Abstract:
Aim
Monitoring the trophic state of reservoirs requires indices that provide a quick report of the ecosystem to decision makers. This study aimed to develop a system of trophic status indicators for tropical mountain reservoirs using phytoplankton genera.
Methods
Between 2004 and 2010, four reservoirs for water supply in Bogotá (Colombia), which have different trophic statuses and hydraulic management, were monitored. Samples were collected for the analysis of physical and chemical variables and phytoplankton community. Through multivariate analysis, the significance of the relationships between environmental variables and phytoplankton species and genera was established. Subsequently, trophic indices were proposed as relevant variables. The global trophic index was calculated as the sum of the partial indices.
Results
Analysis of the main components showed that reservoirs varied chemically depending on trophic status. Phytoplankton were composed of 63 genera, 59% of which were present in the four reservoirs. Although the physical characteristics of water, such as temperature and total solids content, explained a large part of the variation in the genera, a significant relationship between the genera and variables related to trophic state was observed in each reservoir. The multivariate analyses grouping the data by genera showed a behavior similar to the analysis using information at the species level. Plankton indices of trophic state were developed for phosphorus (TP), total Kjeldahl nitrogen (TKN), total organic carbon (TOC), and Secchi disk (SD) using data grouped by genera. The indices were significantly correlated with the values of each variable in each reservoir. Linear regression models showed a significant prediction of chlorophyll-a using TP, TKN, and SD indices in the three reservoirs with the highest trophic level. In addition, the global index showed a significant relationship with variables related to the trophic state.
Conclusions
Phytoplankton data at the genus level can be used to assess trophic status. The models for SD, TP, and TKN could be used as indicators of the trophic status of the studied reservoirs.
Keywords:
trophic index; ecological optimum; ecological indicator; phytoplankton; eutrophication
Resumo:
Objetivo
O monitoramento do estado trófico de reservatórios requer índices que forneçam um relatório rápido do ecossistema aos tomadores de decisão. Este estudo teve como objetivo desenvolver um sistema de indicadores de estado trófico para reservatórios de montanha tropical usando gêneros de fitoplâncton.
Métodos
Entre 2004 e 2010, foram monitorados quatro reservatórios para abastecimento de água em Bogotá (Colômbia), que apresentam diferentes estados tróficos e gestão hidráulica. Amostras foram coletadas para análise de variáveis físicas e químicas e comunidade fitoplanctônica. Por meio de análise multivariada, estabeleceu-se a significância das relações entre variáveis ambientais e espécies e gêneros fitoplanctônicos. Posteriormente, os índices tróficos foram propostos como variáveis relevantes. O índice trófico global foi calculado como a soma dos índices parciais.
Resultados
A análise dos principais componentes mostrou que os reservatórios variam quimicamente dependendo do estado trófico. O fitoplâncton foi composto por 63 gêneros, 59% dos quais estavam presentes nos quatro reservatórios. Embora as características físicas da água, como temperatura e teor de sólidos totais, explicassem grande parte da variação dos gêneros, observou-se em cada reservatório uma relação significativa entre os gêneros e as variáveis relacionadas ao estado trófico. As análises multivariadas agrupando os dados por gênero mostraram um comportamento semelhante à análise utilizando informações em nível de espécie. Os índices de estado trófico do plâncton foram desenvolvidos para fósforo (TP), nitrogênio Kjeldahl total (TKN), carbono orgânico total (TOC) e disco de Secchi (SD) usando dados agrupados por gêneros. Os índices foram significativamente correlacionados com os valores de cada variável em cada reservatório. Modelos de regressão linear mostraram um poder preditivo significativa de clorofila-a usando os índices TP, TKN e SD nos três reservatórios com maior nível trófico. Além disso, o índice global apresentou relação significativa com variáveis relacionadas ao estado trófico.
Conclusões
Os dados do fitoplâncton em nível de gênero podem ser usados para avaliar o estado trófico. Os modelos para SD, TP e TKN podem ser utilizados como indicadores do estado trófico dos reservatórios estudados.
Palavras-chave:
índice trófico; ótimo ecológico; indicador ecológico; fitoplâncton; eutrofização
1. Introduction
Phytoplankton is widely used to assess changes in the trophic state of ecosystems, either through the study of algal community structure (e.g., Becker et al., 2010aBecker, V., Caputo, L., Ordonez, J., Marce, R., Armengol, J., Crossetti, L.O., & Huszar, V.L.M., 2010a. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 44(11), 3345-3354. PMid:20398914. http://dx.doi.org/10.1016/j.watres.2010.03.018.
http://dx.doi.org/10.1016/j.watres.2010....
; Horn et al., 2011Horn, H., Paul, L., Horn, W., & Petzoldt, T., 2011. Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favoured by warm winters? Freshw. Biol. 56(12), 2483-2499. http://dx.doi.org/10.1111/j.1365-2427.2011.02674.x.
http://dx.doi.org/10.1111/j.1365-2427.20...
; Seeligmann & Tracanna, 2009Seeligmann, C., & Tracanna, B.C., 2009. Phytoplankton dynamics in a high elevation reservoir of Northwestern Argentina (Tucuman). Limnetica 28(1), 105-124. http://dx.doi.org/10.23818/limn.28.08.
http://dx.doi.org/10.23818/limn.28.08...
) or by using trophic indices (Carvalho et al., 2013Carvalho, L., Poikane, S., Lyche Solheim, A., Phillips, G., Borics, G., Catalan, J., De Hoyos, C., Drakare, S., Dudley, B.J., Järvinen, M., Laplace-Treyture, C., Maileht, K., McDonald, C., Mischke, U., Moe, J., Morabito, G., Nõges, P., Nõges, T., Ott, I., Pasztaleniec, A., Skjelbred, B., & Thackeray, S.J., 2013. Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 704(1), 127-140. http://dx.doi.org/10.1007/s10750-012-1344-1.
http://dx.doi.org/10.1007/s10750-012-134...
; Lyche-Solheim et al., 2013Lyche-Solheim, A., Feld, C.K., Birk, S., Phillips, G., Carvalho, L., Morabito, G., Mischke, U., Willby, N., Søndergaard, M., Hellsten, S., Kolada, A., Mjelde, M., Böhmer, J., Miler, O., Pusch, M.T., Argillier, C., Jeppesen, E., Lauridsen, T.L., & Poikane, S, 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704(1), 57-74. http://dx.doi.org/10.1007/s10750-012-1436-y.
http://dx.doi.org/10.1007/s10750-012-143...
; Rodrigues et al., 2019Rodrigues, E.H.C., Vicentin, A.M., Machado, L.D.S., Pompêo, M.L.M., & Carlos, V.M., 2019. Phytoplankton, Trophic State and Ecological Potential in reservoirs in the State of São Paulo, Brazil. Rev. Ambient. Água 14(5), e2428. http://dx.doi.org/10.4136/ambi-agua.2428.
http://dx.doi.org/10.4136/ambi-agua.2428...
). The routine study of phytoplankton in reservoirs involves many hours of work under a microscope, resulting in observations made by different technicians. The phytoplankton count is performed using an inverted microscope; therefore, identification is usually very difficult, complicating the harmonization of the species found. This causes difficulties in the standardization of algal morphotypes found during monitoring.
The simplification of algal communities to understand the relationship between phytoplankton and the environment usually considers a functional approach. The shape of algae is strongly related to their ecological requirements; therefore, morphology-based groups can be predicted based on environmental conditions (Kruk et al., 2011Kruk, C., Peeters, E.T.H.M., Van Nes, E.H., Huszar, V.L.M., Costa, L.S., & Scheffer, M., 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol. Oceanogr. 56(1), 110-118. http://dx.doi.org/10.4319/lo.2011.56.1.0110.
http://dx.doi.org/10.4319/lo.2011.56.1.0...
; Rocha et al., 2020Rocha, B., Souza, C., Machado, K., Vieira, L., & Nabout, J., 2020. The relative influence of the environment, land use, and space on the functional and taxonomic structures of phytoplankton and zooplankton metacommunities in tropical reservoirs. Freshw. Sci. 39(2), 321-333. http://dx.doi.org/10.1086/708949.
http://dx.doi.org/10.1086/708949...
). Genus-level data have also been tested for European and tropical south American ecosystems (Carneiro et al., 2010Carneiro, F.M., Bini, L.M., & Rodrigues, L.C., 2010. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecol. Indic. 10(2), 249-255. http://dx.doi.org/10.1016/j.ecolind.2009.05.004.
http://dx.doi.org/10.1016/j.ecolind.2009...
; Peng et al., 2021Peng, X., Zhang, L., Li, Y., Lin, Q., He, C., Huang, S., Li, H., Zhang, X., Liu, B., Ge, F., Zhou, Q., Zhang, Y., & Wu, Z., 2021. The changing characteristics of phytoplankton community and biomass in subtropical shallow lakes: coupling effects of land use patterns and lake morphology. Water Res. 200, 117235. PMid:34034101. http://dx.doi.org/10.1016/j.watres.2021.117235.
http://dx.doi.org/10.1016/j.watres.2021....
; Phillips et al., 2013Phillips, G., Lyche-Solheim, A., Skjelbred, B., Mischke, U., Drakare, S., Free, G., Järvinen, M., Hoyos, C., Morabito, G., Poikane, S., & Carvalho, L., 2013. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704(1), 75-95. http://dx.doi.org/10.1007/s10750-012-1390-8.
http://dx.doi.org/10.1007/s10750-012-139...
; Souza et al., 2019Souza, C., Machado, K., Nabout, J., Muniz, D., Oliveira-Filho, E., Kraus, C., Ribeiro, R., & Vieira, L., 2019. Monitoring simplification in plankton communities using different ecological approaches. Acta Limnol. Bras. 31, e20. http://dx.doi.org/10.1590/s2179-975x3617.
http://dx.doi.org/10.1590/s2179-975x3617...
).
Phytoplankton respond to a set of environmental factors, including the physical stability of the water column and the concentration of nutrients (Reynolds, 2006Reynolds, C.S. 2006. The ecology of phytoplankton: ecology, biodiversity and conservation. Cambridge: Cambridge University Press, 535 p. http://dx.doi.org/10.1017/CBO9780511542145.
http://dx.doi.org/10.1017/CBO97805115421...
; Yang et al., 2016Yang, Y., Colom, W., Pierson, D., & Pettersson, K., 2016. Water column stability and summer phytoplankton dynamics in a temperate lake (Lake Erken, Sweden). Inland Waters 6(4), 499-508. http://dx.doi.org/10.1080/IW-6.4.874.
http://dx.doi.org/10.1080/IW-6.4.874...
). Although physical stability is important for regulating the distribution of phytoplankton, the main interest during the monitoring of lentic systems is the effect of phosphorus on lake eutrophication (Carvalho et al., 2013Carvalho, L., Poikane, S., Lyche Solheim, A., Phillips, G., Borics, G., Catalan, J., De Hoyos, C., Drakare, S., Dudley, B.J., Järvinen, M., Laplace-Treyture, C., Maileht, K., McDonald, C., Mischke, U., Moe, J., Morabito, G., Nõges, P., Nõges, T., Ott, I., Pasztaleniec, A., Skjelbred, B., & Thackeray, S.J., 2013. Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 704(1), 127-140. http://dx.doi.org/10.1007/s10750-012-1344-1.
http://dx.doi.org/10.1007/s10750-012-134...
). Nitrogen is also an essential nutrient for algal productivity because its limitation in water has been related to cyanobacterial dominance (Lewis Junior, 2000Lewis Junior, W.M.J., 2000. Basis for the protection and management of tropical lakes. Lakes Reservoirs: Res. Manage. 5(1), 35-48. http://dx.doi.org/10.1046/j.1440-1770.2000.00091.x.
http://dx.doi.org/10.1046/j.1440-1770.20...
; Reynolds, 1997Reynolds, C.S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Luhe: Ecology Institute, 371 p.), but the relationship between N and P is not linear (Lv et al., 2011Lv, J., Wu, H., & Chen, M., 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 41(1), 48-56. http://dx.doi.org/10.1016/j.limno.2010.03.003.
http://dx.doi.org/10.1016/j.limno.2010.0...
); and P has mainly been associated with changes in the algal community. However, organic carbon availability in the water can indirectly affect the productivity and composition of phytoplankton (Cahyonugroho et al., 2022Cahyonugroho, O.H., Hariyanto, S., & Supriyanto, G., 2022. Dissolved organic matter and its correlation with phytoplankton abundance for monitoring surface water quality. Glob. J. Environ. Sci. Manage. 8, 59-74.; Engel et al., 2019Engel, F., Drakare, S., & Weyhenmeyer, G.A., 2019. Environmental conditions for phytoplankton influenced carbon dynamics in boreal lakes. Aquat. Sci. 81(2), 35. http://dx.doi.org/10.1007/s00027-019-0631-6.
http://dx.doi.org/10.1007/s00027-019-063...
). Light availability can also control the growth of algae in planktons (Reynolds, 2006Reynolds, C.S. 2006. The ecology of phytoplankton: ecology, biodiversity and conservation. Cambridge: Cambridge University Press, 535 p. http://dx.doi.org/10.1017/CBO9780511542145.
http://dx.doi.org/10.1017/CBO97805115421...
). Water transparency is mainly affected by inorganic and organic materials suspended in the water column (Margalef, 1983Margalef, R., 1983. Limnología. Barcelona: Ediciones Omega, 1010 p.).
Reservoirs are ecosystems of anthropic origin that differ from rivers in their lower water flow and from lakes in their high relative depth, high sedimentation rate, and high hydrological variability (Straskraba & Tundisi, 1999Straskraba, M., & Tundisi, J.G., 1999. Reservoir water quality management. Kusatsu: International Lake Environment Committee Foundation, 237 p. Guidelines of Lake Management, no. 9. Retrieved in 2020, December 20, from https://wedocs.unep.org/20.500.11822/29399
https://wedocs.unep.org/20.500.11822/293...
). These factors cause reservoirs to have a high nutrient retention and a high possibility of eutrophication. Eutrophication events in tropical and subtropical reservoirs have been well-documented (Burford et al., 2007Burford, M.A., Johnson, S.A., Cook, A.J., Packer, T.V., Taylor, B.M., & Townsley, E.R., 2007. Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Res. 41(18), 4105-4114. http://dx.doi.org/10.1016/j.watres.2007.05.053.
http://dx.doi.org/10.1016/j.watres.2007....
; Chellappa et al., 2009Chellappa, N.T., Chellappa, T., Câmara, F.R.A., Rocha, O., & Chellappa, S., 2009. Impact of stress and disturbance factors on the phytoplankton communities in Northeastern Brazil reservoir. Limnologica 39(4), 273-282. http://dx.doi.org/10.1016/j.limno.2009.06.006.
http://dx.doi.org/10.1016/j.limno.2009.0...
; Sotero-Santos et al., 2008Sotero-Santos, R.B., Carvalho, E.G., Dellamano-Oliveira, M.J., & Rocha, O., 2008. Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae 7(5), 590-598. http://dx.doi.org/10.1016/j.hal.2007.12.017.
http://dx.doi.org/10.1016/j.hal.2007.12....
; Tundisi et al., 2008Tundisi, J.G., Matsumura-Tundisi, T., & Abe, D.S., 2008. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil) reservoir: implications for its biodiversity. Braz. J. Biol. 68(4, Suppl.), 1079-1098. PMid:19197478. http://dx.doi.org/10.1590/S1519-69842008000500015.
http://dx.doi.org/10.1590/S1519-69842008...
). Eutrophication has been widely reported (Huszar et al., 2000Huszar, V.L.M., Silva, L.H.S., Marinho, M., Domingos, P., & Sant’anna, C.L., 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424(1), 67-77. http://dx.doi.org/10.1023/A:1003996710416.
http://dx.doi.org/10.1023/A:100399671041...
; Leigh et al., 2010Leigh, C., Burford, M.A., Roberts, D.T., & Udy, J.W., 2010. Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water Res. 44(15), 4487-4496. PMid:20598731. http://dx.doi.org/10.1016/j.watres.2010.06.016.
http://dx.doi.org/10.1016/j.watres.2010....
), and can trigger the development of harmful algae (Becker et al., 2010bBecker, V., Ihara, P., Yunes, J.S., & Huszar, V.L.M., 2010b. Occurrence of anatoxin-a(s) during a bloom of Anabaena crassa in a water-supply reservoir in southern Brazil. J. Appl. Phycol. 22(3), 235-241. http://dx.doi.org/10.1007/s10811-009-9451-8.
http://dx.doi.org/10.1007/s10811-009-945...
; Bouvy et al., 2010Bouvy, M., Falcão, D., Marinho, M., Pagano, M., & Moura, A., 2010. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat. Microb. Ecol. 23(1), 13-27. http://dx.doi.org/10.3354/ame023013.
http://dx.doi.org/10.3354/ame023013...
; Douma et al., 2010Douma, M., Ouahid, Y., del Campo, F.F., Loudiki, M., Mouhri, K., & Oudra, B., 2010. Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environ. Monit. Assess. 160(1-4), 439-450. PMid:19130275. http://dx.doi.org/10.1007/s10661-008-0708-5.
http://dx.doi.org/10.1007/s10661-008-070...
). The management of reservoirs for water supply requires permanent monitoring of eutrophication and contamination from different sources, because of the difficulty in treating water after problems appear (Steffensen, 2008Steffensen, D.A., 2008. Economic cost of cyanobacterial blooms. In: Hudnell, H.K., ed. Cyanobacterial Harmful Algal Blooms. New York: Springer Science, 2008, 855-866. http://dx.doi.org/10.1007/978-0-387-75865-7_37.
http://dx.doi.org/10.1007/978-0-387-7586...
).
Trophic indices can be very useful for reservoir managers because they allow quick measurement of the state of the system. Phytoplankton-based indices are mainly used to evaluate the trophic state of lakes by studying the relationship between algae and the concentrations of phosphorus and chlorophyll-a (e.g., Phillips et al., 2013Phillips, G., Lyche-Solheim, A., Skjelbred, B., Mischke, U., Drakare, S., Free, G., Järvinen, M., Hoyos, C., Morabito, G., Poikane, S., & Carvalho, L., 2013. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704(1), 75-95. http://dx.doi.org/10.1007/s10750-012-1390-8.
http://dx.doi.org/10.1007/s10750-012-139...
). The ecological traits of phytoplankton, considering their response to the environment, can help develop a system of indicators in reservoirs. Even so, the use of phytoplankton-based indices that explain the trophic aspects of tropical reservoirs is scarce. The main difficulty in developing indices is the lack of knowledge on the relationship between the aquatic environment and phytoplankton and limited knowledge on the taxonomy of algal groups. Considering this context, the objective of the present study was to develop a trophic status system for four tropical mountain reservoirs using phytoplankton genera. We hypothesized that approximation at the genus level will allow us to determine ecological relationships with the environment so that trophic state indices can be constructed. The morphological and evolutionary traits of algae may indicate their responses to environmental filters (Kruk et al., 2011Kruk, C., Peeters, E.T.H.M., Van Nes, E.H., Huszar, V.L.M., Costa, L.S., & Scheffer, M., 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol. Oceanogr. 56(1), 110-118. http://dx.doi.org/10.4319/lo.2011.56.1.0110.
http://dx.doi.org/10.4319/lo.2011.56.1.0...
). Because most traits are conserved within the taxonomic range of the genus, species within the same genus would tend to present acceptably similar ecological responses. Here, we compared the response of phytoplankton identified at the species level with the response at the genus level to build a simplified index that allows monitoring of phytoplankton in tropical mountain reservoirs.
2. Materials and Methods
2.1. Study area
The studied reservoirs (Chisacá, Regadera, San Rafael, and Chuza) are located in the eastern Cordillera of Colombia (Figure 1). Reservoirs present differences in bathymetry, altitude, reservoir volume, and nutrient concentrations (Table 1). Chuza Reservoir is the largest and is located at a higher altitude. The basin of Chuza Reservoir is inside a national natural park with dominant herbaceous and shrubby vegetation typical of Páramo ecosystems. The basins of Chisacá, La Regadera, and San Rafael are poorly protected, with extensive crop fields and nearby human settlements. The San Rafael reservoir mainly receives water from the Teusacá River, but through a 25 km tunnel it also receives water from the Chuza reservoir. Chisacá and La Regadera are the oldest reservoirs, with more intensive land use in the basin and connected in a cascade.
Location of the reservoirs studied in Colombia. Details of the location of the studied reservoirs were described by León et al. (2012)León, N., Rivera-Rondon, C., Zapata, A., Jimenez, J., Villamil, W., Arenas, G., Rincón, C., & Sánchez, T., 2012. Factors controlling phytoplankton in tropical high-mountain drinking-water reservoirs. Limnetica 31(2), 305-322. http://dx.doi.org/10.23818/limn.31.26.
http://dx.doi.org/10.23818/limn.31.26... .
2.2. Sample collection and analysis
Sampling was carried out monthly to quarterly between January 2004 and December 2010, depending on the reservoir. The number of sampling points in each reservoir depended on the size of each reservoir: Chisacá was sampled at one point (33 samples), La Regadera at two (43 samples), and San Rafael (183 samples) and Chuza (93 samples) at four points. A total of 352 samples were used in this study.
At each sampling point, 3-L water samples were collected at a depth corresponding to half of the transparency of the Secchi disk depth using a van Dorn bottle (Rivera-Rondón & Zapata, 2009Rivera-Rondón, C., & Zapata, A., 2009. Criterios generales para la recolección, preservación, manejo de muestras y monitoreo de ecosistemas acuáticos epicontinentales. In: Acosta, A., Zapata, A., & G. Fagua, eds. Técnicas de campo en ambientes tropicales: manual para el monitoreo en ecosistemas acuáticos y artrópodos terrestres. Bogotá: Editorial Pontificia Universidad Javeriana, 191-215, Colección de Libros de Investigación.). Samples were homogenized, and smaller volumes were collected for chemical analyses and study of phytoplankton. Phytoplankton samples were preserved in 1% Lugol’s solution (Wetzel & Likens, 2000Wetzel, R.G., & Likens, G.E., 2000. Limnological analyses. New York: Springer-Verlag, 429 p. http://dx.doi.org/10.1007/978-1-4757-3250-4.
http://dx.doi.org/10.1007/978-1-4757-325...
).
Water transparency was estimated using SD. The conductivity and pH were measured in situ at each sampling point using a HACH probe. The following parameters were analyzed following the method of APHA (2005)American Public Health Association - APHA. American Water Works Association - AWWA. Water Environment Federation - WEF, 2005. Standard methods for the examination of water and wastewater (21th ed.). Washington: APHA, AWWA & WEF.: alkalinity (H2SO4 titration), turbidity (nephelometric), silicates (Si, colorimetric molybdosilicate method), TP (colorimetric stannous chloride protocol 4500-P), TKN (H2SO4 titration), ionic concentration (ICPlasma), and TOC (combustion-infrared 5310-B). Chlorophyll-a concentrations were measured using the spectrometer method and applying the trichromatic formula of Jeffrey and Humphrey, according to APHA (2005)American Public Health Association - APHA. American Water Works Association - AWWA. Water Environment Federation - WEF, 2005. Standard methods for the examination of water and wastewater (21th ed.). Washington: APHA, AWWA & WEF.. The hydraulic characteristics of the reservoir were described by León et al. (2012)León, N., Rivera-Rondon, C., Zapata, A., Jimenez, J., Villamil, W., Arenas, G., Rincón, C., & Sánchez, T., 2012. Factors controlling phytoplankton in tropical high-mountain drinking-water reservoirs. Limnetica 31(2), 305-322. http://dx.doi.org/10.23818/limn.31.26.
http://dx.doi.org/10.23818/limn.31.26...
.
Phytoplankton were quantified using sedimentation chambers (Utermöhl, 1958Utermöhl, H., 1958. Zur vervollkommung der quantitativen phytoplankton-Methodik. Verh. Int. Ver. Theor. Angew. 9, 1-38.), and at least 200 individuals of the most frequent taxon were counted under an inverted microscope at 800× magnification. Algal densities were calculated according to the methods described by the Intergovernmental Oceanographic Commission of UNESCO (IOC UNESCO, 2010Intergovernmental Oceanographic Commission of Unesco - IOC UNESCO, 2010. Microscopic and molecular methods for quantitative phytoplankton analysis. Paris: UNESCO, 110 p., IOC Manuals and Guides, no. 55.). Algae were identified to the lowest possible taxonomic level (species or morphotypes) using specialized taxonomic keys. However, as this study was oriented to facilitate the work of different analysts, specimens were grouped at the genus sensu lato or Family level. For example, Anabaena includes Dolichospermum; Scenedesmus includes Desmodesmus (the grouping of genera/family is shown in the Table 2).
2.3. Data analysis
Patterns of environmental variables were studied using principal component analysis (PCA). Environmental variables were transformed to obtain a central distribution of the data. Thus, alkalinity, turbidity, Si, total Fe, Mg2+, Mn2+, TKN, and TOC were log10 transformed, TP was adjusted to a central distribution using cubic root transformation, and SD and pH were not transformed. PCA was performed by standardizing the data and using a correlation matrix. Carlson’s (1977)Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22(2), 361-369. http://dx.doi.org/10.4319/lo.1977.22.2.0361.
http://dx.doi.org/10.4319/lo.1977.22.2.0...
trophic state index was calculated using the correction of Salas & Martino (1990)Salas, J., & Martino, P., 1990. Metodologías simplificadas para la evaluación de eutroficación en lagos cálidos tropicales. Lima: CEPIS - OMS. Retrieved in 2020, December 20, from https://iris.paho.org/handle/10665.2/55333
https://iris.paho.org/handle/10665.2/553...
for tropical ecosystems.
The relationships between phytoplankton and the environment were analyzed with redundancy analysis (RDA) (Jongman et al., 1995Jongman, R.H.G., Ter Braak, C.J.F., & van Tongeren, O.F.R., eds., 1995. Data analysis in community and landscape ecology. Cambridge: Cambridge University Press. 299 p.. http://dx.doi.org/10.1017/CBO9780511525575.
http://dx.doi.org/10.1017/CBO97805115255...
) using Hellinger transformation for species and genera data (Legendre & Gallagher, 2001Legendre, P., & Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129(2), 271-280. PMid:28547606. http://dx.doi.org/10.1007/s004420100716.
http://dx.doi.org/10.1007/s004420100716...
). In the models, we included variables known to have a causal relationship with algal biomass: SD, alkalinity, conductivity, temperature, TOC, TKN, Si, Fe, and TP. To avoid collinearity, we used all variables with inflation factors lower than 5% (Lepš & Šmilauer, 2003Lepš, J., & Šmilauer, P., 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press, 269 p. http://dx.doi.org/10.1017/CBO9780511615146.
http://dx.doi.org/10.1017/CBO97805116151...
). The analyses were carried out by separating the data from three different hydrological systems: San Rafael, Chuza, and Chisacá-La Regadera.
Analyses were performed using species and grouping them into genera. For each dataset, species with a frequency lower than six samples (<2%) were excluded. A Monte Carlo test (999 permutations, α = 0.05) was used to determine the significance of the axes of species and the relationship between species and the environment. The forward selection method (Lepš & Šmilauer, 2003Lepš, J., & Šmilauer, P., 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press, 269 p. http://dx.doi.org/10.1017/CBO9780511615146.
http://dx.doi.org/10.1017/CBO97805116151...
) was used to calculate the variance explained for each variable.
According to the RDA results, plankton indices of trophic state (I) were developed for TP (ITP), TKN (ITKN), conductivity (ICond), Secchi disk (ISD), and TOC (ITOC) using a weighted average of the optima from the genera with the proportion of total abundance as weights (Equation 1):
where ni is the proportion of ith genus in the sample, and xi is the optimum of the ith genus in the sample (Pasztaleniec, 2016Pasztaleniec, A., 2016. An advanced phytoplankton trophic index: test and validation with a nationwide lake survey in Poland. Int. Rev. Hydrobiol. 101(1-2), 20-35. http://dx.doi.org/10.1002/iroh.201501799.
http://dx.doi.org/10.1002/iroh.201501799...
; Phillips et al., 2013Phillips, G., Lyche-Solheim, A., Skjelbred, B., Mischke, U., Drakare, S., Free, G., Järvinen, M., Hoyos, C., Morabito, G., Poikane, S., & Carvalho, L., 2013. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704(1), 75-95. http://dx.doi.org/10.1007/s10750-012-1390-8.
http://dx.doi.org/10.1007/s10750-012-139...
).
The optimum for each species was calculated as the weighted average of its abundance with respect to the variable of interest; thus, it was the value for the variable in which a species showed the maximum abundance. Therefore, it provides a quantitative representation of the ecological niche of a species. Although the trophic state was mainly evaluated from the values of the Secchi disk, phosphorus, and nitrogen, we also included TOC and conductivity as indicator variables of the trophic state. In tropical environments, when the trophic state is not high, the increase in pollution due to anthropogenic activity and the consequent elevated phosphorus input reduce its limiting role. Instead, the limiting factors are nitrogen, light, and organic matter (Dunalska, 2011Dunalska, J., 2011. Total organic carbon as a new index for monitoring trophic states in lakes. Oceanol. Hydrobiol. Stud. 40(2), 112-115. http://dx.doi.org/10.2478/s13545-011-0022-7.
http://dx.doi.org/10.2478/s13545-011-002...
). Therefore, TOC may be related to the trophic status of ecosystems in tropical lakes.
To test the relationships between the indices and environmental variables, we correlated each I index with the variables using the Pearson product-moment correlation coefficient. I is essentially an inference of the value of the variable from the abundances and optima of the species present; therefore, the correlation represents the degree of predictability of the index. Second, we examined the relationship between partial I indices and chlorophyll-a using linear regression models. Due to different factors, including sampling frequency, food web structure, and temporal turnover of species, the ability of the indices to represent trophic status can be better evaluated by their ability to predict chlorophyll-a values.
A global trophic index (IMtotal) was calculated per sample by adding partial I indices ranging from 0 to 1. This approach allows for the generation of an index that can be easily used by decision makers. The relationships between IMtotal and the principal components of the PCA analysis were analyzed using linear regression models. Akaike´s information criterion (AIC) was used to estimate the prediction error and the relative quality of the regression models. All analyses and models were performed using the packages ‘stats’ 3.6.2, ‘vegan’ 2.5-6, and ‘rioja’ 0.9-21 in the R software (R Development Core Team, 2018R Development Core Team, 2018. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2020, December 20, from http://www.R-project.org
http://www.R-project.org...
).
3. Results
3.1. Physical and chemical ordination
The studied reservoirs had low ionic concentrations, circumneutral pH, and low water transparency (Table 3). The temperature of the reservoirs ranged from 11.8 °C to 19 °C (average = 15.9 °C). Water transparency, chlorophyll-a, and TP indicated that the reservoirs were mainly mesotrophic (Table 3), but the annual variation was very high. The TOC ranged from 0.5 to 93 (average = 4.6 mg/L). The four reservoirs have very different characteristics, with Chuza tending to be permanently ologotrophic and the Chisacá and La Regadera reservoirs tending to be more eutrophic (Table 3). The San Rafael Reservoir had the greatest temporal variability.
Summary of the chemical characteristics of each reservoir. Carlson’s (1977)Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22(2), 361-369. http://dx.doi.org/10.4319/lo.1977.22.2.0361.
http://dx.doi.org/10.4319/lo.1977.22.2.0... trophic state index for TP (TIPT), water transparency (TISD), and Chlorophyll-a (TIChl.a) are shown
PCA including the data of the four reservoirs showed that the majority of chemical variation was summarized in the first two principal components (Figure 2). The first principal component (PC) was correlated with variables associated with the ionic composition and trophic conditions of the reservoirs, such as chlorophyll-a and SD. However, TP and TKN were mainly correlated with the fourth PC (r = 0.79 and 0.54, respectively). The second PC was correlated with conductivity and temperature; this axis summarizes the temporal and spatial variations of inorganic compounds and temperature. Chisacá and La Regadera showed higher organic and solid concentrations and a higher trophic state than other reservoirs. Chuza was the reservoir with the highest water transparency, whereas San Rafael had the most variable water transparency.
Biplot of the principal component analysis of physical and chemical variables of the studied reservoirs.
The PCA carried out for each of the reservoirs independently showed differences in the chemical variability of each reservoir (Figure 3). In San Rafael, the first PC axis is mainly associated with temperature, Fe, conductivity, and SD, whereas the second axis is associated with TP, TKN, and conductivity. In the Chisacá-La Regadera, the first axis is mainly associated with SD, and the second axis is associated with TP, Fe, and TOC. In the case of Chuza, the first axis of variation is explained mainly by TKN, SD, Fe, conductivity, and TP, whereas the second axis is related to temperature, alkalinity, and TOC (Figure 3). According to this, there is variation in the variables associated with the trophic state, but their importance and interaction vary according to the system
Biplot of the principal component analysis of physical and chemical variables of each studied reservoir.
3.2. Temporal and spatial patterns of the phytoplankton
The mean density of phytoplankton was 2410 cells/ml. The reservoirs with high mean density were La Regadera (3786 cell/ml) and San Rafael (2288 cells/ml), and the low density occurred in Chuza (1562 cell/ml) and Chisacá (1419 cell/ml). The phytoplankton was composed of 63 genera (excluding genera with low frequency), 59% of which were present in the four reservoirs, and 12.6% of which were present in only one or two reservoirs. A summary of the density and frequency of each genus is presented in Table 4. Cryptomonas, Peridinium, Oocystis, Sphaerocystis, Discostella, Staurodesmus, Elakatothrix, Ceratium, and Staurastrum were the most frequent genera (>70% of the samples). The genera with the highest mean cellular density were Anabaena, Sphaerocystis, Volvox, Oocystis, Staurodesmus, Elakatothrix, Ochromonas, and Nephrodiella.
Each RDA performed for species and genera showed three significant axes (p<0.01). The first three axes of the models for species explained 69.4 to 77% of species-environment relation and 13.8-19.5% of species variation (Table 5). The model for genera explained a higher percentage of variance of the genera-environment relation and genera data (70.1-81.1% and 13.5-20.8%, respectively). Both models had similar explanatory variables (Table 5). Accordingly, given that the two models present a similar response, the following analyses are focused on the model based on the genera data.
Summary of the first three axes of the Redundancy Analysis carried out for species and genera groups data in each reservoir.
The RDA of the genera data for the San Rafael reservoir indicated that the first axis was explained by SD, TP, and TKN (Figure 4). The second axis is related to conductivity. The RDA for the Chisacá-La Regadera showed that SD and TKN mainly explained the first axis; Fe, TOC, TP, and conductivity explained the second axis. The RDA for Chuza indicated that the first axis was explained by SD and TOC, whereas the second axis was explained by temperature, Si, alkalinity, and TKN. In all models, the trophic variable with the highest explanation of genera variance was SD (Table 6). Although TP and TKN showed low explanatory power, they were also significantly related to the first two axes of the model (Table 6).
Redundancy Analysis ordination biplot showing the relationships between the environmental variables and genera. Labels of genera are described in the Table 4.
Summary of variance explained by the significant variables in each model (species and genera models).
3.3. Ecology of genera and trophic indices
Based on the significant relationship between some chemical variables and genera (Table 6), the optimum values of SD, TP, TKN, TOC, and conductivity were calculated for each genus. SD, TP, and TKN were selected as indicators of trophic state, and TOC and conductivity showed close relationship with trophic state.
The indices for SD, TP, TKN, and TOC were correlated with each of their associated variables (Figure 5). ICond does not show a good relationship between the three datasets. The ISD, ITP, and ITKN, showed a higher correlation with chlorophyll-a in San Rafael (Table 7). In the Chisacá-La Regadera, all indices were correlated with chlorophyll-a, whereas there was no significant correlation in Chuza. The conductivity index ICond showed a low correlation with the other indices. Linear regression models for San Rafael showed a significant prediction of chlorophyll-a using independent ITP, ITKN, and ISD. The model using ITP, ITKN, and ITOC showed a high chlorophyll-a concentration and the lowest AIC. Models for the Chisacá-La Regadera showed a significant explanation of chlorophyll-a by ISD, ITP, ITKN, and ITOC. The Chuza index did not show a significant relationship with the chlorophyll-a concentration.
Pearson correlation between the calculated indices and chemical variables for San Rafael (n=183), Chisacá-La Regadera (n=76), and Chuza (n=93) reservoirs.
Pearson correlation between the trophic index and Chlorophyll-a for San Rafael (n=183), Chisacá-La Regadera (n=76), and Chuza (n=93) reservoirs.
The linear regression models performed to relate the IMTotal with the axes of the chemical variation of each reservoir showed that at least one principal component of the PCA was significantly related to the grouped index (Table 8). Thus, the ISD, ITP and ITKN can be used as indicators of the trophic state of the studied reservoirs.
The best models were identified using r2, the standard error of the models, and Akaike’s information criterion (AIC). Multiple models were also run to explain chlorophyll-a with different combinations of indices. PC1 and PC2 are the axes of the principal components model of each reservoir shown in Figure 3.
4. Discussion
Phytoplankton species and genera respond to trophic state variables in a similar manner. Trophic indices (I) showed a relatively low correlation with the variables from which the indices were generated. Interestingly, for reservoirs with a higher trophic level (San Rafael and Chisacá-La Regadera), the ISD, IPT and ITKN indices showed a strong relationship with chlorophyll-a. Because the measurements of chemical variables are discrete over time, —considering that the phytoplankton community at a given time represents the conditions of weeks (Li et al., 2010Li, L., Zheng, B., & Liu, L., 2010. Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ. Sci. 2, 1510-1524. http://dx.doi.org/10.1016/j.proenv.2010.10.164.
http://dx.doi.org/10.1016/j.proenv.2010....
)—, lags can be observed between the specific nutrient data and the algal composition (Arteaga et al., 2020Arteaga, L.A., Boss, E., Behrenfeld, M.J., Westberry, T., & Sarmiento, T., 2020. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat. Commun. 11(1), 5364. PMid:33097697. http://dx.doi.org/10.1038/s41467-020-19157-2.
http://dx.doi.org/10.1038/s41467-020-191...
) owing to the type and intensity of the selection pressure (Weithoff & Gaedke, 2017Weithoff, G., & Gaedke, U., 2017. Mean functional traits of lake phytoplankton reflect seasonal and inter-annual changes in nutrients, climate and herbivory. J. Plankton Res. 39(3), 509-517. http://dx.doi.org/10.1093/plankt/fbw072.
http://dx.doi.org/10.1093/plankt/fbw072...
). Therefore, environmental filters can distort the response of phytoplankton to nutrient availability, and the direct relationship may be weaker than expected. In contrast, chlorophyll-a is also a variable that changes slowly and is directly related to the composition of phytoplankton. Thus, the relationships between the indices and chlorophyll-a better represent the trophic state (Rakocevic-Nedovic & Hollert, 2005Rakocevic-Nedovic, J., & Hollert, H., 2005. Phytoplankton community and chlorophyll a as trophic state indices of lake Skadar (Montenegro, Balkan). Environ. Sci. Pollut. Res. Int. 12(3), 146-152. PMid:15986998. http://dx.doi.org/10.1065/espr2005.04.241.
http://dx.doi.org/10.1065/espr2005.04.24...
; Mamun et al., 2021Mamun, M., Atique, U., & An, K.G., 2021. Assessment of water quality based on trophic status and nutrients-chlorophyll empirical models of different elevation reservoirs. Water 13(24), 3640. http://dx.doi.org/10.3390/w13243640.
http://dx.doi.org/10.3390/w13243640...
). The ISD best relates to chlorophyll in meso-eutrophic reservoirs. The absence of a relationship between these variables in the more oligotrophic system suggests that changes in the transparency of water in the low trophic system must respond mainly to changes in the entry of organic and inorganic materials from the river basin.
Previous studies on European reservoirs have also used genus-level phytoplankton data to assess trophic conditions as positive (Ochocka & Pasztaleniec, 2016Ochocka, A., & Pasztaleniec, A., 2016. Sensitivity of plankton indices to lake trophic conditions. Environ. Monit. Assess. 188(11), 622. PMid:27752916. http://dx.doi.org/10.1007/s10661-016-5634-3.
http://dx.doi.org/10.1007/s10661-016-563...
; Phillips et al., 2013Phillips, G., Lyche-Solheim, A., Skjelbred, B., Mischke, U., Drakare, S., Free, G., Järvinen, M., Hoyos, C., Morabito, G., Poikane, S., & Carvalho, L., 2013. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704(1), 75-95. http://dx.doi.org/10.1007/s10750-012-1390-8.
http://dx.doi.org/10.1007/s10750-012-139...
). The development of ecological indices has shown great performance when the level of identification reaches the species level and their regional ecology is known (Rimet & Bouchez, 2012Rimet, F., & Bouchez, A., 2012. Biomonitoring river diatoms: implications of taxonomic resolution. Ecol. Indic. 15(1), 92-99. http://dx.doi.org/10.1016/j.ecolind.2011.09.014.
http://dx.doi.org/10.1016/j.ecolind.2011...
). Therefore, taxonomy largely affects the capacity of indication, because an adequate taxonomic resolution allows for better identification of the ecological optimum (Jørgensen et al., 2005Jørgensen, S.E., Costanza, R., & Xu, F.L., eds., 2005. Handbook of ecological indicators for assessment of ecosystem health. Boca Raton: CRC Press, 498 p. http://dx.doi.org/10.1201/9780203490181.
http://dx.doi.org/10.1201/9780203490181...
). In this study, the response along trophic gradients indicates that the relationship can be used to construct indicator models at the genus level. The use of coarser taxonomic resolution or functional groups for plankton is adequate, and taxonomic expertise cannot be obtained (Oliveira Sodré et al., 2020Oliveira Sodré, E., Langlais-Bourassa, A., Pollard, A.I., & Beisner, B.E., 2020. Functional and taxonomic biogeography of phytoplankton and zooplankton communities in relation to environmental variation across the contiguous USA. J. Plankton Res. 42(10), 1093.). The local scale and environmental conditions are important drivers of phytoplankton. The classification of plankton into major groups retains a strong taxonomic signal because of its reliance on morphology (Oliveira Sodré et al., 2020Oliveira Sodré, E., Langlais-Bourassa, A., Pollard, A.I., & Beisner, B.E., 2020. Functional and taxonomic biogeography of phytoplankton and zooplankton communities in relation to environmental variation across the contiguous USA. J. Plankton Res. 42(10), 1093.). However, the majority of genera found in tropical ecosystems have a cosmopolitan distribution (Silva, 2007Silva, E., 2007. Ecology of phytoplankton in tropical waters: introduction to the topic and ecosystem. Asian J. Water Environ. Pollut. 4, 25-35.) and the results found here can be applied to different tropical ecosystems. Phytoplankton algae in lakes have a very high dispersal ability (Beisner et al., 2006Beisner, B.E., Peres-Neto, P.R., Lindström, E.S., Barnett, A., & Longhi, M.L., 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87(12), 2985-2991. http://dx.doi.org/10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2.
http://dx.doi.org/10.1890/0012-9658(2006...
). Therefore, the contribution of environmental factors is more important than that of spatial processes for this group (Mazaris et al., 2010Mazaris, A.D., Moustaka-Gouni, M., Michaloudi, E., & Bobori, D.C., 2010. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. J. Biogeogr. 37(7), 1341-1351. http://dx.doi.org/10.1111/j.1365-2699.2010.02294.x.
http://dx.doi.org/10.1111/j.1365-2699.20...
; Padial et al., 2014Padial, A.A., Ceschin, F., Declerck, S.A., De Meester, L., Bonecker, C.C., Lansac-Tôha, F.A., Rodrigues, L., Rodrigues, L.C., Train, S., Velho, L.F., & Bini, L.M., 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9(10), e111227. PMid:25340577. http://dx.doi.org/10.1371/journal.pone.0111227.
http://dx.doi.org/10.1371/journal.pone.0...
). Microorganisms may disperse using different vectors, such as streamcourses (Qu et al., 2018Qu, Y., Wu, N., Guse, B., & Fohrer, N., 2018. Riverine phytoplankton shifting along a lentic-lotic continuum under hydrological, physiochemical conditions and species dispersal. Sci. Total Environ. 619-620, 1628-1636. PMid:29066197. http://dx.doi.org/10.1016/j.scitotenv.2017.10.139.
http://dx.doi.org/10.1016/j.scitotenv.20...
) and birds (Atkinson, 1972Atkinson, K.M., 1972. Birds as transporters of algae. Br. Phycol. J 7(3), 319-321. http://dx.doi.org/10.1080/00071617200650331.
http://dx.doi.org/10.1080/00071617200650...
) and the composition of the genera and species can be interpreted mainly through water chemistry.
Currently, attempts are being made to simplify the response of phytoplankton to environmental factors using the functional group approach (Hakspiel-Segura et al., 2021Hakspiel-Segura, C., Barrios-Galvan, B., & Pinilla-Agudelo, G., 2021. Phytoplankton functional groups as environmental indicators at a high neotropical mountain reservoir in Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 45(176), 817-832. http://dx.doi.org/10.18257/raccefyn.1326.
http://dx.doi.org/10.18257/raccefyn.1326...
); however, the use of algal genera can be an intermediate approach in which a part of the evolutionary response of plankton is used, but at the same time, the diversity of responses is conserved. Thus, it allows for a better analysis of the environmental gradient given by the trophic state.
The response of phytoplankton to the N:P ratio is one of the most controversial and studied topics in lakes (Elser et al., 2009Elser, J.J., Andersen, T., Baron, J.S., Bergström, A.K., Jansson, M., Kyle, M., Nydick, K.R., Steger, L., & Hessen, D.O., 2009. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326(5954), 835-837. PMid:19892979. http://dx.doi.org/10.1126/science.1176199.
http://dx.doi.org/10.1126/science.117619...
), because it is difficult to predict the response of this community to enrichment by global processes (nitrogen deposition) and regional processes (contributions from the basin). Although a high correlation was observed between IPT and ITKN, each could represent different trophic moments of the reservoirs because the genera have different responses to the nitrogen: phosphorus ratio. For example, while many genera of cyanobacteria can respond to eutrophication caused by TP (Huisman et al., 2018Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., & Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471-483. PMid:29946124. http://dx.doi.org/10.1038/s41579-018-0040-1.
http://dx.doi.org/10.1038/s41579-018-004...
), some chlorophyte genera (e.g., Volvox, Eudorina, and Pandorina) require combined enrichment of TP and TKN (Almanza et al., 2016Almanza, V., Parra, O., Bicudo, C.E.M., González, M.A., Lopez, M., & Urrutia, R., 2016. Floraciones de fitoplancton y variación de la estructura comunitaria fitoplanctónica en tres lagos someros eutróficos de Chile Central. Gayana Bot. 73(2), 191-205. http://dx.doi.org/10.4067/S0717-66432016000200191.
http://dx.doi.org/10.4067/S0717-66432016...
). Thus, the two indices can provide different information regarding the trophic states of the reservoirs. Despite the low contribution of TP and NTK in the RDA, there was significant discrimination of the optimum algal genera along the environmental gradients. Genera such as Pandorina, Eudorina, Volvox, Anabaena, and Monoraphidium, for instance, are widely reported in phosphorus-enriched environments (Reynolds et al., 2002Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417.
http://dx.doi.org/10.1093/plankt/24.5.41...
; Rigosi et al., 2014Rigosi, A., Carey, C.C., Ibelings, B.W., & Brookes, J.D., 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59(1), 99-114. http://dx.doi.org/10.4319/lo.2014.59.1.0099.
http://dx.doi.org/10.4319/lo.2014.59.1.0...
). In contrast, genera such as Trachelomonas, Pediastrum, and Ankistrodesmus have been reported in environments enriched with organic carbon (Reynolds, 2006Reynolds, C.S. 2006. The ecology of phytoplankton: ecology, biodiversity and conservation. Cambridge: Cambridge University Press, 535 p. http://dx.doi.org/10.1017/CBO9780511542145.
http://dx.doi.org/10.1017/CBO97805115421...
; Reynolds et al., 2002Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417.
http://dx.doi.org/10.1093/plankt/24.5.41...
).
ICond showed a relationship with turbidity, alkalinity, and temperature but a low correlation with chlorophyll. The relationship with temperature suggests that these changes are associated with seasonal variation and reservoir management. Conductivity is a variable that integrates basin processes in reservoirs because it reflects inorganic compound inflows by tributaries (Bhateria & Jain, 2016Bhateria, R., & Jain, D., 2016. Water quality assessment of lake water: a review. Sustain. Water Resour. Manag. 2(2), 161-173. http://dx.doi.org/10.1007/s40899-015-0014-7.
http://dx.doi.org/10.1007/s40899-015-001...
). Thus, conductivity indicates changes in water quality related to mineralization processes, material dragging from the basin, or changes in the ionic composition of the reservoirs. All these factors are important in the treatment of drinking water, and thus, the proposed ICond is important in the context of water quality. ITOC was related not only to chlorophyll-a, but also to variables associated with trophic state, such as water transparency and total solids. As ITOC may directly represent algal biomass and organic pollution in basins (Chandler et al., 1976Chandler, R.L., O’shaughnessy, J.C., & Blanc, F.C., 1976. Pollution monitoring with total organic carbon analysis. J. Water Pollut. Control 48(12), 2791-2803.), it can also be used to assess the trophic state.
The aggregate I Mtotal index showed a robust relationship with chemical variation in the reservoirs. Therefore, phytoplankton genera responded strongly to different trophic states in these reservoirs. Algae respond simultaneously to the entire set of environmental factors in their ecological environment (Rivera-Rondón & Catalan, 2020Rivera-Rondón, C.A., & Catalan, J., 2020. Diatoms as indicators of the multivariate environment of mountain lakes. Sci. Total Environ. 703, 135517. PMid:31767302. http://dx.doi.org/10.1016/j.scitotenv.2019.135517.
http://dx.doi.org/10.1016/j.scitotenv.20...
). This includes resources such as phosphorus and nitrogen, as well as environmental conditions such as the content of organic matter and the concentration of inorganic compounds. Thus, the models for SD, TP, and NTK can be used as indicators of trophic status. These models can be used for other mountain reservoirs that vary between oligotrophic and mesotrophic conditions.
These results have direct implications for reservoir monitoring and management. Although an approach based on the counting of genera does not contribute much to the knowledge of local biodiversity and ecological questions, its practicality allows for a rapid response to water quality problems. This is very important if one considers that the observations made in this type of ecosystem are necessary to guarantee the water supply of tens of millions of people in the neotropical region. In conclusion, the simplification of routine analysis, grouping very similar genera, will allow an adequate evaluation of the quality of water when its main value is in consumption by the populations.
Acknowledgements
We are grateful to all the members of the project “Seguimiento limnológico de las fuentes de agua captadas para el suministro realizado por la Empresa de Acueducto y Alcantarillado de Bogotá-ESP” conducted by Dirección de Ingeniería Especializada, Gerencia de Abastecimiento, Planta de Tratamiento Wiesner, Planta de Tratamiento El Dorado and Planta de Tratamiento Tibitoc. We are also grateful to Laboratorio de aguas e hidrología básica, Dirección de Servicios Técnicos for their support.
-
Cite as: Rivera, C.A. et al. Trophic assessment of four tropical reservoirs using phytoplankton genera. Acta Limnologica Brasiliensia, 2022, vol. 34, e26.
References
- Almanza, V., Parra, O., Bicudo, C.E.M., González, M.A., Lopez, M., & Urrutia, R., 2016. Floraciones de fitoplancton y variación de la estructura comunitaria fitoplanctónica en tres lagos someros eutróficos de Chile Central. Gayana Bot. 73(2), 191-205. http://dx.doi.org/10.4067/S0717-66432016000200191
» http://dx.doi.org/10.4067/S0717-66432016000200191 - American Public Health Association - APHA. American Water Works Association - AWWA. Water Environment Federation - WEF, 2005. Standard methods for the examination of water and wastewater (21th ed.). Washington: APHA, AWWA & WEF.
- Arteaga, L.A., Boss, E., Behrenfeld, M.J., Westberry, T., & Sarmiento, T., 2020. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat. Commun. 11(1), 5364. PMid:33097697. http://dx.doi.org/10.1038/s41467-020-19157-2
» http://dx.doi.org/10.1038/s41467-020-19157-2 - Atkinson, K.M., 1972. Birds as transporters of algae. Br. Phycol. J 7(3), 319-321. http://dx.doi.org/10.1080/00071617200650331
» http://dx.doi.org/10.1080/00071617200650331 - Becker, V., Caputo, L., Ordonez, J., Marce, R., Armengol, J., Crossetti, L.O., & Huszar, V.L.M., 2010a. Driving factors of the phytoplankton functional groups in a deep Mediterranean reservoir. Water Res. 44(11), 3345-3354. PMid:20398914. http://dx.doi.org/10.1016/j.watres.2010.03.018
» http://dx.doi.org/10.1016/j.watres.2010.03.018 - Becker, V., Ihara, P., Yunes, J.S., & Huszar, V.L.M., 2010b. Occurrence of anatoxin-a(s) during a bloom of Anabaena crassa in a water-supply reservoir in southern Brazil. J. Appl. Phycol. 22(3), 235-241. http://dx.doi.org/10.1007/s10811-009-9451-8
» http://dx.doi.org/10.1007/s10811-009-9451-8 - Beisner, B.E., Peres-Neto, P.R., Lindström, E.S., Barnett, A., & Longhi, M.L., 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87(12), 2985-2991. http://dx.doi.org/10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2
» http://dx.doi.org/10.1890/0012-9658(2006)87[2985:TROEAS]2.0.CO;2 - Bhateria, R., & Jain, D., 2016. Water quality assessment of lake water: a review. Sustain. Water Resour. Manag. 2(2), 161-173. http://dx.doi.org/10.1007/s40899-015-0014-7
» http://dx.doi.org/10.1007/s40899-015-0014-7 - Bouvy, M., Falcão, D., Marinho, M., Pagano, M., & Moura, A., 2010. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat. Microb. Ecol. 23(1), 13-27. http://dx.doi.org/10.3354/ame023013
» http://dx.doi.org/10.3354/ame023013 - Burford, M.A., Johnson, S.A., Cook, A.J., Packer, T.V., Taylor, B.M., & Townsley, E.R., 2007. Correlations between watershed and reservoir characteristics, and algal blooms in subtropical reservoirs. Water Res. 41(18), 4105-4114. http://dx.doi.org/10.1016/j.watres.2007.05.053
» http://dx.doi.org/10.1016/j.watres.2007.05.053 - Cahyonugroho, O.H., Hariyanto, S., & Supriyanto, G., 2022. Dissolved organic matter and its correlation with phytoplankton abundance for monitoring surface water quality. Glob. J. Environ. Sci. Manage. 8, 59-74.
- Carlson, R.E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22(2), 361-369. http://dx.doi.org/10.4319/lo.1977.22.2.0361
» http://dx.doi.org/10.4319/lo.1977.22.2.0361 - Carneiro, F.M., Bini, L.M., & Rodrigues, L.C., 2010. Influence of taxonomic and numerical resolution on the analysis of temporal changes in phytoplankton communities. Ecol. Indic. 10(2), 249-255. http://dx.doi.org/10.1016/j.ecolind.2009.05.004
» http://dx.doi.org/10.1016/j.ecolind.2009.05.004 - Carvalho, L., Poikane, S., Lyche Solheim, A., Phillips, G., Borics, G., Catalan, J., De Hoyos, C., Drakare, S., Dudley, B.J., Järvinen, M., Laplace-Treyture, C., Maileht, K., McDonald, C., Mischke, U., Moe, J., Morabito, G., Nõges, P., Nõges, T., Ott, I., Pasztaleniec, A., Skjelbred, B., & Thackeray, S.J., 2013. Strength and uncertainty of phytoplankton metrics for assessing eutrophication impacts in lakes. Hydrobiologia 704(1), 127-140. http://dx.doi.org/10.1007/s10750-012-1344-1
» http://dx.doi.org/10.1007/s10750-012-1344-1 - Chandler, R.L., O’shaughnessy, J.C., & Blanc, F.C., 1976. Pollution monitoring with total organic carbon analysis. J. Water Pollut. Control 48(12), 2791-2803.
- Chellappa, N.T., Chellappa, T., Câmara, F.R.A., Rocha, O., & Chellappa, S., 2009. Impact of stress and disturbance factors on the phytoplankton communities in Northeastern Brazil reservoir. Limnologica 39(4), 273-282. http://dx.doi.org/10.1016/j.limno.2009.06.006
» http://dx.doi.org/10.1016/j.limno.2009.06.006 - Douma, M., Ouahid, Y., del Campo, F.F., Loudiki, M., Mouhri, K., & Oudra, B., 2010. Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinking-water reservoirs (Mansour Eddahbi, Almassira). Environ. Monit. Assess. 160(1-4), 439-450. PMid:19130275. http://dx.doi.org/10.1007/s10661-008-0708-5
» http://dx.doi.org/10.1007/s10661-008-0708-5 - Dunalska, J., 2011. Total organic carbon as a new index for monitoring trophic states in lakes. Oceanol. Hydrobiol. Stud. 40(2), 112-115. http://dx.doi.org/10.2478/s13545-011-0022-7
» http://dx.doi.org/10.2478/s13545-011-0022-7 - Elser, J.J., Andersen, T., Baron, J.S., Bergström, A.K., Jansson, M., Kyle, M., Nydick, K.R., Steger, L., & Hessen, D.O., 2009. Shifts in lake N: P stoichiometry and nutrient limitation driven by atmospheric nitrogen deposition. Science 326(5954), 835-837. PMid:19892979. http://dx.doi.org/10.1126/science.1176199
» http://dx.doi.org/10.1126/science.1176199 - Engel, F., Drakare, S., & Weyhenmeyer, G.A., 2019. Environmental conditions for phytoplankton influenced carbon dynamics in boreal lakes. Aquat. Sci. 81(2), 35. http://dx.doi.org/10.1007/s00027-019-0631-6
» http://dx.doi.org/10.1007/s00027-019-0631-6 - Hakspiel-Segura, C., Barrios-Galvan, B., & Pinilla-Agudelo, G., 2021. Phytoplankton functional groups as environmental indicators at a high neotropical mountain reservoir in Colombia. Rev. Acad. Colomb. Cienc. Exactas Fis. Nat. 45(176), 817-832. http://dx.doi.org/10.18257/raccefyn.1326
» http://dx.doi.org/10.18257/raccefyn.1326 - Horn, H., Paul, L., Horn, W., & Petzoldt, T., 2011. Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favoured by warm winters? Freshw. Biol. 56(12), 2483-2499. http://dx.doi.org/10.1111/j.1365-2427.2011.02674.x
» http://dx.doi.org/10.1111/j.1365-2427.2011.02674.x - Huisman, J., Codd, G.A., Paerl, H.W., Ibelings, B.W., Verspagen, J.M.H., & Visser, P.M., 2018. Cyanobacterial blooms. Nat. Rev. Microbiol. 16(8), 471-483. PMid:29946124. http://dx.doi.org/10.1038/s41579-018-0040-1
» http://dx.doi.org/10.1038/s41579-018-0040-1 - Huszar, V.L.M., Silva, L.H.S., Marinho, M., Domingos, P., & Sant’anna, C.L., 2000. Cyanoprokaryote assemblages in eight productive tropical Brazilian waters. Hydrobiologia 424(1), 67-77. http://dx.doi.org/10.1023/A:1003996710416
» http://dx.doi.org/10.1023/A:1003996710416 - Intergovernmental Oceanographic Commission of Unesco - IOC UNESCO, 2010. Microscopic and molecular methods for quantitative phytoplankton analysis. Paris: UNESCO, 110 p., IOC Manuals and Guides, no. 55.
- Jongman, R.H.G., Ter Braak, C.J.F., & van Tongeren, O.F.R., eds., 1995. Data analysis in community and landscape ecology. Cambridge: Cambridge University Press. 299 p.. http://dx.doi.org/10.1017/CBO9780511525575
» http://dx.doi.org/10.1017/CBO9780511525575 - Jørgensen, S.E., Costanza, R., & Xu, F.L., eds., 2005. Handbook of ecological indicators for assessment of ecosystem health. Boca Raton: CRC Press, 498 p. http://dx.doi.org/10.1201/9780203490181
» http://dx.doi.org/10.1201/9780203490181 - Kruk, C., Peeters, E.T.H.M., Van Nes, E.H., Huszar, V.L.M., Costa, L.S., & Scheffer, M., 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol. Oceanogr. 56(1), 110-118. http://dx.doi.org/10.4319/lo.2011.56.1.0110
» http://dx.doi.org/10.4319/lo.2011.56.1.0110 - Legendre, P., & Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129(2), 271-280. PMid:28547606. http://dx.doi.org/10.1007/s004420100716
» http://dx.doi.org/10.1007/s004420100716 - Leigh, C., Burford, M.A., Roberts, D.T., & Udy, J.W., 2010. Predicting the vulnerability of reservoirs to poor water quality and cyanobacterial blooms. Water Res. 44(15), 4487-4496. PMid:20598731. http://dx.doi.org/10.1016/j.watres.2010.06.016
» http://dx.doi.org/10.1016/j.watres.2010.06.016 - León, N., Rivera-Rondon, C., Zapata, A., Jimenez, J., Villamil, W., Arenas, G., Rincón, C., & Sánchez, T., 2012. Factors controlling phytoplankton in tropical high-mountain drinking-water reservoirs. Limnetica 31(2), 305-322. http://dx.doi.org/10.23818/limn.31.26
» http://dx.doi.org/10.23818/limn.31.26 - Lepš, J., & Šmilauer, P., 2003. Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press, 269 p. http://dx.doi.org/10.1017/CBO9780511615146
» http://dx.doi.org/10.1017/CBO9780511615146 - Lewis Junior, W.M.J., 2000. Basis for the protection and management of tropical lakes. Lakes Reservoirs: Res. Manage. 5(1), 35-48. http://dx.doi.org/10.1046/j.1440-1770.2000.00091.x
» http://dx.doi.org/10.1046/j.1440-1770.2000.00091.x - Li, L., Zheng, B., & Liu, L., 2010. Biomonitoring and bioindicators used for river ecosystems: definitions, approaches and trends. Procedia Environ. Sci. 2, 1510-1524. http://dx.doi.org/10.1016/j.proenv.2010.10.164
» http://dx.doi.org/10.1016/j.proenv.2010.10.164 - Lv, J., Wu, H., & Chen, M., 2011. Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica 41(1), 48-56. http://dx.doi.org/10.1016/j.limno.2010.03.003
» http://dx.doi.org/10.1016/j.limno.2010.03.003 - Lyche-Solheim, A., Feld, C.K., Birk, S., Phillips, G., Carvalho, L., Morabito, G., Mischke, U., Willby, N., Søndergaard, M., Hellsten, S., Kolada, A., Mjelde, M., Böhmer, J., Miler, O., Pusch, M.T., Argillier, C., Jeppesen, E., Lauridsen, T.L., & Poikane, S, 2013. Ecological status assessment of European lakes: a comparison of metrics for phytoplankton, macrophytes, benthic invertebrates and fish. Hydrobiologia 704(1), 57-74. http://dx.doi.org/10.1007/s10750-012-1436-y
» http://dx.doi.org/10.1007/s10750-012-1436-y - Mamun, M., Atique, U., & An, K.G., 2021. Assessment of water quality based on trophic status and nutrients-chlorophyll empirical models of different elevation reservoirs. Water 13(24), 3640. http://dx.doi.org/10.3390/w13243640
» http://dx.doi.org/10.3390/w13243640 - Margalef, R., 1983. Limnología. Barcelona: Ediciones Omega, 1010 p.
- Mazaris, A.D., Moustaka-Gouni, M., Michaloudi, E., & Bobori, D.C., 2010. Biogeographical patterns of freshwater micro- and macroorganisms: a comparison between phytoplankton, zooplankton and fish in the eastern Mediterranean. J. Biogeogr. 37(7), 1341-1351. http://dx.doi.org/10.1111/j.1365-2699.2010.02294.x
» http://dx.doi.org/10.1111/j.1365-2699.2010.02294.x - Ochocka, A., & Pasztaleniec, A., 2016. Sensitivity of plankton indices to lake trophic conditions. Environ. Monit. Assess. 188(11), 622. PMid:27752916. http://dx.doi.org/10.1007/s10661-016-5634-3
» http://dx.doi.org/10.1007/s10661-016-5634-3 - Oliveira Sodré, E., Langlais-Bourassa, A., Pollard, A.I., & Beisner, B.E., 2020. Functional and taxonomic biogeography of phytoplankton and zooplankton communities in relation to environmental variation across the contiguous USA. J. Plankton Res. 42(10), 1093.
- Padial, A.A., Ceschin, F., Declerck, S.A., De Meester, L., Bonecker, C.C., Lansac-Tôha, F.A., Rodrigues, L., Rodrigues, L.C., Train, S., Velho, L.F., & Bini, L.M., 2014. Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS One 9(10), e111227. PMid:25340577. http://dx.doi.org/10.1371/journal.pone.0111227
» http://dx.doi.org/10.1371/journal.pone.0111227 - Pasztaleniec, A., 2016. An advanced phytoplankton trophic index: test and validation with a nationwide lake survey in Poland. Int. Rev. Hydrobiol. 101(1-2), 20-35. http://dx.doi.org/10.1002/iroh.201501799
» http://dx.doi.org/10.1002/iroh.201501799 - Peng, X., Zhang, L., Li, Y., Lin, Q., He, C., Huang, S., Li, H., Zhang, X., Liu, B., Ge, F., Zhou, Q., Zhang, Y., & Wu, Z., 2021. The changing characteristics of phytoplankton community and biomass in subtropical shallow lakes: coupling effects of land use patterns and lake morphology. Water Res. 200, 117235. PMid:34034101. http://dx.doi.org/10.1016/j.watres.2021.117235
» http://dx.doi.org/10.1016/j.watres.2021.117235 - Phillips, G., Lyche-Solheim, A., Skjelbred, B., Mischke, U., Drakare, S., Free, G., Järvinen, M., Hoyos, C., Morabito, G., Poikane, S., & Carvalho, L., 2013. A phytoplankton trophic index to assess the status of lakes for the Water Framework Directive. Hydrobiologia 704(1), 75-95. http://dx.doi.org/10.1007/s10750-012-1390-8
» http://dx.doi.org/10.1007/s10750-012-1390-8 - Qu, Y., Wu, N., Guse, B., & Fohrer, N., 2018. Riverine phytoplankton shifting along a lentic-lotic continuum under hydrological, physiochemical conditions and species dispersal. Sci. Total Environ. 619-620, 1628-1636. PMid:29066197. http://dx.doi.org/10.1016/j.scitotenv.2017.10.139
» http://dx.doi.org/10.1016/j.scitotenv.2017.10.139 - R Development Core Team, 2018. R: a language and environment for statistical computing [online]. Vienna: R Foundation for Statistical Computing. Retrieved in 2020, December 20, from http://www.R-project.org
» http://www.R-project.org - Rakocevic-Nedovic, J., & Hollert, H., 2005. Phytoplankton community and chlorophyll a as trophic state indices of lake Skadar (Montenegro, Balkan). Environ. Sci. Pollut. Res. Int. 12(3), 146-152. PMid:15986998. http://dx.doi.org/10.1065/espr2005.04.241
» http://dx.doi.org/10.1065/espr2005.04.241 - Reynolds, C.S. 2006. The ecology of phytoplankton: ecology, biodiversity and conservation. Cambridge: Cambridge University Press, 535 p. http://dx.doi.org/10.1017/CBO9780511542145
» http://dx.doi.org/10.1017/CBO9780511542145 - Reynolds, C.S., 1997. Vegetation processes in the pelagic: a model for ecosystem theory. Luhe: Ecology Institute, 371 p.
- Reynolds, C.S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S., 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res. 24(5), 417-428. http://dx.doi.org/10.1093/plankt/24.5.417
» http://dx.doi.org/10.1093/plankt/24.5.417 - Rigosi, A., Carey, C.C., Ibelings, B.W., & Brookes, J.D., 2014. The interaction between climate warming and eutrophication to promote cyanobacteria is dependent on trophic state and varies among taxa. Limnol. Oceanogr. 59(1), 99-114. http://dx.doi.org/10.4319/lo.2014.59.1.0099
» http://dx.doi.org/10.4319/lo.2014.59.1.0099 - Rimet, F., & Bouchez, A., 2012. Biomonitoring river diatoms: implications of taxonomic resolution. Ecol. Indic. 15(1), 92-99. http://dx.doi.org/10.1016/j.ecolind.2011.09.014
» http://dx.doi.org/10.1016/j.ecolind.2011.09.014 - Rivera-Rondón, C., & Zapata, A., 2009. Criterios generales para la recolección, preservación, manejo de muestras y monitoreo de ecosistemas acuáticos epicontinentales. In: Acosta, A., Zapata, A., & G. Fagua, eds. Técnicas de campo en ambientes tropicales: manual para el monitoreo en ecosistemas acuáticos y artrópodos terrestres. Bogotá: Editorial Pontificia Universidad Javeriana, 191-215, Colección de Libros de Investigación.
- Rivera-Rondón, C.A., & Catalan, J., 2020. Diatoms as indicators of the multivariate environment of mountain lakes. Sci. Total Environ. 703, 135517. PMid:31767302. http://dx.doi.org/10.1016/j.scitotenv.2019.135517
» http://dx.doi.org/10.1016/j.scitotenv.2019.135517 - Rocha, B., Souza, C., Machado, K., Vieira, L., & Nabout, J., 2020. The relative influence of the environment, land use, and space on the functional and taxonomic structures of phytoplankton and zooplankton metacommunities in tropical reservoirs. Freshw. Sci. 39(2), 321-333. http://dx.doi.org/10.1086/708949
» http://dx.doi.org/10.1086/708949 - Rodrigues, E.H.C., Vicentin, A.M., Machado, L.D.S., Pompêo, M.L.M., & Carlos, V.M., 2019. Phytoplankton, Trophic State and Ecological Potential in reservoirs in the State of São Paulo, Brazil. Rev. Ambient. Água 14(5), e2428. http://dx.doi.org/10.4136/ambi-agua.2428
» http://dx.doi.org/10.4136/ambi-agua.2428 - Salas, J., & Martino, P., 1990. Metodologías simplificadas para la evaluación de eutroficación en lagos cálidos tropicales. Lima: CEPIS - OMS. Retrieved in 2020, December 20, from https://iris.paho.org/handle/10665.2/55333
» https://iris.paho.org/handle/10665.2/55333 - Seeligmann, C., & Tracanna, B.C., 2009. Phytoplankton dynamics in a high elevation reservoir of Northwestern Argentina (Tucuman). Limnetica 28(1), 105-124. http://dx.doi.org/10.23818/limn.28.08
» http://dx.doi.org/10.23818/limn.28.08 - Silva, E., 2007. Ecology of phytoplankton in tropical waters: introduction to the topic and ecosystem. Asian J. Water Environ. Pollut. 4, 25-35.
- Sotero-Santos, R.B., Carvalho, E.G., Dellamano-Oliveira, M.J., & Rocha, O., 2008. Occurrence and toxicity of an Anabaena bloom in a tropical reservoir (Southeast Brazil). Harmful Algae 7(5), 590-598. http://dx.doi.org/10.1016/j.hal.2007.12.017
» http://dx.doi.org/10.1016/j.hal.2007.12.017 - Souza, C., Machado, K., Nabout, J., Muniz, D., Oliveira-Filho, E., Kraus, C., Ribeiro, R., & Vieira, L., 2019. Monitoring simplification in plankton communities using different ecological approaches. Acta Limnol. Bras. 31, e20. http://dx.doi.org/10.1590/s2179-975x3617
» http://dx.doi.org/10.1590/s2179-975x3617 - Steffensen, D.A., 2008. Economic cost of cyanobacterial blooms. In: Hudnell, H.K., ed. Cyanobacterial Harmful Algal Blooms. New York: Springer Science, 2008, 855-866. http://dx.doi.org/10.1007/978-0-387-75865-7_37
» http://dx.doi.org/10.1007/978-0-387-75865-7_37 - Straskraba, M., & Tundisi, J.G., 1999. Reservoir water quality management. Kusatsu: International Lake Environment Committee Foundation, 237 p. Guidelines of Lake Management, no. 9. Retrieved in 2020, December 20, from https://wedocs.unep.org/20.500.11822/29399
» https://wedocs.unep.org/20.500.11822/29399 - Tundisi, J.G., Matsumura-Tundisi, T., & Abe, D.S., 2008. The ecological dynamics of Barra Bonita (Tietê River, SP, Brazil) reservoir: implications for its biodiversity. Braz. J. Biol. 68(4, Suppl.), 1079-1098. PMid:19197478. http://dx.doi.org/10.1590/S1519-69842008000500015
» http://dx.doi.org/10.1590/S1519-69842008000500015 - Utermöhl, H., 1958. Zur vervollkommung der quantitativen phytoplankton-Methodik. Verh. Int. Ver. Theor. Angew. 9, 1-38.
- Weithoff, G., & Gaedke, U., 2017. Mean functional traits of lake phytoplankton reflect seasonal and inter-annual changes in nutrients, climate and herbivory. J. Plankton Res. 39(3), 509-517. http://dx.doi.org/10.1093/plankt/fbw072
» http://dx.doi.org/10.1093/plankt/fbw072 - Wetzel, R.G., & Likens, G.E., 2000. Limnological analyses. New York: Springer-Verlag, 429 p. http://dx.doi.org/10.1007/978-1-4757-3250-4
» http://dx.doi.org/10.1007/978-1-4757-3250-4 - Yang, Y., Colom, W., Pierson, D., & Pettersson, K., 2016. Water column stability and summer phytoplankton dynamics in a temperate lake (Lake Erken, Sweden). Inland Waters 6(4), 499-508. http://dx.doi.org/10.1080/IW-6.4.874
» http://dx.doi.org/10.1080/IW-6.4.874
Edited by
Publication Dates
-
Publication in this collection
07 Nov 2022 -
Date of issue
2022
History
-
Received
20 Dec 2020 -
Accepted
17 Oct 2022