulate the expression of energy-related genes in the bovine 16-cells embryo. PLoS One. 2023;18(8):e0290689. http://doi.org/10.1371/journal.pone.0290689 PMid: 37624829.
    » http://doi.org/10.1371/journal.pone.0290689
  • Ramsköld D, Wang ET, Burge CB, Sandberg R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLOS Comput Biol. 2009;5(12):e1000598. http://doi.org/10.1371/journal.pcbi.1000598 PMid:20011106.
    » http://doi.org/10.1371/journal.pcbi.1000598
  • Rebsamen M, Pochini L, Stasyk T, de Araujo MEG, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudasheskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KVM, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature. 2015;519(7544):477-81. http://doi.org/10.1038/nature14107 PMid:25561175.
    » http://doi.org/10.1038/nature14107
  • Redel BK, Brown AN, Spate LD, Whitworth KM, Green JA, Prather RS. Glycolysis in preimplantation development is partially controlled by the warburg effect. Mol Reprod Dev. 2012;79(4):262-71. http://doi.org/10.1002/mrd.22017 PMid:22213464.
    » http://doi.org/10.1002/mrd.22017
  • Redel BK, Tessanne KJ, Spate LD, Murphy CN, Prather RS. Arginine increases development of in vitro-produced porcine embryos and affects the protein arginine methyltransferase–dimethylarginine dimethylaminohydrolase–nitric oxide axis. Reprod Fertil Dev. 2015;27(4):655-66. http://doi.org/10.1071/RD14293 PMid:25765074.
    » http://doi.org/10.1071/RD14293
  • Rehman SU, Hassan FU, Luo X, Li Z, Liu Q. Whole-genome sequencing and characterization of buffalo genetic resources: recent advances and future challenges. Animals (Basel). 2021;11(3):904. http://doi.org/10.3390/ani11030904 PMid:33809937.
    » http://doi.org/10.3390/ani11030904
  • Reyes JM, Chitwood JL, Ross PJ. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation. Mol Reprod Dev. 2015;82(2):103-14. http://doi.org/10.1002/mrd.22445 PMid:25560149.
    » http://doi.org/10.1002/mrd.22445
  • Ruan YC, Guo JH, Liu X, Zhang R, Tsang LL, Dong JD, Chen H, Yu MK, Jiang X, Zhang XH, Fok KL, Chung YW, Huang H, Zhou WL, Chan HC. Activation of the epithelial Na+ channel triggers prostaglandin E2 release and production required for embryo implantation. Nat Med. 2012;18(7):1112-7. http://doi.org/10.1038/nm.2771 PMid:22729284.
    » http://doi.org/10.1038/nm.2771
  • Santos SSD, Dantas JK, Miranda MS, Biondi FC, Ohashi OM. Cinética da maturação nuclear in vitro de oócitos bubalinos. Braz J Vet Res Anim Sci. 2002;39(5):266-70. http://doi.org/10.1590/S1413-95962002000500009
    » http://doi.org/10.1590/S1413-95962002000500009
  • Shibasaki Y, Etoh N, Hayasaka M, Takahashi M, Kakitani M, Yamashita T, Tomizuka K, Hanaoka K. Targeted deletion of the tybe IIb Na+-dependent Pi-co-transporter, NaPi-IIb, results in early embryonic lethality. Biochem Biophys Res Commun. 2009;381(4):482-6. http://doi.org/10.1016/j.bbrc.2009.02.067 PMid:19233126.
    » http://doi.org/10.1016/j.bbrc.2009.02.067
  • Singh P, Saxena R, Srinivas G, Pande G, Chattopadhyay A. Cholesterol biosynthesis and homeostasis in regulation of the cell cycle. PLoS One. 2013;8(3):e58833. http://doi.org/10.1371/journal.pone.0058833 PMid:23554937.
    » http://doi.org/10.1371/journal.pone.0058833
  • Song X, Li T, Xiong X, Shan H, Feng T, Cui K, Shi D, Liu Q, Li Z. RNA-seq reveals the underlying molecular mechanism of first cleavage time affecting porcine embryo development. Genes (Basel). 2022;13(7):1251. http://doi.org/10.3390/genes13071251 PMid:35886034.
    » http://doi.org/10.3390/genes13071251
  • Sood TJ, Lagah SV, Mukesh M, Singla SK, Chauhan MS, Manik RS, Palta P. RNA sequencing and transcriptome analysis of buffalo (Bubalus bubalis) blastocysts produced by somatic cell nuclear transfer and in vitro fertilization. Mol Reprod Dev. 2019;86(9):1149-67. http://doi.org/10.1002/mrd.23233 PMid:31304661.
    » http://doi.org/10.1002/mrd.23233
  • Spate LD, Brown A, Redel BK, Whitworth KM, Prather RS. PS48 can replace bovine serum albumin in pig embryo culture medium, and improve in vitro embryo development by phosphorylating AKT. Mol Reprod Dev. 2015;82(4):315-20. http://doi.org/10.1002/mrd.22474 PMid:25776657.
    » http://doi.org/10.1002/mrd.22474
  • Strazzullo M, Gasparrini B, Neglia G, Balestrieri ML, Francioso R, Rossetti C, Nassa G, De Filippo MR, Weisz A, Di Francesco S, Vecchio D, D’Esposito M, D’Occhio MJ, Zicarelli L, Campanile G. Global transcriptome profiles of italian mediterranean buffalo embryos with normal and retarded growth. PLoS One. 2014;9(2):e90027. http://doi.org/10.1371/journal.pone.0090027 PMid:24587197.
    » http://doi.org/10.1371/journal.pone.0090027
  • Stringfellow DA, Seidel SM. Manual of the International Embryo Transfer Society. 3rd ed. Champaign: International Embryo Transfer Society, IETS; 1998.
  • Sudiman J, Sutton-McDowall ML, Ritter LJ, White MA, Mottershead DG, Thompson JG, Gilchrist RB. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence. PLoS One. 2014;9(7):e103563. http://doi.org/10.1371/journal.pone.0103563 PMid:25058588.
    » http://doi.org/10.1371/journal.pone.0103563
  • Tadros W, Lipshitz HD. The maternal-to-zygotic transition: a play in two acts. Development. 2009;136(18):3033-42. http://doi.org/10.1242/dev.033183 PMid:19700615.
    » http://doi.org/10.1242/dev.033183
  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold B, Pachter L. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2010;28(5):511-5. http://doi.org/10.1038/nbt.1621 PMid:20436464.
    » http://doi.org/10.1038/nbt.1621
  • Tribulo P, Leão BCS, Lehloenya KC, Mingoti GZ, Hansen PJ. Consequences of endogenous and exogenous WNT signaling for development of the preimplantation bovine embryo. Biol Reprod. 2017;96(6):1129-41. http://doi.org/10.1093/biolre/iox048 PMid:28575156.
    » http://doi.org/10.1093/biolre/iox048
  • Tripathi A, Kumar KVP, Chaube SK. Meiotic cell cycle arrest in mammalian oocytes. J Cell Physiol. 2010;223(3):592-600. http://doi.org/10.1002/jcp.22108 PMid:20232297.
    » http://doi.org/10.1002/jcp.22108
  • Torrent Suit Software [homepage on the Internet]. Mapping Alignment Program 5.2.0 Release; 2016 [cited 2017 Jul 25]. Available from: https://github.com/iontorrent/TS/tree/master/Analysis/TMAP
    » https://github.com/iontorrent/TS/tree/master/Analysis/TMAP
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-33. http://doi.org/10.1126/science.1160809 PMid:19460998.
    » http://doi.org/10.1126/science.1160809
  • Wang B, Ye TM, Lee KF, Chiu PCN, Pang RTK, Ng EHY, Yeung WSB. Annexin A2 acts as an adhesion molecule on the endometrial epithelium during implantation in mice. PLoS One. 2015;10(10):e0139506. http://doi.org/10.1371/journal.pone.0139506 PMid:26444699.
    » http://doi.org/10.1371/journal.pone.0139506
  • Wang H, Chen W, Shen P, Feng Y, Shi D, Lu F. Follistatin (FST) is expressed in buffalo (Bubalus bubalis) ovarian follicles and promotes oocyte maturation and early embryonic development. Reprod Domest Anim. 2023a;58(12):1718-31. http://doi.org/10.1111/rda.14490 PMid:37917549.
    » http://doi.org/10.1111/rda.14490
  • Wang J, Chen H, Zhang Y, Jiang S, Zeng X, Shen H. Comprehensive analysis of differentially expressed CircRNAs in the ovaries of low- and high-fertility sheep. Animals (Basel). 2023b;13(2):236. http://doi.org/10.3390/ani13020236 PMid: 36670776.
    » http://doi.org/10.3390/ani13020236
  • Wang X, Park KE, Koser S, Liu S, Magnani L, Cabot RA. KPNA7, an oocyte- and embryo-specific karyopherin α subtype, is required for porcine embryo development. Reprod Fertil Dev. 2012;24(2):382-91. http://doi.org/10.1071/RD11119 PMid:22281085.
    » http://doi.org/10.1071/RD11119
  • Xue Z, Huang K, Cai C, Cai L, Jiang C, Feng Y, Liu Z, Zeng Q, Cheng L, Sun YE, Liu J, Horvath S, Fan G. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500(7464):593-7. http://doi.org/10.1038/nature12364 PMid:23892778.
    » http://doi.org/10.1038/nature12364
  • Yanagimachi R. Mechanisms of fertilization in mammals. In: Mastroianni L, Biggers JD, editors. Fertilization and embryonic development In Vitro Boston: Springer; 1981. p. 81–182. http://doi.org/10.1007/978-1-4684-4016-4_6
    » http://doi.org/10.1007/978-1-4684-4016-4_6
  • Zhang S, Zeng X, Ren M, Mao X, Qiao S. Novel metabolic and physiological functions of branched chain amino acids: a review. J Anim Sci Biotechnol. 2017;8:10. http://doi.org/10.1186/s40104-016-0139-z. PMid:28127425.

Publication Dates

  • Publication in this collection
    17 June 2024
  • Date of issue
    2024

History

  • Received
    27 Sept 2023
  • Accepted
    24 Apr 2024
Colégio Brasileiro de Reprodução Animal Coronel José dias Bicalho, 1224, CEP: , 31275-050, Belo Horizonte, MG - Brasil, Tel.: 55-31-3491 7122 - Belo Horizonte - MG - Brazil
E-mail: animreprod.journal@gmail.com