Acessibilidade / Reportar erro

Experimental studies on freshwater zooplankton in Brazil: a scientometric analysis from 1978 to 2023

Estudos experimentais sobre zooplâncton de água doce no Brasil: uma análise cienciométrica de 1978 a 2023

Abstract

Aim

This study aims to contribute to elucidating the importance of experimental research on freshwater zooplankton communities in Brazil through a scientometric analysis.

Methods

Web of Science, SciELO, and Scopus databases were used to compile 249 scientific papers published between 1978 and 2023. The extracted data included the year of publication, geographical location, experiment characteristics (type, scale, duration), species or taxa studied, and research topics. Quantitative and qualitative syntheses were performed to provide a systematic understanding of experimental studies on freshwater zooplankton.

Results

The analysis revealed a significant increase in the number of experimental papers over time, with a higher concentration of studies in the Southeastern region of Brazil. Laboratory experiments were conducted with greater frequency than field experiments, mainly microcosms. Predation, chemical pollutants, and eutrophication emerged as frequently addressed research topics. On the other hand, certain topics, such as metapopulation dynamics and microplastics, were relatively underrepresented in the literature. Despite the crucial role of experimental research on freshwater zooplankton in advancing ecological understanding in Brazil, there is an unequal distribution of these studies across the country, indicating the need for investment and more researchers prepared and interested in studying with experiments in certain regions. Addressing the gaps identified in this review, such as metapopulation dynamics and dispersion, along with emerging threats like invasions, microplastics, pathogens, cumulative stressors, emerging contaminants, and nanomaterials, will be essential for generating scientific knowledge to inform effective management strategies to preserve freshwater zooplankton biodiversity amidst ongoing environmental changes.

Conclusions

This review underscores the importance of expanding experimental research across diverse regions and underexplored topics to enhance our ecological understanding and better manage freshwater zooplankton biodiversity in Brazil.

Keywords:
laboratory experiment; field experiment; duration of experiments; systematic review

Resumo

Objetivo

Este estudo tem como objetivo contribuir para elucidar a importância da pesquisa experimental sobre a comunidade zooplanctônica de água doce no Brasil através de uma análise cienciométrica.

Métodos

As bases de dados Web of Science, SciELO e Scopus foram utilizadas para compilar 249 trabalhos científicos publicados entre 1978 e 2023. Os dados extraídos dos artigos foram o ano de publicação, localização geográfica, características do experimento (tipo, escala, duração), espécies ou táxons estudados e os temas de pesquisa. Sínteses quantitativas e qualitativas foram realizadas para fornecer uma compreensão sistematizada dos estudos experimentais sobre zooplâncton de água doce.

Resultados

A análise revelou um aumento significativo no número de publicações experimentais ao longo do tempo, com uma maior concentração de estudos na região Sudeste do Brasil. Experimentos de laboratório, principalmente microcosmos foram realizados com mais frequência do que experimentos de campo. Predação, poluentes químicos e eutrofização surgiram como os temas de pesquisa frequentemente abordados. Por outro lado, certos tópicos, como dinâmicas de metapopulação e microplásticos, foram relativamente sub-representados na literatura. Apesar da pesquisa experimental sobre o zooplâncton de água doce no Brasil desempenhar um papel crucial no avanço da compreensão ecológica, há uma distribuição desigual desses estudos pelo país, indicando a necessidade de investimentos e mais pesquisadores preparados para trabalhar com experimentos em certas regiões. Abordar as lacunas identificadas nesta revisão, como dinâmicas de metapopulação e dispersão, juntamente com ameaças emergentes como invasões, microplásticos, patógenos, estressores cumulativos, contaminantes emergentes e nanomateriais, será essencial para gerar conhecimento científico que informe estratégias de manejo eficazes para preservar a biodiversidade do zooplâncton de água doce em meio às mudanças ambientais em curso.

Conclusões

Esta revisão destaca a importância de expandir a pesquisa experimental por diversas regiões e tópicos pouco explorados para melhorar nossa compreensão ecológica e melhor gerenciar a biodiversidade do zooplâncton de água doce no Brasil.

Palavras-chave:
experimento em laboratório; experimento em campo; duração do experimento; revisão sistemática

1. Introduction

Experimental studies offer a possibility to test fundamental ecological and evolutionary theories (Connon et al., 2012Connon, R.E., Geist, J., & Werner, I., 2012. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12(9), 12741-12771. PMid:23112741. http://doi.org/10.3390/s120912741.
http://doi.org/10.3390/s120912741...
) across varying degrees of realism in both artificial systems and natural habitats. The experimental approach has been a consistent trend for decades and can help us develop a more sensible relationship with freshwater ecosystems (Hasler, 1964Hasler, A., 1964. Experimental limnology. Bioscience 14(7), 36-38. http://doi.org/10.2307/1293235.
http://doi.org/10.2307/1293235...
, Odum, 1984Odum, E.P., 1984. The mesocosm. Bioscience 34(9), 558-562. http://doi.org/10.2307/1309598.
http://doi.org/10.2307/1309598...
). In experimental settings, environmental and biological variables can be controlled, facilitating the generation of robust scientific evidence. These experimental manipulations provide invaluable insights into the causalities between environmental factors, individuals, and populations on structure and dynamics across different levels of biological organization (Srivastava et al., 2004Srivastava, D.S., Kolasa, J., Bengtsson, J., Gonzalez, A., Lawler, S.P., Miller, T.E., Munguia, P., Romanuk, T., Schneider, D.C., & Trzcinski, M.K., 2004. Are natural microcosms useful model systems for ecology? Trends Ecol. Evol. 19(7), 379-384. PMid:16701289. http://doi.org/10.1016/j.tree.2004.04.010.
http://doi.org/10.1016/j.tree.2004.04.01...
). Experiments with diverse organisms at various spatial and temporal scales have been fundamental to developing different aspects of ecology. These include the distribution (Grime, 1965Grime, J.P., 1965. Comparative experiments as a key to the ecology of flowering plants. Ecology 46(4), 513-515. http://doi.org/10.2307/1934882.
http://doi.org/10.2307/1934882...
) and conservation (Tinya et al., 2023Tinya, F., Doerfler, I., de Groot, M., Heilman-Clausen, J., Kovács, B., Mårell, A., Nordén, B., Aszalós, R., Bässler, C., Brazaitis, G., Burrascano, S., Camprodon, J., Chudomelová, M., Čížek, L., D’Andrea, E., Gossner, M., Halme, P., Hédl, R., Korboulewsky, N., Kouki, J., Kozel, P., Lõhmus, A., López, R., Máliš, F., Martín, J.A., Matteucci, G., Mattioli, W., Mundet, R., Müller, J., Nicolas, M., Oldén, A., Piqué, M., Preikša, Ž., Rovira Ciuró, J., Remm, L., Schall, P., Šebek, P., Seibold, S., Simončič, P., Ujházy, K., Ujházyová, M., Vild, O., Vincenot, L., Weisser, W., & Ódor, P., 2023. A synthesis of multi-taxa management experiments to guide forest biodiversity conservation in Europe. Glob. Ecol. Conserv. 46, e02553. http://doi.org/10.1016/j.gecco.2023.e02553.
http://doi.org/10.1016/j.gecco.2023.e025...
) of plants, coastal marine management and conservation (Castilla, 2000Castilla, J.C., 2000. Roles of experimental marine ecology in coastal management and conservation. J. Exp. Mar. Biol. Ecol. 250(1-2), 3-21. PMid:10969161. http://doi.org/10.1016/S0022-0981(00)00177-5.
http://doi.org/10.1016/S0022-0981(00)001...
), the search for general ecological principles (Borer et al., 2014Borer, E.T., Harpole, W.S., Adler, P.B., Lind, E.M., Orrock, J.L., Seabloom, E.W., & Smith, M.D., 2014. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5(1), 65-73. http://doi.org/10.1111/2041-210X.12125.
http://doi.org/10.1111/2041-210X.12125...
) and threats of global change (Knapp et al., 2024Knapp, A.K., Condon, K.V., Folks, C.C., Sturchio, M.A., Griffin‐Nolan, R.J., Kannenberg, S.A., Gill, A.S., Hajek, O.L., Siggers, J.A., & Smith, M.D., 2024. Field experiments have enhanced our understanding of drought impacts on terrestrial ecosystems: but where do we go from here? Funct. Ecol. 38(1), 76-97. http://doi.org/10.1111/1365-2435.14460.
http://doi.org/10.1111/1365-2435.14460...
).

Observational approaches have been a primary source of knowledge on freshwater zooplankton in Brazil, as indicated by Castilho-Noll et al. (2023)Castilho-Noll, M.S.M., Perbiche-Neves, G., Santos, N.G., Schwind, L.T.F., Lansac-Tôha, F.M., Silva, A.C.S., Meira, B.R., Joko, C.Y., Morais-Júnior, C.S., Silva, E.E.C., Eskinazi-Sant’Anna, E.M., Oliveira, F.R., Santos, G.S., Silva, J.V.F., Portinho, J.L., Araujo-Paina, K., Chiarelli, L.J., Diniz, L.P., Braghin, L.S.M., Velho, L.F.M., Souza, M.E.T., Silva, M.L.C., Rocha, M.A., Progênio, M., Ferreira, N., Cirillo, P.H., Morari, P.H.R., Arrieira, R.L., Mantovano, T., Gazulha, V., Melo, V.L.S.A., Ghidini, A.R., Melo Júnior, M., Lansac-Tôha, F.A., Bonecker, C.C., & Simões, N.R., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 100, 126057. http://doi.org/10.1016/j.limno.2023.126057.
http://doi.org/10.1016/j.limno.2023.1260...
. Their comprehensive review spanning 121 years reveals critical aspects of zooplankton studies in the country. Most of these investigations have focused on ecological and taxonomic research. Long-term studies have played a pivotal role in enhancing our understanding of various biological and ecological concepts, including global climate changes (Diniz et al., 2023Diniz, L.P., Petsch, D.K., Mantovano, T., Rodrigues, L.C., Agostinho, A.A., & Bonecker, C.C., 2023. A prolonged drought period reduced temporal β diversity of zooplankton, phytoplankton, and fish metacommunities in a Neotropical floodplain. Hydrobiologia 850(5), 1073-1089. http://doi.org/10.1007/s10750-023-05140-7.
http://doi.org/10.1007/s10750-023-05140-...
), environmental impacts (Carneiro et al., 2003Carneiro, L.S., Bozelli, R.L., & Esteves, F.A., 2003. Long-term changes in the density of the copepod community in an Amazonian lake impacted by bauxite tailings. Amazoniana (17), 553-566.; Bonecker et al., 2020Bonecker, C.C., Diniz, L.P., Braghin, L.S.M., Mantovano, T., da Silva, J.V.F., Bomfim, F.F., Moi, D.A., Deosti, S., Santos, G.N.T., Candeias, D.A., Mota, A.J.M.M., Velho, L.F.M., & Lansac-Tôha, F.A., 2020. Synergistic effects of natural and anthropogenic impacts on zooplankton diversity in a subtropical floodplain: a long-term study. Oecol. Aust. 24(2), 524-537. http://doi.org/10.4257/oeco.2020.2402.20.
http://doi.org/10.4257/oeco.2020.2402.20...
; Josué et al., 2021Josué, I.I., Sodré, E.O., Setubal, R.B., Cardoso, S.J., Roland, F., Figueiredo‐Barros, M.P., & Bozelli, R.L., 2021. Zooplankton functional diversity as an indicator of a long‐term aquatic restoration in an Amazonian lake. Restor. Ecol. 29(5), e13365. http://doi.org/10.1111/rec.13365.
http://doi.org/10.1111/rec.13365...
), invasive species (Palazzo et al., 2023Palazzo, F., Moi, D.A., Mantovano, T., Lansac-Tôha, F.A., & Bonecker, C.C., 2023. Assessment of the occurrence and abundance of an exotic zooplankton species (Kellicottia bostiniensis) across a neotropical wetland over 12 years. Limnology 24(2), 137-149. http://doi.org/10.1007/s10201-022-00712-3.
http://doi.org/10.1007/s10201-022-00712-...
), predator-prey relationships (Arcifa et al., 2015Arcifa, M.S., Ferreira, T.C.S., Fileto, C., Castilho-Noll, M.S.M., Bunioto, T.T., & Minto, W.J., 2015. A long-term study on crustacean plankton of a shallow tropical lake: the role of invertebrate predation. J. Limnol. 4, 606-617. http://doi.org/10.4081/jlimnol.2015.1132.
http://doi.org/10.4081/jlimnol.2015.1132...
), and biodiversity (Garrido et al., 2003Garrido, A.V., Bozelli, R.L., Esteves, F.A., & Alves, L.S., 2003. Long-term patterns of the planktonic cladoceran community of Batata Lake, Amazonia, Brazil. Acta Limnol. Bras. 15, 41-53.; Lansac-Tôha et al., 2014Lansac-Tôha, F.A., Velho, L.F.M., Costa, D.M., Simões, N.R., & Alves, G.M., 2014. Structure of the testate amoebae community in different habitats in a neotropical floodplain. Braz. J. Biol. 74(1), 181-190. PMid:25055100. http://doi.org/10.1590/1519-6984.24912.
http://doi.org/10.1590/1519-6984.24912...
; Maia-Barbosa et al., 2014Maia-Barbosa, P.M., Menendez, R.M., Pujoni, D.G.F., Brito, S.L., Aoki, A., & Barbosa, F.A.R., 2014. Zooplankton (Copepoda, Rotifera, Cladocera and Protozoa: amoeba Testacea) from natural lakes of the middle Rio Doce basin, Minas Gerais, Brazil. Biota Neotrop. 14(1), http://doi.org/10.1590/S1676-06034040.
http://doi.org/10.1590/S1676-06034040...
). The review highlights that cladocerans are the most extensively studied organisms in diverse environments, followed by copepods and rotifers. In contrast, protoplankton groups received comparatively less attention (Castilho-Noll et al., 2023Castilho-Noll, M.S.M., Perbiche-Neves, G., Santos, N.G., Schwind, L.T.F., Lansac-Tôha, F.M., Silva, A.C.S., Meira, B.R., Joko, C.Y., Morais-Júnior, C.S., Silva, E.E.C., Eskinazi-Sant’Anna, E.M., Oliveira, F.R., Santos, G.S., Silva, J.V.F., Portinho, J.L., Araujo-Paina, K., Chiarelli, L.J., Diniz, L.P., Braghin, L.S.M., Velho, L.F.M., Souza, M.E.T., Silva, M.L.C., Rocha, M.A., Progênio, M., Ferreira, N., Cirillo, P.H., Morari, P.H.R., Arrieira, R.L., Mantovano, T., Gazulha, V., Melo, V.L.S.A., Ghidini, A.R., Melo Júnior, M., Lansac-Tôha, F.A., Bonecker, C.C., & Simões, N.R., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 100, 126057. http://doi.org/10.1016/j.limno.2023.126057.
http://doi.org/10.1016/j.limno.2023.1260...
).

Over the past century in Brazil, freshwater zooplankton has been used in experimental investigations to test theories (Matsumura-Tundisi et al., 1990Matsumura-Tundisi, T., Rietzler, A.C., Espindola, E.L.G., Tundisi, J.G., & Rocha, O., 1990. Predation on Ceriodaphnia cornuta and Brachionus calyciflorus by two Mesocyclops species coexisting in Barra Bonita reservoir (SP, Brazil). Hydrobiologia 198(1), 141-151. http://doi.org/10.1007/BF00048631.
http://doi.org/10.1007/BF00048631...
) and explore the intricate link between biodiversity and ecosystem processes (Gazonato Neto et al., 2014Gazonato Neto, A.J., Silva, L.C., Saggio, A.A., & Rocha, O., 2014. Zooplankton communities as eutrophication bioindicators in tropical reservoirs. Biota Neotrop. 14(4), e20140018. http://doi.org/10.1590/1676-06032014001814.
http://doi.org/10.1590/1676-060320140018...
; Dib et al., 2020Dib, V., Pires, A.P., Casa Nova, C., Bozelli, R.L., & Farjalla, V.F., 2020. Biodiversity‐mediated effects on ecosystem functioning depend on the type and intensity of environmental disturbances. Oikos 129(3), 433-443. http://doi.org/10.1111/oik.06768.
http://doi.org/10.1111/oik.06768...
). Qualitative and quantitative syntheses, such as scientometric analyses (Souza et al., 2018Souza, C.A., Gomes, L.F., Nabout, J.C., Velho, L.F.M., & Vieira, L.C.G., 2018. Temporal trends of scientific literature about zooplankton community. Neotropical Biol. Conserv. 13(4), 274. http://doi.org/10.4013/nbc.2018.134.01.
http://doi.org/10.4013/nbc.2018.134.01...
), systematic reviews (Macêdo et al., 2021Macêdo, R.L., Sousa, F.D.R., Jesus, S.B.D., Nunesmaia, B.J.B., Branco, C.W.C., & Elmoor-Loureiro, L., 2021. Cladocera (Crustacea, Branchiopoda) species of Bahia State, Brazil: a critical update on species descriptions, distributions, and new records. Nauplius 29, e2021011. http://doi.org/10.1590/2358-2936e2021011.
http://doi.org/10.1590/2358-2936e2021011...
), and meta-analyses (Vieira et al., 2015Vieira, L.C.G., Padial, A.A., Velho, L.F.M., Carvalho, P., & Bini, L.M., 2015. Concordance among zooplankton groups in a near-pristine floodplain system. Ecol. Indic. 58, 374-381. http://doi.org/10.1016/j.ecolind.2015.05.049.
http://doi.org/10.1016/j.ecolind.2015.05...
), have been extensively employed to provide a comprehensive overview or nuanced insights into various experimental research topics (Melo et al., 2006Melo, A.S., Bini, L.M., & Carvalho, P., 2006. Brazilian articles in international journals on Limnology. Scientometrics 67(2), 187-199. http://doi.org/10.1007/s11192-006-0093-1.
http://doi.org/10.1007/s11192-006-0093-1...
). In this context, this research's primary objective is to comprehend the significance of zooplankton experimentation thoroughly. This will be achieved through a systematic review that aims to quantify the temporal evolution of experimental studies, shedding light on the dynamic landscape of research endeavors over time.

This review is mainly based on Castilho-Noll et al. (2023)Castilho-Noll, M.S.M., Perbiche-Neves, G., Santos, N.G., Schwind, L.T.F., Lansac-Tôha, F.M., Silva, A.C.S., Meira, B.R., Joko, C.Y., Morais-Júnior, C.S., Silva, E.E.C., Eskinazi-Sant’Anna, E.M., Oliveira, F.R., Santos, G.S., Silva, J.V.F., Portinho, J.L., Araujo-Paina, K., Chiarelli, L.J., Diniz, L.P., Braghin, L.S.M., Velho, L.F.M., Souza, M.E.T., Silva, M.L.C., Rocha, M.A., Progênio, M., Ferreira, N., Cirillo, P.H., Morari, P.H.R., Arrieira, R.L., Mantovano, T., Gazulha, V., Melo, V.L.S.A., Ghidini, A.R., Melo Júnior, M., Lansac-Tôha, F.A., Bonecker, C.C., & Simões, N.R., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 100, 126057. http://doi.org/10.1016/j.limno.2023.126057.
http://doi.org/10.1016/j.limno.2023.1260...
, aiming to expand our understanding of the temporal and spatial dynamics of experimental freshwater zooplankton studies in Brazil. It will identify and highlight the principal topics investigated and delineate areas that have yet to be explored, thereby guiding future research avenues in this crucial ecological domain.

2. Material and Methods

The database used in this review was an update of the ones used in Castilho-Noll et al. (2023)Castilho-Noll, M.S.M., Perbiche-Neves, G., Santos, N.G., Schwind, L.T.F., Lansac-Tôha, F.M., Silva, A.C.S., Meira, B.R., Joko, C.Y., Morais-Júnior, C.S., Silva, E.E.C., Eskinazi-Sant’Anna, E.M., Oliveira, F.R., Santos, G.S., Silva, J.V.F., Portinho, J.L., Araujo-Paina, K., Chiarelli, L.J., Diniz, L.P., Braghin, L.S.M., Velho, L.F.M., Souza, M.E.T., Silva, M.L.C., Rocha, M.A., Progênio, M., Ferreira, N., Cirillo, P.H., Morari, P.H.R., Arrieira, R.L., Mantovano, T., Gazulha, V., Melo, V.L.S.A., Ghidini, A.R., Melo Júnior, M., Lansac-Tôha, F.A., Bonecker, C.C., & Simões, N.R., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 100, 126057. http://doi.org/10.1016/j.limno.2023.126057.
http://doi.org/10.1016/j.limno.2023.1260...
and Elmoor-Loureiro et al. (2023)Elmoor-Loureiro, L.M.A., Sousa, F.D.R., Oliveira, F.R., Joko, C.Y., Perbiche-Neves, G., Silva, A.C.S., Silva, A.J., Ghidini, A.R., Meira, B.R., Aggio, C.E.G., Morais-Junior, C.S., Eskinazi-Sant’Anna, E.M., Lansac-Tôha, F.M., Cabral, G.S., Portinho, J.L., Nascimento, J.R., Silva, J.V.F., Veado, L., Chiarelli, L.J., Santana, L.O., Diniz, L.P., Braghin, L.S.M., Schwind, L.T.F., Melo Júnior, M., Progênio, M., Rocha, M.A., Silva, M.L.C., Castilho-Noll, M.S.M., Silva, N.J., dos Santos, N.G., Morari, P.H.R., Maia-Barbosa, P.M., Oliveira, P.M., Arrieira, R.L., Macêdo, R.L., Deosti, S., Mantovano, T., Gazulha, V., Bonecker, C.C., Lansac-Tôha, F.A., Corgosinho, P.H.C., Velho, L.F.M., & Simões, N.R., 2023. Towards a synthesis of the biodiversity of freshwater Protozoa, Rotifera, Cladocera, and Copepoda in Brazil. Limnologica 100, 126008. http://doi.org/10.1016/j.limno.2022.126008.
http://doi.org/10.1016/j.limno.2022.1260...
. These authors conducted the research based on papers published from January 1900 to August 2021 and indexed in SciELO (2024)Scientific Electronic Library Online – SciELO. (2024). Retrieved in 2024, April 15, from www.scielo.org
www.scielo.org...
, Web of Science (2024)Web of Science. (2024). Retrieved in 2024, April 15, from www.webofscience.com
www.webofscience.com...
, and SciVerse Scopus (2024)SciVerse Scopus. (2024). Retrieved in 2024, April 15, from www.scopus.com
www.scopus.com...
. The following keywords were employed: “Cladocer*” OR “Rotifer*” OR “Copepod*” OR “Protoplankton” OR “Ciliates” OR “Flagellates” OR “Testate Amoebae” OR “Zooplan*ton” AND “Freshwater” AND “Brai*l”. The asterisk (*) was used to encompass all linguistic variations of words. A total of 1,014 papers were identified, from which 201 experimental studies were selected based on the following criteria: (i) exclusion of duplicate articles found in different databases; (ii) inclusion of only experimental studies, excluding reviews, opinions, observational, or theoretical studies. The screening process was conducted by reading the titles and abstracts of the published experimental studies. We used the same methodology described above to update the database and include the years 2022 and 2023 and we founded 46 experimental publications on freshwater zooplankton. Therefore, we identified 249 experimental studies on zooplankton for quantitative and qualitative synthesis.

We identified (i) the year of publication, (ii) location (we used the affiliation of the first author since most experimental studies occur in laboratories of institutions, universities, and companies), (iii) characteristics of the experiment (type of experiment - microcosm, artificial mesocosm, natural mesocosm, in situ, volume of experiments – liters), and experiment duration – Days), (iv) species or taxa which the experiment's response variable was obtained and (vi) research topics. Since many studies have multiple objectives, categorizing “research topics” in experimental studies refers to the primary objective addressed in the study rather than a particular one. For example, studies investigating the impact of toxicity of cyanotoxins on zooplankton structure were categorized under the “Eutrophication” topic. Regarding the type of experiment, and definitions of experimental characteristics, four categories were defined: microcosm, artificial mesocosm, natural mesocosm, and in situ. In mesocosm experiments manipulations are conducted within laboratories under controlled environmental conditions (artificial) or in the field (natural mesocosm), typically carried out in experimental units ranging in volume from 1 to 100 liters (Srivastava et al., 2004Srivastava, D.S., Kolasa, J., Bengtsson, J., Gonzalez, A., Lawler, S.P., Miller, T.E., Munguia, P., Romanuk, T., Schneider, D.C., & Trzcinski, M.K., 2004. Are natural microcosms useful model systems for ecology? Trends Ecol. Evol. 19(7), 379-384. PMid:16701289. http://doi.org/10.1016/j.tree.2004.04.010.
http://doi.org/10.1016/j.tree.2004.04.01...
). Microcosm experiments involve manipulations conducted within laboratories under controlled environmental conditions, typically carried out in experimental units with a volume of less than one liter) (Srivastava et al., 2004Srivastava, D.S., Kolasa, J., Bengtsson, J., Gonzalez, A., Lawler, S.P., Miller, T.E., Munguia, P., Romanuk, T., Schneider, D.C., & Trzcinski, M.K., 2004. Are natural microcosms useful model systems for ecology? Trends Ecol. Evol. 19(7), 379-384. PMid:16701289. http://doi.org/10.1016/j.tree.2004.04.010.
http://doi.org/10.1016/j.tree.2004.04.01...
). In situ experiments refer to manipulations conducted within the natural environment. Additionally, the volume data were standardized to liters and the duration of the experiment to days to facilitate accurate comparison and synthesis of data from diverse studies, which often report measurements in varying units. This standardization ensures consistency and enhances the reliability of the analyses. The analyzer was responsible for converting these values to ensure consistency and reliability in the analysis. Some of the information described above may not be found in certain publications and is reported here as 'data unreported.'

We used a simple linear regression analysis (ANOVA, Sokal & Rohlf, 1995Sokal, R.R., & Rohlf, F.J., 1995. Biometry: the principles and practice of statistics in biological research. New York: W.H. Freeman and Company.) to assess the temporal trend in the number of papers. The number of papers was the response variable and the publication year was the explanatory variable. The assumptions of the analysis (normality and homoscedasticity) were tested before the ANOVA. The significance considered was p < 0.05. The temporal trend of experimental studies was examined for the research topic over time through a Heatmap, a graphical representation of data where the individual values contained in a matrix are represented as colors. The analyses were performed using R software version 4.3.2 (R Core Team, 2023R Core Team. (2023). R: a language and environment for statistical computing, version 4.3.2. Vienna: R Foundation for Statistical Computing.). We used WordCloud (2024)WordCloud. (2024). Retrieved in 2024, April 15, from https://www.wordclouds.com/
https://www.wordclouds.com/...
to generate word clouds with species or taxa.

3. Results

The first experimental publication on freshwater zooplankton in Brazil occurred in 1978 (Figure 1a). Simple regression analysis revealed a significant positive temporal trend in the number of experimental papers (R2 = 0.70, p < 0.001). Since 2000, there has been an increase in the number of experiments published in scientific journals (Figure 1a). The papers were from 16 of the 27 Brazilian states. The Southeast region of Brazil contributed 63.85% of the total number of 159 papers, with emphasis on the states of São Paulo (40%; N = 101 papers), Rio de Janeiro (12.85%; N = 32), and Minas Gerais (10.44%; N =26) (Figure 1b). An exception in the regions was the state of Espírito Santo, which had no recorded papers. The states of Rio Grande do Sul (11.65%; N =29) and Paraná (8.03%; N =20) in the south region also stand out for the number of papers. No records of experimental papers with freshwater zooplankton have been identified in the states of Amapá, Tocantins, Acre, Alagoas, Ceará, Goiás, Maranhão, Piauí, Rondônia, Roraima, and Sergipe (Figure 1b).

Figure 1
Temporal (a) and spatial (b) distribution of 249 studies published with freshwater zooplankton in Brazil from 1978 to 2023. SP = São Paulo, MG = Minas Gerais, PR = Paraná, RJ = Rio de Janeiro, RS = Rio Grande do Sul, PE = Pernambuco, SC = Santa Catarina, PB = Paraíba, AM = Amazonas, DF = Distrito Federal, RN = Rio Grande do Norte, BA = Bahia, PA = Pará, MT = Mato Grosso, MS = Mato Grosso do Sul, AP = Amapá, ES = Espírito Santo, TO = Tocantins, AC = Acre, AL = Alagoas, CE = Ceará, GO = Goiás, MA = Maranhão, PI = Piauí, RO = Rondônia, RR = Roraima, SE = Sergipe. Red asterisks = no experimental publication found.

Regarding location, experiments conducted in the laboratory were more frequent, accounting for 85.54% (N = 213), compared to those conducted in the field, which accounted for 14.46% (N = 36) (Figure 2a). Additional analyses revealed some characteristics of the experimental approaches (Figure 2b-g). Most experiments employed the microcosm approach (59.6%; N = 149 number of papers). Experiments in artificial mesocosms were the second most utilized type (16.8%; N = 42), followed by in situ experiments (4.4%; N = 11) and natural mesocosms (4.4%; N = 11). Thirty-seven (14.8%) papers did not inform the type of approach (Figure 2b). The median duration of microcosm experiments was five days (max. 365 days and min. 1 hour). In comparison, artificial mesocosms lasted 15 days (max. 75 days and min. one day), natural mesocosms 11 days (max. 182 days and min. 0.48 days), and in situ experiments 25 days (max. 120 and min. two days) (Figure 2c). The median volume of microcosm experiments was 0.05 L (max. 1 L and min. 0.001 L) (Figure 2d). In comparison, the median volume of artificial mesocosms was 46 L (max. 1.08 x 106 L and min. 0.1 L) (Figure 2e), the median volume of natural mesocosms was 6.115 x 103 L (max. 3.1 x 1010 L and min. 3.0 x 103 L) (Figure 2f), and the median volume of in situ experiments was 0.05 L (max. 1.5 L and min. 0.01 L) (Figure 2g). Of the 249 manuscripts analyzed, 37 did not provide information on the experimental approaches.

Figure 2
Characteristics of experiments carried out with zooplankton in Brazil. (a) The number of experimental studies with freshwater zooplankton conducted in the field or laboratory (1978 to 2023); (b) The number of studies conducted in each type of experimental approach; (c, d) Jitter boxplots showing the distribution of a set of data (median, minimum value, maximum value, first quartile, third quartile, and outliers) related to the (c) time (i.e., experiment duration in days - For better visualization, the 365-day values are not shown in the graph), and volume used in (d) microcosms, (e) artificial mesocosms, (f) natural mesocosms, and (g) in situ in experimental studies with freshwater zooplankton.

The number of papers published within the 15 research topics identified between 1978 and 2023 are in Table 1. The first topics experimentally analyzed were predation and life cycle, which commenced in 1978 (Figure 3). Chemical pollutants (30.12%; N = 75 number of papers), predation (13.65%; N = 34), and eutrophication (10.44%; N = 26) were the three most frequently addressed topics in experimental manipulations with freshwater zooplankton, particularly from the 2000s onwards (Figure 3). Another experimental research topic that has stood out in the last seven years is resting eggs (9.23%; N = 24). Notably, studies on metapopulation or community themes (1.20%; N = 3), dispersion (1.20%; N = 3), invasion (0.80%; N = 2), microplastics (0.80%; N = 2), and pathogens (0.40%; N = 1) are relatively less common (Figure 3). The three main tags in the word cloud are Daphnia similis Claus,1876 (18.07%; N = 45), Daphnia magna Straus, 1820 (15.66%; N = 39), and Ceriodaphnia silvestrii Daday, 1902 (11.24%; N = 28) (Figure 4).

Table 1
Topics studied in experimental publications with freshwater zooplankton in Brazil (1978 to 2023).
Figure 3
Temporal trend of topics in experimental research with freshwater zooplankton in Brazil. The topics on the y-axis were arranged chronologically as they appeared in papers from 1978 to 2023. Lighter colors indicate fewer studies conducted for a particular year, while darker colors indicate more conducted studies.
Figure 4
Word cloud of key species (words) used in the experimental studies with freshwater zooplankton in Brazil (1978 to 2023). Species that appeared most frequently are shown more prominently.

4. Discussion

Experimental research allowed ecologists to manipulate variables to understand and quantify a wide range of issues encompassing at least 15 research topics in studies of freshwater zooplankton in Brazil (1978 to 2023). We recorded the earliest paper in 1978 (Bertollo, 1978Bertollo, L.A.C., 1978. Aspectos reprodutivos do rotífero Asplanchna do Brasil. Rev. Biol. Trop. 26, 1-13.), which focused on the biological aspects of the Brazilian rotifer Asplanchna sp. Since 2000, there has been an increase in the number of experimental studies on freshwater zooplankton published in scientific journals. The geographical distribution of these papers is predominantly in the Southeast region, particularly in São Paulo, Rio de Janeiro, and Minas Gerais states. Laboratory experiments were more frequent, with chemical pollutants, predation, and eutrophication being the most frequently addressed research topics. Such findings complement a recent review of freshwater zooplankton in Brazil between 1900 and 2021 (Castilho-Noll et al., 2023Castilho-Noll, M.S.M., Perbiche-Neves, G., Santos, N.G., Schwind, L.T.F., Lansac-Tôha, F.M., Silva, A.C.S., Meira, B.R., Joko, C.Y., Morais-Júnior, C.S., Silva, E.E.C., Eskinazi-Sant’Anna, E.M., Oliveira, F.R., Santos, G.S., Silva, J.V.F., Portinho, J.L., Araujo-Paina, K., Chiarelli, L.J., Diniz, L.P., Braghin, L.S.M., Velho, L.F.M., Souza, M.E.T., Silva, M.L.C., Rocha, M.A., Progênio, M., Ferreira, N., Cirillo, P.H., Morari, P.H.R., Arrieira, R.L., Mantovano, T., Gazulha, V., Melo, V.L.S.A., Ghidini, A.R., Melo Júnior, M., Lansac-Tôha, F.A., Bonecker, C.C., & Simões, N.R., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 100, 126057. http://doi.org/10.1016/j.limno.2023.126057.
http://doi.org/10.1016/j.limno.2023.1260...
) and highlight the main gaps and current challenges in experimental research on freshwater zooplankton in Brazil.

Despite the increasing number of papers, the distribution of these studies is not uniform across Brazil. This uneven distribution can be attributed to three main factors. Firstly, the higher concentration of zooplankton experts affiliated with universities and research institutions, particularly those with well-established postgraduate courses (https://sucupira.capes.gov.br/sucupira/), naturally drives a more extensive research possibility that results in a greater focus on experimental studies in the Southeast region. Secondly, limnology is a relatively recent science in Brazil that initially focused on observational studies in the field, and not all researchers conduct experiments. Experimenting is always a challenge, especially when it involves many variables to be controlled. Our data corroborate this explanation because fewer publications were observed for larger-scale experiments. Thirdly, stable funding sources, such as state financing agencies (FAPs), can provide crucial financial support for infrastructure, attracting human resources and fostering research initiatives (McManus et al., 2020McManus, C., Baeta Neves, A.A., Maranhão, A.Q., Souza Filho, A.G., & Santana, J.M., 2020. International collaboration in Brazilian science: financing and impact. Scientometrics 125(3), 2745-2772. PMid:33071387. http://doi.org/10.1007/s11192-020-03728-7.
http://doi.org/10.1007/s11192-020-03728-...
; Stegmann et al., 2024Stegmann, L.F., França, F.M., Carvalho, R.L., Barlow, J., Berenguer, E., Castello, L., Juen, L., Baccaro, F.B., Vieira, I.C.G., Nunes, C.A., Oliveira, R., Venticinque, E.M., Schietti, J., & Ferreira, J., 2024. Brazilian public funding for biodiversity research in the Amazon. Perspect. Ecol. Conserv. 22(1), 1-7. http://doi.org/10.1016/j.pecon.2024.01.003.
http://doi.org/10.1016/j.pecon.2024.01.0...
).

In contrast, no papers were observed from states including Espírito Santo, Amapá, Tocantins, Acre, Alagoas, Ceará, Goiás, Maranhão, Piauí, Rondônia, Roraima, and Sergipe. Several Brazilian states need enhanced governance capacities and increased research investments (Stegmann et al., 2024Stegmann, L.F., França, F.M., Carvalho, R.L., Barlow, J., Berenguer, E., Castello, L., Juen, L., Baccaro, F.B., Vieira, I.C.G., Nunes, C.A., Oliveira, R., Venticinque, E.M., Schietti, J., & Ferreira, J., 2024. Brazilian public funding for biodiversity research in the Amazon. Perspect. Ecol. Conserv. 22(1), 1-7. http://doi.org/10.1016/j.pecon.2024.01.003.
http://doi.org/10.1016/j.pecon.2024.01.0...
). This geographic concentration of research is also evident globally in animal biodiversity, with research being more prevalent in countries of the Northern Hemisphere that boast larger economies and greater research investment (Titley et al., 2017Titley, M.A., Snaddon, J.L., & Turner, E.C., 2017. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS One 12(12), e0189577. http://doi.org/10.1371/journal.pone.0189577.
http://doi.org/10.1371/journal.pone.0189...
). The combination of a lack of investment in infrastructure, researchers unable to carry out experiments, and insufficient funding could pose challenges to experimental research in these regions. This geographically unbalanced development can limit the advancement of knowledge in zooplankton ecology at the national level. For instance, in invasion ecology, areas that receive little study produce imbalanced knowledge, hindering the field's growth due to a lack of understanding of specific invasion mechanisms present in certain habitats (Pyšek et al., 2008Pyšek, P., Richardson, D.M., Pergl, J., Jarošík, V., Sixtová, Z., & Weber, E., 2008. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23(5), 237-244. PMid:18367291. http://doi.org/10.1016/j.tree.2008.02.002.
http://doi.org/10.1016/j.tree.2008.02.00...
).

Laboratory experiments were more frequent than field experiments. They allow control of all variables, systematic manipulation of one or two variables, and greater ease of both replication within the experiment and repetition. The ecosystems depend on many species and environmental variables and laboratory models can be useless and unrealistic (Diamond, 1983Diamond, J., 1983. Laboratory, field and natural experiments. Nature 304(5927), 586-587. http://doi.org/10.1038/304586a0.
http://doi.org/10.1038/304586a0...
). Field experiments are more naturalistic and provide higher ecological validity than lab experiments. However, the lack of controls and, in some cases, physical structural complexity and suitable study locations for studies make it challenging to repeat or replicate (Connon et al., 2012Connon, R.E., Geist, J., & Werner, I., 2012. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12(9), 12741-12771. PMid:23112741. http://doi.org/10.3390/s120912741.
http://doi.org/10.3390/s120912741...
). In these experiments, it is easy to lose control of variables. There are many examples of uncontrolled population growth leading to issues like algal blooms, the invasion of predators such as dragonflies, or birds frequenting the experimental units, either preying on or fertilizing them. While this natural variation in some cases may affect treatments equally or occur randomly, it introduces uncertainty in interpreting results. This significantly reduces our confidence in replicating the findings. In addition, we observed that the predominant use of the microcosm approach, also a trend towards experimental studies with phytoplankton in Brazil (Machado et al., 2023Machado, K.B., Andrade, A.T.D., Almeida, M.F.D., & Nabout, J.C., 2023. Systematic mapping of phytoplankton literature about global climate change: revealing temporal trends in research. Hydrobiologia 850(1), 167-182. http://doi.org/10.1007/s10750-022-05052-y.
http://doi.org/10.1007/s10750-022-05052-...
), along with variations in experiment duration and volume, highlights the diverse methodologies employed in experimental studies of freshwater zooplankton in Brazil.

The median duration of experiments using microcosms, artificial mesocosms, natural mesocosms, and in situ methods was five days, 15 days, 11 days, and 25 days, respectively. Microcosm experiments, with a median duration of five days, are characterized by relatively short time frames of ecotoxicological studies assessing and predicting the effects of an increasing number of chemical stressors on zooplankton species, including the toxicity of cyanotoxin blooms (Sotero-Santos et al., 2007Sotero-Santos, R.B., Rocha, O., & Povinelli, J., 2007. Toxicity of ferric chloride sludge to aquatic organisms. Chemosphere 68(4), 628-636. PMid:17416403. http://doi.org/10.1016/j.chemosphere.2007.02.049.
http://doi.org/10.1016/j.chemosphere.200...
), metal (e.g. Fe, Mn, Zn, Ni, Cd, and Pb) (Lattuada et al., 2009Lattuada, R.M., Menezes, C.T.B., Pavei, P.T., Peralba, M.C.R., & Santos, J.H.Z., 2009. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. J. Hazard. Mater. 163(2-3), 531-537. PMid:18692306. http://doi.org/10.1016/j.jhazmat.2008.07.003.
http://doi.org/10.1016/j.jhazmat.2008.07...
), hormones (Torres et al., 2015Torres, N.H., Aguiar, M.M., Ferreira, L.F.R., Américo, J.H.P., Machado, Â.M., Cavalcanti, E.B., & Tornisielo, V.L., 2015. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. Environ. Monit. Assess. 187(6), 379. PMid:26013657. http://doi.org/10.1007/s10661-015-4626-z.
http://doi.org/10.1007/s10661-015-4626-z...
), and pesticides (Pitombeira de Figueirêdo et al., 2022Pitombeira de Figueirêdo, L., Athayde, D.B., Pinto, T.J. da S., Daam, M.A., Guerra, G. da S., Duarte-Neto, P.J., & Espíndola, E.L.G., 2022. Influence of temperature on the toxicity of the elutriate from a pesticide contaminated soil to two cladoceran species. Ecotoxicology 31(6), 956-966. PMid:35672617. http://doi.org/10.1007/s10646-022-02560-4.
http://doi.org/10.1007/s10646-022-02560-...
; Palma-Lopes et al., 2023Palma Lopes, L.F., Rocha, G.S., de Medeiros, J.F., Montagner, C.C., & Espíndola, E.L.G., 2023. The acute effects of fipronil and 2,4-D, individually and in mixture: a threat to the freshwater Calanoida copepod Notodiaptomus iheringi. Environ. Sci. Pollut. Res. Int. 30(33), 80335-80348. PMid:37294488. http://doi.org/10.1007/s11356-023-28066-y.
http://doi.org/10.1007/s11356-023-28066-...
). The duration of the experiments varied considerably, ranging from a minimum of 1 hour to a maximum of 365 days for microcosms, illustrating the flexibility in experimental design within this category. Such variability may reflect the specific research questions being addressed, ranging from short-term responses to perturbations to longer-term ecological interactions. In comparison, in situ experiments, with a median duration of 25 days, provide a longer observational window, enabling researchers to study more prolonged ecological phenomena (Faria & Cardoso, 2017Faria, D.M., & Cardoso, L., 2017. Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces. Hydrobiologia 788(1), 267-280. http://doi.org/10.1007/s10750-016-3002-5.
http://doi.org/10.1007/s10750-016-3002-5...
).

Regarding experiment volume, microcosm experiments had a median volume of 0.05 L, the median volume of artificial mesocosms was 46 L, the median volume of natural mesocosms was 6.115 x 103 L, and the median volume of in situ was 0.05 L. The substantial volume range highlights the diverse scales at which ecological experiments are conducted. Microcosms allow the conduct of experiments at a fine scale, facilitating controlled manipulation of variables within a limited space (Connon et al., 2012Connon, R.E., Geist, J., & Werner, I., 2012. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12(9), 12741-12771. PMid:23112741. http://doi.org/10.3390/s120912741.
http://doi.org/10.3390/s120912741...
). In contrast, artificial mesocosms and natural mesocosms involve larger volumes, potentially providing a more realistic representation of ecosystem dynamics at a broader scale (Castilho-Noll & Arcifa, 2007Castilho-Noll, M.S.M., & Arcifa, M.S., 2007. Mesocosm experiment on the impact of invertebrate predation on zooplankton of a tropical lake. Aquat. Ecol. 41(4), 587-598. http://doi.org/10.1007/s10452-007-9112-4.
http://doi.org/10.1007/s10452-007-9112-4...
). Differences found in comparative studies of hatching resistance eggs and their probable interference in population dynamics suggest the need for caution when transferring laboratory results to the field (Cáceres & Schwalbach, 2001Cáceres, C.E., & Schwalbach, M.S., 2001. How well do laboratory experiments explain field patterns of zooplankton emergence? Freshw. Biol. 46(9), 1179-1189. http://doi.org/10.1046/j.1365-2427.2001.00737.x.
http://doi.org/10.1046/j.1365-2427.2001....
).

Thirty-seven of the 249 analyzed manuscripts did not explain the experimental approaches employed. This lack of transparency impedes a comprehensive understanding of the methodologies employed in these studies. This is an excellent example of why researchers should strive for more thorough documentation of experimental details to enhance the reproducibility and comparability of the experimental studies on freshwater zooplankton in Brazil. The correct and detailed description of experiments, a necessary step for their efficient analysis, interpretation, and sharing of results, is a fundamental part of the formalization and practice of science (Soldatova & King, 2006Soldatova, L.N., & King, R.D., 2006. An ontology of scientific experiments. J. R. Soc. Interface 3(11), 795-803. PMid:17015305. http://doi.org/10.1098/rsif.2006.0134.
http://doi.org/10.1098/rsif.2006.0134...
).

Papers published within the 15 research topics reveal some notable trends in experimental research involving freshwater zooplankton. Predation, the first topic experimentally analyzed (Bertollo, 1978Bertollo, L.A.C., 1978. Aspectos reprodutivos do rotífero Asplanchna do Brasil. Rev. Biol. Trop. 26, 1-13.), remains a topic of interest in current research. Over the years, there has been a notable shift in the focus to experimental manipulations with chemical pollutants (Rosa et al., 2001Rosa, E.V.C., Simionatto, E.L., Souza Sierra, M.M., Bertoli, S.L., & Radetski, C.M., 2001. Toxicity‐based criteria for the evaluation of textile wastewater treatment efficiency. Environ. Toxicol. Chem. 20(4), 839-845. PMid:11345461. http://doi.org/10.1002/etc.5620200420.
http://doi.org/10.1002/etc.5620200420...
; Nogueira et al., 2022Nogueira, D.J., Silva, A.C.O., Silva, M.L.N., Vicentini, D.S., & Matias, W.G., 2022. Individual and combined multigenerational effects induced by polystyrene nanoplastic and glyphosate in Daphnia magna (Strauss, 1820). Sci. Total Environ. 811, 151360. PMid:34774938. http://doi.org/10.1016/j.scitotenv.2021.151360.
http://doi.org/10.1016/j.scitotenv.2021....
) and eutrophication (Ferrão‐Filho et al., 2000Ferrão‐Filho, A.S., Azevedo, S.M.F.O., & DeMott, W.R., 2000. Effects of toxic and non‐toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshw. Biol. 45(1), 1-19. http://doi.org/10.1046/j.1365-2427.2000.00613.x.
http://doi.org/10.1046/j.1365-2427.2000....
; Kozlowsky-Suzuki & Bozelli, 2002Kozlowsky-Suzuki, B., & Bozelli, R.L., 2002. Experimental evidence of the effect of nutrient enrichment on the zooplankton in a Brazilian coastal lagoon. Braz. J. Biol. 62(4B), 835-846. PMid:12659035. http://doi.org/10.1590/S1519-69842002000500013.
http://doi.org/10.1590/S1519-69842002000...
; Soares et al., 2010Soares, M.C.S., Lürling, M., & Huszar, V.L.M., 2010. Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. J. Plankton Res. 32(7), 999-1008. http://doi.org/10.1093/plankt/fbq042.
http://doi.org/10.1093/plankt/fbq042...
) emerging as the most frequently addressed topics, particularly since the 2000s. This trend suggests a growing recognition of the importance of understanding the impacts of anthropogenic activities on freshwater zooplankton in Brazil. There has been also a notable increase in experimental studies focusing on resting eggs (Crispim & Watanabe, 2001Crispim, M.C., & Watanabe, T., 2001. What can dry reservoir sediments in a semi-arid region in Brazil tell us about Cladocera? Hydrobiologia 442(1-3), 101-105. http://doi.org/10.1023/A:1017550603022.
http://doi.org/10.1023/A:1017550603022...
; Santangelo et al., 2015Santangelo, J.M., Lopes, P.M., Nascimento, M.O., Fernandes, A.P.C., Bartole, S., Figueiredo-Barros, M.P., Leal, J.J.F., Esteves, F.A., Farjalla, V.F., Bonecker, C.C. & Bozelli, R.L., 2015. Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes. Hydrobiologia 758, 183-195. http://doi.org/10.1007/s10750-015-2289-y.
http://doi.org/10.1007/s10750-015-2289-y...
), indicating their ecological significance and potential implications for population dynamics and community.

Despite significant advances, critical gaps remain in our understanding of freshwater zooplankton ecology. Research areas such as metapopulation dynamics and dispersion, along with emerging threats like invasions, microplastics, pathogens, cumulative stressors, emerging contaminants, and nanomaterials (Reid et al., 2019Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., Kidd, K.A., MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K., Vermaire, J.C., Dudgeon, D., & Cooke, S.J., 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 94(3), 849-873. PMid:30467930. http://doi.org/10.1111/brv.12480.
http://doi.org/10.1111/brv.12480...
), are still relatively underrepresented in the literature. These topics warrant further investigation to elucidate their potential ecological impacts and to inform management strategies aimed at preserving freshwater zooplankton biodiversity amidst ongoing environmental changes.

The word cloud analysis provides additional insights into the species or taxa most studied in experimental research. D. similis, D. magna, and C. silvestrii emerge as the dominant taxa, highlighting their significance as model organisms in zooplankton research in Brazil. This suggests a focus on these species not just due to their ecological importance but also mainly due to their ease of culturing and well-established experimental protocols of ecotoxicology studies. For instance, since the early 1940s, the use of D. magna as a model organism in ecotoxicology studies has been scientifically established worldwide owing to its short reproductive cycle and highly sensitive response to external toxicants affecting fecundity (Ebert, 2022Ebert, D., 2022. Daphnia as a versatile model system in ecology and evolution. Evodevo 13(1), 16. PMid:35941607. http://doi.org/10.1186/s13227-022-00199-0.
http://doi.org/10.1186/s13227-022-00199-...
).

In conclusion, this review highlights the importance of experimental research in deepening our understanding of freshwater zooplankton in Brazil and contributing to its future development. Our findings suggest a necessity for enhanced governance capacities and increased investments in research in several Brazilian states. We reinforce the need to incorporate metapopulation dynamics, and dispersion, along with emerging threats like invasion, microplastics, and pathogens into experimental studies of freshwater zooplankton in Brazil. Furthermore, coordinated experiments between different researchers and institutions carried out simultaneously with standardized methodology can contribute to answering robust questions related to zooplankton ecology.

Acknowledgements

JLP thanks the CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico (402680/2023-5), and RLB thanks the CNPq (304289/2019-1) and the FAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa no Estado do Rio de Janeiro (E-26/ 201.194/2021). We are grateful to Rede de Zooplâncton Neotropical for the database.

  • Cite as:

    Portinho, J.L. et al., Experimental studies on freshwater zooplankton in Brazil: a scientometric analysis from 1978 to 2023. Acta Limnologica Brasiliensia, 2024, vol. 36, e101. https://doi.org/10.1590/S2179-975X3424

References

  • Arcifa, M.S., Ferreira, T.C.S., Fileto, C., Castilho-Noll, M.S.M., Bunioto, T.T., & Minto, W.J., 2015. A long-term study on crustacean plankton of a shallow tropical lake: the role of invertebrate predation. J. Limnol. 4, 606-617. http://doi.org/10.4081/jlimnol.2015.1132
    » http://doi.org/10.4081/jlimnol.2015.1132
  • Bertollo, L.A.C., 1978. Aspectos reprodutivos do rotífero Asplanchna do Brasil. Rev. Biol. Trop. 26, 1-13.
  • Bonecker, C.C., Diniz, L.P., Braghin, L.S.M., Mantovano, T., da Silva, J.V.F., Bomfim, F.F., Moi, D.A., Deosti, S., Santos, G.N.T., Candeias, D.A., Mota, A.J.M.M., Velho, L.F.M., & Lansac-Tôha, F.A., 2020. Synergistic effects of natural and anthropogenic impacts on zooplankton diversity in a subtropical floodplain: a long-term study. Oecol. Aust. 24(2), 524-537. http://doi.org/10.4257/oeco.2020.2402.20
    » http://doi.org/10.4257/oeco.2020.2402.20
  • Borer, E.T., Harpole, W.S., Adler, P.B., Lind, E.M., Orrock, J.L., Seabloom, E.W., & Smith, M.D., 2014. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol. Evol. 5(1), 65-73. http://doi.org/10.1111/2041-210X.12125
    » http://doi.org/10.1111/2041-210X.12125
  • Cáceres, C.E., & Schwalbach, M.S., 2001. How well do laboratory experiments explain field patterns of zooplankton emergence? Freshw. Biol. 46(9), 1179-1189. http://doi.org/10.1046/j.1365-2427.2001.00737.x
    » http://doi.org/10.1046/j.1365-2427.2001.00737.x
  • Carneiro, L.S., Bozelli, R.L., & Esteves, F.A., 2003. Long-term changes in the density of the copepod community in an Amazonian lake impacted by bauxite tailings. Amazoniana (17), 553-566.
  • Castilho-Noll, M.S.M., & Arcifa, M.S., 2007. Mesocosm experiment on the impact of invertebrate predation on zooplankton of a tropical lake. Aquat. Ecol. 41(4), 587-598. http://doi.org/10.1007/s10452-007-9112-4
    » http://doi.org/10.1007/s10452-007-9112-4
  • Castilho-Noll, M.S.M., Perbiche-Neves, G., Santos, N.G., Schwind, L.T.F., Lansac-Tôha, F.M., Silva, A.C.S., Meira, B.R., Joko, C.Y., Morais-Júnior, C.S., Silva, E.E.C., Eskinazi-Sant’Anna, E.M., Oliveira, F.R., Santos, G.S., Silva, J.V.F., Portinho, J.L., Araujo-Paina, K., Chiarelli, L.J., Diniz, L.P., Braghin, L.S.M., Velho, L.F.M., Souza, M.E.T., Silva, M.L.C., Rocha, M.A., Progênio, M., Ferreira, N., Cirillo, P.H., Morari, P.H.R., Arrieira, R.L., Mantovano, T., Gazulha, V., Melo, V.L.S.A., Ghidini, A.R., Melo Júnior, M., Lansac-Tôha, F.A., Bonecker, C.C., & Simões, N.R., 2023. A review of 121 years of studies on the freshwater zooplankton of Brazil. Limnologica 100, 126057. http://doi.org/10.1016/j.limno.2023.126057
    » http://doi.org/10.1016/j.limno.2023.126057
  • Castilla, J.C., 2000. Roles of experimental marine ecology in coastal management and conservation. J. Exp. Mar. Biol. Ecol. 250(1-2), 3-21. PMid:10969161. http://doi.org/10.1016/S0022-0981(00)00177-5
    » http://doi.org/10.1016/S0022-0981(00)00177-5
  • Connon, R.E., Geist, J., & Werner, I., 2012. Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors 12(9), 12741-12771. PMid:23112741. http://doi.org/10.3390/s120912741
    » http://doi.org/10.3390/s120912741
  • Crispim, M.C., & Watanabe, T., 2001. What can dry reservoir sediments in a semi-arid region in Brazil tell us about Cladocera? Hydrobiologia 442(1-3), 101-105. http://doi.org/10.1023/A:1017550603022
    » http://doi.org/10.1023/A:1017550603022
  • Diamond, J., 1983. Laboratory, field and natural experiments. Nature 304(5927), 586-587. http://doi.org/10.1038/304586a0
    » http://doi.org/10.1038/304586a0
  • Dib, V., Pires, A.P., Casa Nova, C., Bozelli, R.L., & Farjalla, V.F., 2020. Biodiversity‐mediated effects on ecosystem functioning depend on the type and intensity of environmental disturbances. Oikos 129(3), 433-443. http://doi.org/10.1111/oik.06768
    » http://doi.org/10.1111/oik.06768
  • Diniz, L.P., Petsch, D.K., Mantovano, T., Rodrigues, L.C., Agostinho, A.A., & Bonecker, C.C., 2023. A prolonged drought period reduced temporal β diversity of zooplankton, phytoplankton, and fish metacommunities in a Neotropical floodplain. Hydrobiologia 850(5), 1073-1089. http://doi.org/10.1007/s10750-023-05140-7
    » http://doi.org/10.1007/s10750-023-05140-7
  • Ebert, D., 2022. Daphnia as a versatile model system in ecology and evolution. Evodevo 13(1), 16. PMid:35941607. http://doi.org/10.1186/s13227-022-00199-0
    » http://doi.org/10.1186/s13227-022-00199-0
  • Elmoor-Loureiro, L.M.A., Sousa, F.D.R., Oliveira, F.R., Joko, C.Y., Perbiche-Neves, G., Silva, A.C.S., Silva, A.J., Ghidini, A.R., Meira, B.R., Aggio, C.E.G., Morais-Junior, C.S., Eskinazi-Sant’Anna, E.M., Lansac-Tôha, F.M., Cabral, G.S., Portinho, J.L., Nascimento, J.R., Silva, J.V.F., Veado, L., Chiarelli, L.J., Santana, L.O., Diniz, L.P., Braghin, L.S.M., Schwind, L.T.F., Melo Júnior, M., Progênio, M., Rocha, M.A., Silva, M.L.C., Castilho-Noll, M.S.M., Silva, N.J., dos Santos, N.G., Morari, P.H.R., Maia-Barbosa, P.M., Oliveira, P.M., Arrieira, R.L., Macêdo, R.L., Deosti, S., Mantovano, T., Gazulha, V., Bonecker, C.C., Lansac-Tôha, F.A., Corgosinho, P.H.C., Velho, L.F.M., & Simões, N.R., 2023. Towards a synthesis of the biodiversity of freshwater Protozoa, Rotifera, Cladocera, and Copepoda in Brazil. Limnologica 100, 126008. http://doi.org/10.1016/j.limno.2022.126008
    » http://doi.org/10.1016/j.limno.2022.126008
  • Faria, D.M., & Cardoso, L., 2017. Epiphyton dynamics during an induced succession in a large shallow lake: wind disturbance and zooplankton grazing act as main structuring forces. Hydrobiologia 788(1), 267-280. http://doi.org/10.1007/s10750-016-3002-5
    » http://doi.org/10.1007/s10750-016-3002-5
  • Ferrão‐Filho, A.S., Azevedo, S.M.F.O., & DeMott, W.R., 2000. Effects of toxic and non‐toxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshw. Biol. 45(1), 1-19. http://doi.org/10.1046/j.1365-2427.2000.00613.x
    » http://doi.org/10.1046/j.1365-2427.2000.00613.x
  • Garrido, A.V., Bozelli, R.L., Esteves, F.A., & Alves, L.S., 2003. Long-term patterns of the planktonic cladoceran community of Batata Lake, Amazonia, Brazil. Acta Limnol. Bras. 15, 41-53.
  • Gazonato Neto, A.J., Silva, L.C., Saggio, A.A., & Rocha, O., 2014. Zooplankton communities as eutrophication bioindicators in tropical reservoirs. Biota Neotrop. 14(4), e20140018. http://doi.org/10.1590/1676-06032014001814
    » http://doi.org/10.1590/1676-06032014001814
  • Grime, J.P., 1965. Comparative experiments as a key to the ecology of flowering plants. Ecology 46(4), 513-515. http://doi.org/10.2307/1934882
    » http://doi.org/10.2307/1934882
  • Hasler, A., 1964. Experimental limnology. Bioscience 14(7), 36-38. http://doi.org/10.2307/1293235
    » http://doi.org/10.2307/1293235
  • Josué, I.I., Sodré, E.O., Setubal, R.B., Cardoso, S.J., Roland, F., Figueiredo‐Barros, M.P., & Bozelli, R.L., 2021. Zooplankton functional diversity as an indicator of a long‐term aquatic restoration in an Amazonian lake. Restor. Ecol. 29(5), e13365. http://doi.org/10.1111/rec.13365
    » http://doi.org/10.1111/rec.13365
  • Knapp, A.K., Condon, K.V., Folks, C.C., Sturchio, M.A., Griffin‐Nolan, R.J., Kannenberg, S.A., Gill, A.S., Hajek, O.L., Siggers, J.A., & Smith, M.D., 2024. Field experiments have enhanced our understanding of drought impacts on terrestrial ecosystems: but where do we go from here? Funct. Ecol. 38(1), 76-97. http://doi.org/10.1111/1365-2435.14460
    » http://doi.org/10.1111/1365-2435.14460
  • Kozlowsky-Suzuki, B., & Bozelli, R.L., 2002. Experimental evidence of the effect of nutrient enrichment on the zooplankton in a Brazilian coastal lagoon. Braz. J. Biol. 62(4B), 835-846. PMid:12659035. http://doi.org/10.1590/S1519-69842002000500013
    » http://doi.org/10.1590/S1519-69842002000500013
  • Lansac-Tôha, F.A., Velho, L.F.M., Costa, D.M., Simões, N.R., & Alves, G.M., 2014. Structure of the testate amoebae community in different habitats in a neotropical floodplain. Braz. J. Biol. 74(1), 181-190. PMid:25055100. http://doi.org/10.1590/1519-6984.24912
    » http://doi.org/10.1590/1519-6984.24912
  • Lattuada, R.M., Menezes, C.T.B., Pavei, P.T., Peralba, M.C.R., & Santos, J.H.Z., 2009. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. J. Hazard. Mater. 163(2-3), 531-537. PMid:18692306. http://doi.org/10.1016/j.jhazmat.2008.07.003
    » http://doi.org/10.1016/j.jhazmat.2008.07.003
  • Macêdo, R.L., Sousa, F.D.R., Jesus, S.B.D., Nunesmaia, B.J.B., Branco, C.W.C., & Elmoor-Loureiro, L., 2021. Cladocera (Crustacea, Branchiopoda) species of Bahia State, Brazil: a critical update on species descriptions, distributions, and new records. Nauplius 29, e2021011. http://doi.org/10.1590/2358-2936e2021011
    » http://doi.org/10.1590/2358-2936e2021011
  • Machado, K.B., Andrade, A.T.D., Almeida, M.F.D., & Nabout, J.C., 2023. Systematic mapping of phytoplankton literature about global climate change: revealing temporal trends in research. Hydrobiologia 850(1), 167-182. http://doi.org/10.1007/s10750-022-05052-y
    » http://doi.org/10.1007/s10750-022-05052-y
  • Maia-Barbosa, P.M., Menendez, R.M., Pujoni, D.G.F., Brito, S.L., Aoki, A., & Barbosa, F.A.R., 2014. Zooplankton (Copepoda, Rotifera, Cladocera and Protozoa: amoeba Testacea) from natural lakes of the middle Rio Doce basin, Minas Gerais, Brazil. Biota Neotrop. 14(1), http://doi.org/10.1590/S1676-06034040
    » http://doi.org/10.1590/S1676-06034040
  • Matsumura-Tundisi, T., Rietzler, A.C., Espindola, E.L.G., Tundisi, J.G., & Rocha, O., 1990. Predation on Ceriodaphnia cornuta and Brachionus calyciflorus by two Mesocyclops species coexisting in Barra Bonita reservoir (SP, Brazil). Hydrobiologia 198(1), 141-151. http://doi.org/10.1007/BF00048631
    » http://doi.org/10.1007/BF00048631
  • McManus, C., Baeta Neves, A.A., Maranhão, A.Q., Souza Filho, A.G., & Santana, J.M., 2020. International collaboration in Brazilian science: financing and impact. Scientometrics 125(3), 2745-2772. PMid:33071387. http://doi.org/10.1007/s11192-020-03728-7
    » http://doi.org/10.1007/s11192-020-03728-7
  • Melo, A.S., Bini, L.M., & Carvalho, P., 2006. Brazilian articles in international journals on Limnology. Scientometrics 67(2), 187-199. http://doi.org/10.1007/s11192-006-0093-1
    » http://doi.org/10.1007/s11192-006-0093-1
  • Nogueira, D.J., Silva, A.C.O., Silva, M.L.N., Vicentini, D.S., & Matias, W.G., 2022. Individual and combined multigenerational effects induced by polystyrene nanoplastic and glyphosate in Daphnia magna (Strauss, 1820). Sci. Total Environ. 811, 151360. PMid:34774938. http://doi.org/10.1016/j.scitotenv.2021.151360
    » http://doi.org/10.1016/j.scitotenv.2021.151360
  • Odum, E.P., 1984. The mesocosm. Bioscience 34(9), 558-562. http://doi.org/10.2307/1309598
    » http://doi.org/10.2307/1309598
  • Palazzo, F., Moi, D.A., Mantovano, T., Lansac-Tôha, F.A., & Bonecker, C.C., 2023. Assessment of the occurrence and abundance of an exotic zooplankton species (Kellicottia bostiniensis) across a neotropical wetland over 12 years. Limnology 24(2), 137-149. http://doi.org/10.1007/s10201-022-00712-3
    » http://doi.org/10.1007/s10201-022-00712-3
  • Palma Lopes, L.F., Rocha, G.S., de Medeiros, J.F., Montagner, C.C., & Espíndola, E.L.G., 2023. The acute effects of fipronil and 2,4-D, individually and in mixture: a threat to the freshwater Calanoida copepod Notodiaptomus iheringi. Environ. Sci. Pollut. Res. Int. 30(33), 80335-80348. PMid:37294488. http://doi.org/10.1007/s11356-023-28066-y
    » http://doi.org/10.1007/s11356-023-28066-y
  • Pitombeira de Figueirêdo, L., Athayde, D.B., Pinto, T.J. da S., Daam, M.A., Guerra, G. da S., Duarte-Neto, P.J., & Espíndola, E.L.G., 2022. Influence of temperature on the toxicity of the elutriate from a pesticide contaminated soil to two cladoceran species. Ecotoxicology 31(6), 956-966. PMid:35672617. http://doi.org/10.1007/s10646-022-02560-4
    » http://doi.org/10.1007/s10646-022-02560-4
  • Pyšek, P., Richardson, D.M., Pergl, J., Jarošík, V., Sixtová, Z., & Weber, E., 2008. Geographical and taxonomic biases in invasion ecology. Trends Ecol. Evol. 23(5), 237-244. PMid:18367291. http://doi.org/10.1016/j.tree.2008.02.002
    » http://doi.org/10.1016/j.tree.2008.02.002
  • R Core Team. (2023). R: a language and environment for statistical computing, version 4.3.2. Vienna: R Foundation for Statistical Computing.
  • Reid, A.J., Carlson, A.K., Creed, I.F., Eliason, E.J., Gell, P.A., Johnson, P.T.J., Kidd, K.A., MacCormack, T.J., Olden, J.D., Ormerod, S.J., Smol, J.P., Taylor, W.W., Tockner, K., Vermaire, J.C., Dudgeon, D., & Cooke, S.J., 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. Camb. Philos. Soc. 94(3), 849-873. PMid:30467930. http://doi.org/10.1111/brv.12480
    » http://doi.org/10.1111/brv.12480
  • Rosa, E.V.C., Simionatto, E.L., Souza Sierra, M.M., Bertoli, S.L., & Radetski, C.M., 2001. Toxicity‐based criteria for the evaluation of textile wastewater treatment efficiency. Environ. Toxicol. Chem. 20(4), 839-845. PMid:11345461. http://doi.org/10.1002/etc.5620200420
    » http://doi.org/10.1002/etc.5620200420
  • Santangelo, J.M., Lopes, P.M., Nascimento, M.O., Fernandes, A.P.C., Bartole, S., Figueiredo-Barros, M.P., Leal, J.J.F., Esteves, F.A., Farjalla, V.F., Bonecker, C.C. & Bozelli, R.L., 2015. Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes. Hydrobiologia 758, 183-195. http://doi.org/10.1007/s10750-015-2289-y
    » http://doi.org/10.1007/s10750-015-2289-y
  • Scientific Electronic Library Online – SciELO. (2024). Retrieved in 2024, April 15, from www.scielo.org
    » www.scielo.org
  • SciVerse Scopus. (2024). Retrieved in 2024, April 15, from www.scopus.com
    » www.scopus.com
  • Soares, M.C.S., Lürling, M., & Huszar, V.L.M., 2010. Responses of the rotifer Brachionus calyciflorus to two tropical toxic cyanobacteria (Cylindrospermopsis raciborskii and Microcystis aeruginosa) in pure and mixed diets with green algae. J. Plankton Res. 32(7), 999-1008. http://doi.org/10.1093/plankt/fbq042
    » http://doi.org/10.1093/plankt/fbq042
  • Sokal, R.R., & Rohlf, F.J., 1995. Biometry: the principles and practice of statistics in biological research. New York: W.H. Freeman and Company.
  • Soldatova, L.N., & King, R.D., 2006. An ontology of scientific experiments. J. R. Soc. Interface 3(11), 795-803. PMid:17015305. http://doi.org/10.1098/rsif.2006.0134
    » http://doi.org/10.1098/rsif.2006.0134
  • Sotero-Santos, R.B., Rocha, O., & Povinelli, J., 2007. Toxicity of ferric chloride sludge to aquatic organisms. Chemosphere 68(4), 628-636. PMid:17416403. http://doi.org/10.1016/j.chemosphere.2007.02.049
    » http://doi.org/10.1016/j.chemosphere.2007.02.049
  • Souza, C.A., Gomes, L.F., Nabout, J.C., Velho, L.F.M., & Vieira, L.C.G., 2018. Temporal trends of scientific literature about zooplankton community. Neotropical Biol. Conserv. 13(4), 274. http://doi.org/10.4013/nbc.2018.134.01
    » http://doi.org/10.4013/nbc.2018.134.01
  • Srivastava, D.S., Kolasa, J., Bengtsson, J., Gonzalez, A., Lawler, S.P., Miller, T.E., Munguia, P., Romanuk, T., Schneider, D.C., & Trzcinski, M.K., 2004. Are natural microcosms useful model systems for ecology? Trends Ecol. Evol. 19(7), 379-384. PMid:16701289. http://doi.org/10.1016/j.tree.2004.04.010
    » http://doi.org/10.1016/j.tree.2004.04.010
  • Stegmann, L.F., França, F.M., Carvalho, R.L., Barlow, J., Berenguer, E., Castello, L., Juen, L., Baccaro, F.B., Vieira, I.C.G., Nunes, C.A., Oliveira, R., Venticinque, E.M., Schietti, J., & Ferreira, J., 2024. Brazilian public funding for biodiversity research in the Amazon. Perspect. Ecol. Conserv. 22(1), 1-7. http://doi.org/10.1016/j.pecon.2024.01.003
    » http://doi.org/10.1016/j.pecon.2024.01.003
  • Tinya, F., Doerfler, I., de Groot, M., Heilman-Clausen, J., Kovács, B., Mårell, A., Nordén, B., Aszalós, R., Bässler, C., Brazaitis, G., Burrascano, S., Camprodon, J., Chudomelová, M., Čížek, L., D’Andrea, E., Gossner, M., Halme, P., Hédl, R., Korboulewsky, N., Kouki, J., Kozel, P., Lõhmus, A., López, R., Máliš, F., Martín, J.A., Matteucci, G., Mattioli, W., Mundet, R., Müller, J., Nicolas, M., Oldén, A., Piqué, M., Preikša, Ž., Rovira Ciuró, J., Remm, L., Schall, P., Šebek, P., Seibold, S., Simončič, P., Ujházy, K., Ujházyová, M., Vild, O., Vincenot, L., Weisser, W., & Ódor, P., 2023. A synthesis of multi-taxa management experiments to guide forest biodiversity conservation in Europe. Glob. Ecol. Conserv. 46, e02553. http://doi.org/10.1016/j.gecco.2023.e02553
    » http://doi.org/10.1016/j.gecco.2023.e02553
  • Titley, M.A., Snaddon, J.L., & Turner, E.C., 2017. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS One 12(12), e0189577. http://doi.org/10.1371/journal.pone.0189577
    » http://doi.org/10.1371/journal.pone.0189577
  • Torres, N.H., Aguiar, M.M., Ferreira, L.F.R., Américo, J.H.P., Machado, Â.M., Cavalcanti, E.B., & Tornisielo, V.L., 2015. Detection of hormones in surface and drinking water in Brazil by LC-ESI-MS/MS and ecotoxicological assessment with Daphnia magna. Environ. Monit. Assess. 187(6), 379. PMid:26013657. http://doi.org/10.1007/s10661-015-4626-z
    » http://doi.org/10.1007/s10661-015-4626-z
  • Vieira, L.C.G., Padial, A.A., Velho, L.F.M., Carvalho, P., & Bini, L.M., 2015. Concordance among zooplankton groups in a near-pristine floodplain system. Ecol. Indic. 58, 374-381. http://doi.org/10.1016/j.ecolind.2015.05.049
    » http://doi.org/10.1016/j.ecolind.2015.05.049
  • Web of Science. (2024). Retrieved in 2024, April 15, from www.webofscience.com
    » www.webofscience.com
  • WordCloud. (2024). Retrieved in 2024, April 15, from https://www.wordclouds.com/
    » https://www.wordclouds.com/

Edited by

Section Editors:

Claudia Bonecker, Gilmar Perbiche-Neves, Maria Stela Maioli Castilho Noll.

Publication Dates

  • Publication in this collection
    25 Oct 2024
  • Date of issue
    2024

History

  • Received
    15 Apr 2024
  • Accepted
    04 Sept 2024
Associação Brasileira de Limnologia Av. 24 A, 1515, CEP: 13506-900 , Tel.:+55 (19) 3526-4225 - Rio Claro - SP - Brazil
E-mail: actalimno@gmail.com