Acessibilidade / Reportar erro

Analysis of the chemical constituents of Thompson atemoya seed oil

Análise dos constituintes químicos do óleo de semente de atemoia Thompson

Abstract

The objective of this study was to characterize the chemical composition in extracts of atemoya (var. Thompson) seed oil by spectrometric methods. The following extraction methods were performed: chemical extraction using hexane, mechanical extraction using a press, and partitioned extraction. The composition of each of the extracts was analysed by gas chromatography-mass spectrometry (GC-MS), and more than 100 compounds were identified. The major constituents of the hexane extraction were (Z)-hexadec-9-enal (49.42%) and triolein (23.28%), and the mechanically obtained extract contained elaidic acid (66.11%) and stearic acid (8.81%). In the partitioned extraction, the hydromethanolic fraction contained dihydroxyacetone (19.16%), 3-deoxy-d-mannoic lactone (16.34%), 5-hydroxymethylfurfural (10.77%), and 3-propanediol, 2-(hydroxymethyl)-2-nitro (9.89%); the hexane fraction contained gamma-sitosterol (31.73%), erucic acid (14.64%), stigmasterol (13.30%) and triolein (10.90%); the chloroform fraction contained gamma-sitosterol (22.11%), vaccenic acid (15.49%), triolein (14.65%) and stigmasterol (10.65%); and the ethyl acetate fraction contained (Z)-icos-9-enoic acid (31.28%), beta-sitosterol (16.29%), pentadecanoic acid (11.53%) and eicosanoic acid (8.01%).

Index terms
Annona atemoya; characterization; extraction; GC-MS

Resumo

O objetivo deste trabalho foi caracterizar a composição química do óleo de semente de atemoia var. Thompson através de métodos espectrométricos. Foi realizada extração química utilizando hexano, extração mecânica utilizando prensa e uma extração particionada. A composição de cada uma das extrações foi analisada por CG/EM e mais de 100 compostos foram identificados. Os constituintes majoritários de cada extração foram hexano: (Z)-hexadec- 9-enal (49,42%) e trioleína (23,28%); prensa: ácido elaídico (66,11%) e ácido esteárico (8,81%). Na extração particionada, tem-se as frações hidrometanólica: diidroxiacetona (19,16%), lactona 3-desoxi-d-mannóica (16,34%), 5-hidroximetilfurfural (10,77%), 3-propanodiol, 2-(hidroximetil)-2-nitro (9,89%); hexânica: gama-sitosterol (31,73%), ácido erúcico (14,64%), estigmasterol (13,30%) e trioleína (10,90%); clorofórmica: gama-sitosterol (22,11%), ácido vacênico (15,49%), trioleína (14,65%) e estigmasterol (10,65%); acetato de etila: ácido (Z)- icos-9-enóico (31,28%), beta-sitosterol (16,29%), ácido pentadecanóico (11,53%) e ácido icosanóico (8,01%).

Termos para indexação
Annona atemoya; caracterização; extração; CG/EM

Introduction

The family Annonaceae comprises a large number of genera and species, with approximately 2500 species, and occurs in all primary and secondary tropical forests worldwide (COUVREUR et al., 2019 COUVREUR, T.L.P.; HELMSTETTER, A.J.; KOENEN, E.J.M.; BETHUNE, K.; BRANDÃO, R.D.; LITTLE, S.A.; SAUQUET, H.; ERKENS, R.H.J. Phylogenomics of the major tropical plant family annonaceae using targeted enrichment of nuclear genes. Frontiers in Plant Science, Lausanne, v.9, p.1941, 2019. ). Atemoya is an interspecific hybrid fruit resulting from artificial crossing between cherimoya (Annona cherimola Mill.) and sugar apple (Annona squamosa L.). The first recorded crosses occurred in 1908, and there are also natural hybrids (MORTON, 1987 MORTON, J.F. Fruits of warm climates. Miami: Echo Point Books e Media 1987. 550 p. ). The fruits are known to have a pleasant aroma and flavour (BARON et al., 2018 BARON, D.; AMARO, A.C.E.; MACEDO, A.C.; BOARO, C.S.F.; FERREIRA, G. Physiological changes modulated by rootstocks in atemoya (Annona x atemoya Mabb.): gas exchange, growth and ion concentration. Brazilian Journal of Botany, São Paulo, v.41, n.1, p.219-225, 2018. ) and have been gaining market share. The fame of Annona goes far beyond flavour. Since the 1980s, the acetogenins of Annonaceae have been extensively studied due to their highly valuable pharmacological properties, such as antitumour activity (CAVÉ et al., 1997 CAVÉ, A.; FIGADÈRE, B.; LAURENS, A.; CORTES, D. Acetogenins from annonaceae. In: HERZ, W.; KIRBY, G.W.; MOORE, R.E.; STEGLICH, W.; TAMM, CH. Fortschritte der chemie organischer naturstoffe progress in the chemistry of organic natural products. New York: Springer, 1997. p.81-288. ; CHANG et al., 1999 CHANG, F.-R.; CHEIN, J-L.; LIN, C-Y.; CHIU, C-F; WU, M-J.; WU, Y-C. Bioactive acetogenins from the seeds of Annona atemoya. Phytochemistry, New York, v.51, n.7, p.883-889, 1999. ; DURET et al., 1997 DURET, P.; HOCQUEMILLER, R.; CAVÉ, A. Annonisin, a bis-tetrahydrofuran acetogenin from Annona atemoya seeds. Phytochemistry, New York, v.45, n.7, p.1423-1426, 1997. ; DURET et al., 1998 DURET, P.; HOCQUEMILLER, R.; CAVÉ, A. Bulladecin and atemotetrolin, two bis-tetrahydrofuran acetogenins from Annona atemoya seeds. Phytochemistry, New York, v.48, n. 3, p. 499-506, 1998/06/01/ 1998. ; HOYE and ZHUANG, 1988 HOYE, T.R.; ZHUANG, Z.P. Validation of the proton NMR chemical shift method for determination of stereochemistry in the bistetrahydrofuranyl moiety of uvaricin-related acetogenins from Annonaceae: rolliniastatin 1 (and asimicin). The Journal of Organic Chemistry, Columbus, v.53, n.23, p.5578-5580, 1988. ; KAZMAN et al., 2020 KAZMAN, B.S.M.A.; HARNETT, J.E.; HANRAHAN, J.R. The phytochemical constituents and pharmacological activities of annona atemoya: a systematic review. Pharmaceuticals, Basel, v.13, n.10, p.269, 2020. ; NESKE et al., 2020 NESKE, A.; RUIZ HIDALGO, J.; CABEDO, N.; CORTES, D. Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry, London, v.174, p.112332, 2020. ; RUPPRECHT et al., 1986 RUPPRECHT, J.K.; CHING-JER, C.; CASSADY, J.; KENNETH, M.; WEISLEDER, D. Asimicin, a new cytotoxic and pesticidal acetogenin from the pawpaw, Asimina triloba (Annonaceae). Heterocycles, Sendai, v.24, n.5, p.1197-1201, 1986. ; SOUZA et al., 2008 SOUZA, M.M.C.; BEVILAQUE C.M.L.; MORAIS, S.M.; COSTA, C.T.C.; SILVA, A.R.A.; BRAZ FILHO, R. Anthelmintic acetogenin from Annona squamosa L. seeds. Anais da Academia Brasileira de Ciências, São Paulo, v.80, n.2, p.271-277, 2008. ; VILA-NOVA et al., 2011 VILA-NOVA, N.S.; MORAIS, S.M.; LYEGHYNA, M.J.C.F.; MACHADO, K.A.; BEVILÁQUALGOR, C.M.L.; COSTA, R.S.; BRASIL, N.V.G.P.S.; ANDRADE JUNIOR, H.F. Leishmanicidal activity and cytotoxicity of compounds from two Annonacea species cultivated in Northeastern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, Uberaba, v.44, n.5, p.567-571, 2011. ; ZAFRA-POLO et al., 1998 ZAFRA-POLO, M.C.; FIGADÈRE, B.; GALLARDO, T.; TORMO, J.R.; CORTES, D. Natural acetogenins from Annonaceae, synthesis and mechanisms of action. Phytochemistry, New York, v.48, n.7, p.1087-1117, 1998. ).

Extracts from various parts of Annonaceae plants have been shown to have significant antibacterial, antifungal, anti-inflammatory, antioxidant, and cytotoxic properties (COSTA et al., 2017 COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-640, 2017. ; MA et al., 2017 MA, C.; WANG, Q.; SHI, Y.; LI, Y.; WANG, X.; LI, X.; CHEN, Y.; CHEN, J. Three new antitumor annonaceous acetogenins from the seeds of Annona squamosa. Natural Product Research, Milton Park, v.31, n.18, p.2085-2090, 2017. ; TAECHOWISAN et al., 2016 TAECHOWISAN, T.; SINGTOTONG, C.; PHUTDHAWONG, W.S. Antibacterial and Antioxidant Activities of Acetogenins from Streptomyces sp. VE2; An Endophyte in Vernonia cinerea (L.) Less. Journal of Applied Pharmaceutical Science, Gwalior, v.6, n.8, p.67-72, 2016. ; TAMFU et al., 2019 TAMFU, A.N.; TAGATSING FOTSING, M.; TALLA, E.; JABEEN, A.; MBAFOR TANYI, J.; SHAHEEN, F. Bioactive constituents from seeds of Annona Senegalensis Persoon (Annonaceae). Natural Product Research, Milton Park, v.35, n.10, p.1746-1751, 2021. ).

Regardless of the proportions and identity of the constituents in the total extract, they have the potential for biological activity (KRIMAT et al., 2017 KRIMAT, S.; METIDJI, C.; DAHMANE, D.; NOUASRI, A., DOB, T. Chemical analysis, antioxidant, anti-inflammatory, and cytotoxic activities of hydromethanolic extract of Origanum glandulosum Desf. Phytothérapie, Cachan, v.17, n.2, p.58-65, 2019. ). The seeds are considered the plant component with the greatest diversity and richness of phytochemicals, including acetogenins, alkaloids and phenolic compounds (KAZMAN et al., 2020 KAZMAN, B.S.M.A.; HARNETT, J.E.; HANRAHAN, J.R. The phytochemical constituents and pharmacological activities of annona atemoya: a systematic review. Pharmaceuticals, Basel, v.13, n.10, p.269, 2020. ).

Different extraction methods give rise to different constituents. Hexane extracts constituents with low polarity, while mechanical extraction is considered an eco-friendly alternative with good yield (PETROPOULOS et al., 2018 PETROPOULOS, S.A.; FERNANDES, A., CALHELHA, R.C.; DANALATOS, N.; BARROS, L.; FERREIRA, I.C.F.R. How extraction method affects yield, fatty acids composition and bioactive properties of cardoon seed oil? Industrial Crops and Products, Amsterdam, v.124, p.459-465, 2018. ). Methanol allows the extraction of a greater number of compounds via the liquid-liquid partitioning process with solvents of increasing polarity (KRIM et al., 2020 KRIM, S.; RIHANI, R.; MARCHAL, L.; FOUCAULT, A.; ENTAHAR, F.; LEGRAND, J.Two-phase solvent extraction of phenolics from Origanum vulgare subsp. glandulosum. Journal of Applied Research on Medicinal and Aromatic Plants, Amsterdam, v.20, p.100273, 2021. ). The objective of this study was to determine the constituents of atemoya (var Thompson) seed oil obtained from different extraction methods by gas chromatographymass spectrometry (GC-MS) analysis.

Experimental part

Seed preparation and extractions

Fresh fruits of atemoya variety Thompson from the voucher specimen #30,249 deposited in the Herbarium of ESAL at Federal University of Lavras (UFLA) (98 Kg, around 480 fruits) have been collected from 30 different 12-year-old plants. Those fruits have been purchased from a farmer in the city of Lavras/MG/Brazil (21° 14′ South, 44° 59′ West) during the 2016/2017 harvest. The seeds were removed, washed in deionized water, dried in a forced-air oven at a temperature of 60-65 °C for 7 days and placed in hermetically sealed pots for subsequent extraction.

Part of the atemoya whole seeds (150 g) was crushed, sieved (150 mesh) and placed in hexane reflux (500 mL) for 24 hours at 100 °C (KOUBAA et al., 2017 KOUBAA M.; MHEMDI H.; BARBA FJ.; ANGELOTTI A.; BOUAZIZ F.; CHAABOUNI SE.; VOROBIEV E. Seed oil extraction from red prickly pear using hexane and supercritical CO2: assessment of phenolic compound composition, antioxidant and antibacterial activities. Journal of the Science of Food and Agriculture, London, v.97, n.2, p.613-620, 2017. ).

The solvent was removed by rotary evaporation, and the yield was calculated. The material obtained in this procedure was called ASOH (atemoya seed oil, ASO).

A second portion of the seeds (150 g) was also ground and evaluated for grain size (150 mesh).

Mechanical extraction with a bench screw press (Yoda - MQO001) was used to obtain the resulting material, which was called ASOP. At the end of the process, the yield was calculated (MAGALHÃES et al., 2020 MAGALHÃES, K.T.; TAVARES, T.S.; NUNES, C.A. The chemical, thermal and textural characterization of fractions from Macauba kernel oil. Food Research International, New York, v.130, p.108925, 2020. ).

The third portion of the seeds was subjected to partitioned extraction. A total of 180 g of dried, ground, and sieved seeds (150 mesh) was placed in 500 mL of methanol. The seeds were left in contact with the methanol for 3 days at a temperature of 25 ± 2 °C. After filtration, the residue was extracted two more times, as previously described. The solvent was removed by rotary evaporation at 50 °C and lyophilized, leaving 6.714 g of crude extract (COSTA et al., 2017 COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-640, 2017. ).

The crude extract was resuspended in methanol (20 mL) + ultrapure water (20 mL) and vigorously stirred at room temperature (25 ± 2 °C), and after 45 minutes of decantation, it was centrifuged for 10 minutes at 3500 xg. The supernatant was collected and called the hydromethanolic fraction (ASOHM). The precipitate was subjected to extraction with hexane (20 mL) with vigorous stirring at room temperature (25 ± 2 °C) and 15 minutes of decantation. This process was repeated 4 times, and centrifugation was performed for 10 minutes at 3500 xg. The supernatant was collected and called the hexane fraction (ASOHEX). A total of 20 mL of chloroform was added to the precipitate, followed by vigorous stirring at room temperature (25 ± 2 °C) and 15 minutes of decantation. This process was repeated 4 times, and then centrifugation was performed for 10 minutes at 3500 xg.

The supernatant was collected and called the chloroform fraction (ASOCHLO). A total of 20 mL of ethyl acetate was added to the precipitate, followed by vigorous stirring at room temperature (25 ± 2 °C) and 15 minutes of decantation. This process was repeated 4 times, and at the end, there was no phase separation. The entire extract was collected and called the ethyl acetate fraction (ASOACE) (COSTA et al., 2017 COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-640, 2017. ).

The elimination of all solvents was performed in an open amber flask protected from light in a desiccator until reaching constant weight. Finally, the samples were sent to the Analytical Centre of the Chemistry Institute of the University of Sao Paulo (USP) for analysis by GC-MS (QP2020 - Shimadzu). The analyses were performed using a capillary column (30 m x 0.25 mm x 0.25 μm, ZB-5HT, CarbolWAX). The injection conditions were 250 °C and 2.50 mL min-1 for ASOH and ASOP and 320 °C and 3.00 mL min-1 for ASOHM, ASOHEX, ASOCHLO and ASOACE. The components of the ASO samples were identified through standard spectrum libraries for organic compounds, such as NIST107 and Wiley 229.

Results and discussion

The yield of each extraction is shown in Table 1, and the constituents identified in each extract by GC-MS and their biological activities are shown in Tables 2, 3, 4, 5, 6 and 7.

Table 1
ASO yield in each extraction

Table 2
Bioactive components of ASOH analysed by GC-MS.

Table 3
Bioactive components of ASOP analysed by GC-MS.

Table 4
Bioactive components of ASOHM analysed by GC-MS.

Table 5
Bioactive components of ASOHEX analysed by GC-MS.

Table 6
Bioactive components of ASOCHLO analysed by GC-MS.

Table 7
Bioactive components of ASOACE analysed by GC-MS.

Table 1 shows the yield data for each extraction. As predicted, each extraction resulted in distinct constituents with diverse biological activities. These data are presented in detail for each constituent in Tables 2, 3, 4, 5, 6 and 7.

Each extraction presented 20 constituents, some of them with potential use for COVID-19 treatment. The four main constituents of the ASOH extraction were:

i) Cis-9-hexadecenal (49.42%), a fatty aldehyde classified as agrochemical/attractant mainly used as a pheromone (TEAL et al., 1981 TEAL, P.E.; HEATH, R.R.; TUMLINSON, J.H.; MCLAUGHLIN, J.R. Identification of a sex pheromone ofHeliothis subflexa (GN.) (Lepidoptera: Noctuidae) and field trapping studies using different blends of components. Journal of Chemical Eecology, New York, v.7, n.6, p.1011-1022, 1981. ) and also used as insecticide against mosquito larvae (GOYAL et al., 2019 GOYAL, M.; SHINDE, L.; BAYAS, R. Study of chemical composition and larvicidal efficacy of secondary metabolites from aromatic phytoextracts against dengue vector: Aedes aegypti (Linn)(Diptera: Culicidae). International Journal of Mosquito Research, New Delhi, v.6, n.1, p.26-33, 2019. ). Goyal et al has found much lower percentages in Annona squamosa essential oils seeds (11.82 and 6.78%, respectively to methanolic and hexanic extraction);

ii) Triolein (23.28%), a triglyceride formed by esterification of the three hydroxy groups of glycerol with oleic acid. Triolein is a component of Lorenzo’s oil and used as adjuvant treatment for brain tumors (KIM et al., 2016 KIM HJ.; KIM YW.; CHOI SH.; CHO BM.; BANDU R.; AHN HS.; KIM KP. Triolein emulsion infusion into the carotid artery increases brain permeability to anticancer agents. Neurosurgery, Baltimore, v.78, n.5, p.726-733, 2016. );

iii) E,E,Z-1,3,12-nonadecatriene-5,14-diol (3.90%) with antidiabetic and antilipidemic properties (AHMADI et al., 2017 AHMADI, A.; KHALILI, M.; MASHAEE, F.; NAHRI-NIKNAFIS, B. The effects of solvent polarity on hypoglycemic and hypolipidemic activities of Vaccinium arctostaphylos l. Unripe fruits. Pharmaceutical Chemistry Journal, New York, v.50, n.11, p.746-752, 2017/02/01 2017. );

iv) Gamma-sitosterol (3.36%), a member of the class of phytosterols that is a poriferast-5-ene carrying a beta-hydroxy substituent at position 3. A percentage of 17.40% has been found in the seed extract of Annona squamosa (BHARDWAJ et al., 2014 BHARDWAJ, A.; SATPATHY, G.; GUPTA, R. K. Preliminary screening of nutraceutical potential of Annona squamosa, an underutilized exotic fruit of India and its use as a valuable source in functional foods. Journal of Pharmacognosy and Phytochemistry, New Dehli, v.3, n.2, 2014. ). Gammasitosterol is a potentially useful candidate for COVID-19 (CHOWDHURY, 2020 CHOWDHURY, P. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, New York, p.1-18, 2020. ; LUO et al., 2020 LUO, L.; JIANG, J.; WANG, C.; FITZGERALD, M.; HU, W.; ZHOU, Y.; ZHANG, H.; CHEN, S. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharmaceutica Sinica B, Amsterdam, v.10, n.7, p.1192-1204, 2020. ; MAURYA et al., 2020 MAURYA, V.K.; KUMAR, S.; BHATT, M.L.B.; SAXENA, S.K. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, Guilderland, p.1-17, 2020. ; NARKHEDE et al., 2020 NARKHEDE, R.R.; PISE, A.V.; CHEKE, R.S.; SHINDE. S;D. Recognition of natural products as potential inhibitors of COVID-19 Main Protease (Mpro): in-silico evidences. Natural Products and Bioprospecting, Heidelberg, v.10, n.5, p.297-306, 2020. ; WANG et al., 2020 WANG, J.; ZHANG, X.; OMARINI, A.N.; LI, B. Virtual screening for functional foods against the main protease of SARS-CoV-2. Journal of Food Biochemistry, Oxford, 2020. Disponível em: https://doi.org/10.1111/jfbc.13481. ).

The four main constituents of the ASOP extraction were:

i) Elaidic acid (66.11%), the trans-isomer of oleic acid anion, and also a potential biomarker in biological age (ZHAO et al., 2020 ZHAO, Y.; WANG, B.; WANG, G.; HUANG, L.; YIN, T,; LI, X.; WANG, Q.; JING, J.; ZHANG, Y.. Functional interaction between plasma phospholipid fatty acids and insulin resistance in leucocyte telomere length maintenance. Lipids in Health and Disease, London, v.19, n.1, p.11, 2020. ). Nwaehujor et al (2020) NWAEHUJOR, I.U.; OLATUNJI, G.A.; FABIYI, O.A.; AKANDE, S.A. Antioxidant and anti-inflammatory potential, and chemical composition of fractions of ethanol extract of Annona muricata leaf. Ruhuna Journal of Science, Matara, v.11, n.2, 2020. working with Annona muricata leaf found 8.61% of this compound (NWAEHUJOR et al., 2020 NWAEHUJOR, I.U.; OLATUNJI, G.A.; FABIYI, O.A.; AKANDE, S.A. Antioxidant and anti-inflammatory potential, and chemical composition of fractions of ethanol extract of Annona muricata leaf. Ruhuna Journal of Science, Matara, v.11, n.2, 2020. );

ii) Stearic acid (8.81%), a saturated longchain fatty acid with immunoregulatory and antiinflammatory properties (CALDER, 1998 CALDER, P. C. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Brazilian Journal of Medical and Biological Research, Raipur, v.31, p. 467-490, 1998. ). Annona squamosa pericarp oil has been shown to have 12.23% of this compound and anti-hepatoma effect (CHEN et al., 2020 CHEN, H.W.; CHAO, C.Y.; LIN, L.L.; LU, C.Y.; LIU, K.L.; LII, C.K.; LI, C.C. . Inhibition of matrix metalloproteinase-9 expression by docosahexaenoic acid mediated by heme oxygenase 1 in 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 human breast cancer cells. Archives of Toxicology, Berlin, v.87, n.5, p.857-869, 2013. );

iii) Gadoleyl alcohol (6.67%) has no activities listed;

iv) Palmitic acid (3.76%), a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. It has antitumoral and anti-inflammatory properties (HARADA et al., 2002 HARADA, H.; YAMASHITA, U.; KURIHARA, H.; FUKUSHI, E.; KAWABATA, J.; KAMEI, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Research, Athens, v.22, n.5, p.2587-2590, 2002. ; JOSHI-BARVE et al., 2007 JOSHI-BARVE, S.; BARVE, S.S.; AMANCHERLA, K.; GOBEJISHVILI, L.; HILL, D.; CAVE, M.; HOTE, P.; MCCLAIN, C.J. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology, Baltimore, v.46, n.3, p.823-830, 2007. ). The palmitic acid can be a successful anti-COVID-19 agent (ELFIKY, 2020 ELFIKY, A.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, Guilderland, p.1-10, 2020. ).

The crude hexanic extract from aerial parts of atemoya demonstrated 0.82% of this compound, cytotoxic and antimicrobial activity (RABÊLO et al., 2021 RABÊLO, S.V.; OLIVEIRA, F.G.D.S.; DE LIRA, M.M.C.; DUTRA, L.M. Non-polar chemical constituents of atemoya and evaluation of the cytotoxic and antimicrobial activity. Phyton, Horn, v.90, n.3, p.921, 2021. ).

The four main constituents of the ASOHM extraction were:

i) Dihydroxyacetone (19.16%), a ketotriose consisting of acetone bearing hydroxy substituents at positions 1 and 3. It is used in treatment of vitiligo, as antifungal, and photoprotector (FESQ et al., 2001 FESQ, H.; BROCKOW, K.; STROM, K.; MEMPEL, M.; RING, J.; ABECK, D. Dihydroxyacetone in a new formulation--a powerful therapeutic option in vitiligo. Dermatology, Basel, v.203, n.3, p.241-243, 2001. ; FUSARO and RICE, 2005 FUSARO, R.M.; RICE, E.G. The maillard reaction for sunlight protection.Annals of the New York Academy of Sciences, New York, v.1043, p.174-183, 2005. ; STOPIGLIA et al., 2011 STOPIGLIA, C.D.; VIEIRA, F.J.; MONDADORI, A.G.; OPPE, T.P.; SCROFERNEKER, M.L. In vitro antifungal activity of dihydroxyacetone against causative agents of dermatomycosis. Mycopathologia, Dordrecht, v.171, n.4, p.267-271, 2011. );

ii) 3-deoxy-d-mannoic lactone (16.34%) with antimicrobial activity (SHOBANA et al., 2009 SHOBANA, S. GOPALAKRISHNAN, V.; MOHANDASS, R. Antibacterial activity of garlic varieties (ophioscordon and sativum) on enteric pathogens. Current Research Journal of Biological Sciences, New York, v.1, n.3, p.123-126, 2009. );

iii) 5-hydroxymethylfurfural (10.77%), a member of the class of furans. It has a role as an indicator of the product of the Maillard reaction, has antioxidant action, and is an antiproliferative (ZHAO et al., 2013 ZHAO, L.; CHEN, J.; SU, J.; LI, L.; HU, S.; LI, B.; ZHANG, X.; XU, Z.; CHEN, T. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. Journal of Agricultural and Food Chemistry, Washington, v.61, n.44, p.10604-10611, 2013. ). It can also have a potential use in improving hypoxemia in COVID-19 patients (WOYKE et al., 2020 WOYKE S.; RAUCH S.; STRÖHLE M.; GATTERER H. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients. Clinical Nutrition, Edinburgh, v.40, n.1, p.38-39, 2021 );

iv) 2-(hydroxymethyl)-2-nitropropane-1,3- diol (9.89 %), a propylene glycol used as microbicide and bacteriostat in disinfectants and industrial preservatives and as a disinfectant to control disease organisms in livestock and poultry areas on farms and equipment (AMPONIN et al., 2020 AMPONIN, D.E.; PRZYBEK-SKRZYPECKA, J.; ZYABLITSKAYA, M.; TAKAOKA, A.; SUH, L.H.; NAGASAKI, T.; TROKEL, S.L.; PAIK, D.C. Ex vivo anti-microbial efficacy of various formaldehyde releasers against antibiotic resistant and antibiotic sensitive microorganisms involved in infectious keratitis. BMC Ophthalmology, London, v.20, n.1, p.28, 2020. ; BEIER et al., 2008 BEIER, R.C.; DUKE, S.E.; ZIPRIN, R.L.; HARVEY, R.B.; HUME, M.E; POOLE, T.L.; SCOTT, H.M.; HIGHFIELD, L.D.; ALALI, W.Q.; ANDREWS, K.; ANDERSON, R.C.; NISBET, D.J. Antibiotic and disinfectant susceptibility profiles of Vancomycin-Resistant Enterococcus faecium (VRE) isolated from community wastewater in Texas. Bulletin of Environmental Contamination and Toxicology, New York, v.80, n.3, p.188-194, 2008. ).

The four main constituents of the ASOHEX extraction were:

i) Gamma-sitosterol (31.73%);

ii) Erucic acid (14.64%), a docosenoic acid having a cis- double bond at C-13 with antimicrobial, antitumor, and cardiac properties (ALTINOZ et al., 2018 ALTINOZ, M.A.; BILIR, A.; ELMACI, I. Erucic acid, a component of Lorenzo's oil and PPAR-d ligand modifies C6 glioma growth and toxicity of doxorubicin. Experimental data and a comprehensive literature analysis. Chemico-Biological Interactions, Amsterdam, v.294, p.107-117, 2018. ; SURESH et al., 2014 SURESH, A.; RAMASAMY, P.; THANGARAJ, R.; OSCAR, F.; BALDEV, E.; DHARUMADURAI, D.; THAJUDDIN, N. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Disease, Singapor, v.4, p.S979-S984, 2014 );

iii) Stigmasterol (13.30%), a 3-beta-sterol and member of the phytosterols. It derives from a hydride of a stigmastane (ULBRICHT, 2016 ULBRICHT, C.E. An Evidence-based systematic review of beta-sitosterol, sitosterol (22,23- dihydrostigmasterol, 24-ethylcholesterol) by the natural standard research collaboration. Journal of Dietary Supplements, New York, v.13, n.1, p.35-92, 2016. ) and has antinociceptive action (WALKER et al., 2017 WALKER, C.I.B.; OLIVEIRA, S.M.; TONELLO, R.; ROSSATO, M.F.; DA SILVA BRUM, E.; FERREIRA, J.; TREVISAN, G. Anti-nociceptive effect of stigmasterol in mouse models of acute and chronic pain. Naunyn-Schmiedeberg's Archives of Pharmacology, Berlin, v.390, n.11, p.1163-1172, 2017. ). It can be a potentially useful candidate for COVID-19 (HUANG et al., 2020 HUANG, Y.; ZHENG, W.J.; NI, Y.S.; LI, M.S.; CHEN, J.K.; LIU, X.H.; TAN, X.H.; LI, J.Q. Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology. BioData Mining, London, v.13, n.1, p.15, 2020. ; KAR et al., 2020 KAR, P., SHARMA, N.R.; SINGH, B.; SEN, A.; ROY, A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, New York, v,39, p.4774-4785, 2020. ; LUO et al., 2020 LUO, L.; JIANG, J.; WANG, C.; FITZGERALD, M.; HU, W.; ZHOU, Y.; ZHANG, H.; CHEN, S. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharmaceutica Sinica B, Amsterdam, v.10, n.7, p.1192-1204, 2020. ; ZHENJIE et al., 2020 ZHUANG, Z.; ZHONG, X.; ZHANG, H.; CHEN, H.; HUANG, B.; LIN, D.; WEN, J. Exploring the potential mechanism of shufeng jiedu capsule for treating COVID-19 by comprehensive network pharmacological approaches and molecular docking validation. Combinatorial Chemistry e High Throughput Screening, Hilversum, v.23, p.1-20, 2020. );

iv) Triolein (10.90 %).

The four main constituents of the ASOCHLO extraction were:mma-sitosterol (22.11%);Vaccenic acid (15.49%), an unsaturated fatty acid with anti-inflammatory properties (SALES-CAMPOS et al., 2013 SALES-CAMPOS, H.; SOUZA, P.R.; PEGHINI, B.C.; DA SILVA, J.S.; CARDOSO, C.R. An overview of the modulatory effects of oleic acid in health and disease. Mini Reviews in Medicinal Chemistry, Hilversum, v.13, n.2, p.201-210, 2013. ); (14.65%); Stigmasterol (10.65%).

The four main constituents of the ASOACE extraction were:

i) Gadoleic acid (31.28%), an icosenoic acid having a cis- double bond at position 9 with antioxidant properties and cardiovascular disease protection (BAILÃO et al., 2015 BAILÃO, E.F.L.C.; DEVILLA, I.A.; CONCEIÇÃO E.C.; BORGES, L.L. Bioactive compounds found in Brazilian Cerrado fruits. International Journal of Molecular Sciences, Basel, v.16, n.10, p.23760-23783, 2015. );

ii) Beta-sitosterol (16.29%), a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has antioxidant and antimicrobial properties, and induces apoptosis in MCF-7 cells (CHAI et al., 2008 CHAI, J.W.; UMAH RANI, K.; KANTHIMATHI, M.S. Beta-sitosterol induces apoptosis in MCF-7 cells. Malaysian Journal of Biochemistry and Molecular Biology, Kuala Lumpur, v.16, n.2, p.28-30, 2008. ; HIDAYATHULLA et al., 2018 HIDAYATHULLA, S.; SHAHAT, A.A.; AHAMAD, S.R.; AL MOQBIL, A.A.N.; ALSAID, M.S.; DIVAKAR, D.D; GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial. Journal of Applied Microbiology, Oxford, v.124, n.5, p.1082-1091, 2018. ). It is also a potentially useful candidate for COVID-19 (CHOWDHURY, 2020 CHOWDHURY, P. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, New York, p.1-18, 2020. ; LUO et al., 2020 LUO, L.; JIANG, J.; WANG, C.; FITZGERALD, M.; HU, W.; ZHOU, Y.; ZHANG, H.; CHEN, S. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharmaceutica Sinica B, Amsterdam, v.10, n.7, p.1192-1204, 2020. ; MAURYA et al., 2020 MAURYA, V.K.; KUMAR, S.; BHATT, M.L.B.; SAXENA, S.K. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, Guilderland, p.1-17, 2020. ; WANG et al., 2020 WANG, J.; ZHANG, X.; OMARINI, A.N.; LI, B. Virtual screening for functional foods against the main protease of SARS-CoV-2. Journal of Food Biochemistry, Oxford, 2020. Disponível em: https://doi.org/10.1111/jfbc.13481. ; ZHENJIE et al., 2020);

iii) Pentadecanoic acid (11.53%), a straightchain saturated fatty acid containing fifteen-carbon atoms.

It is a potential natural agrochemical and antifungal agent (DING et al., 2019 DING, L.; GUO, W.; CHEN, X. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Applied Microbiology and Biotechnology, Berlin, v.103, n.13, p.5367-5377, 2019. ( ; MANILAL et al., 2010 MANILAL, A.; SUJITH, S.; SABARATHNAM, B.; KIRAN, G.S.; SELVIN, J.; SHAKIR, C.; LIPTON, A.P. Bioactivity of the red algae Asparagopsis taxiformis collected from the southwestern coast of India. Brazilian Journal of Oceanography, São Paulo, v.58, n.2, p.93-100, 2010. );

iv) Eicosanoic acid (8.01%), a saturated long-chain fatty acid with a 20-carbon backbone with antioxidant and antiproliferative properties (HARUENKIT et al., 2010 HARUENKIT, R.; POOVARODOM. S.; VEARASILP, S.; NAMIESNIK, J.; SLIWKA-KASZYNSKA, M.; PARK, Y-S.; HEO, B-G.; CHO, J-Y.; JANG, H.G.; GORINSTEIN, S. Comparison of bioactive compounds, antioxidant and antiproliferative activities of Mon Thong durian during ripening. Food Chemistry, London, v.118, n.3, p.540-547, 2010. ).

Among the parts of the atemoya (pulp, leaves and seeds), the seeds are the richest in phytochemicals, including anonaceous acetogenins, alkaloids and phenolic compounds (KAZMAN et al., 2020 KAZMAN, B.S.M.A.; HARNETT, J.E.; HANRAHAN, J.R. The phytochemical constituents and pharmacological activities of annona atemoya: a systematic review. Pharmaceuticals, Basel, v.13, n.10, p.269, 2020. ). In the ASOP, ASOHEX, ASOCHLO and ASOACE extractions the compound octadecanoic acid has been observed. This fatty acid also has been found in the study by Wu et al (2005) WU, Y.C.; CHANG, F.R.; CHEN, C.Y. Tryptamine-Derived Amides and Alkaloids from the Seeds of Annona atemoya. Journal of Natural Products, Cincinnati, v.68, n.3, p.406-408, 2005. , conducted with oil extraction from atemoya seeds harvested in China in 1996 (WU et al., 2005 WU, Y.C.; CHANG, F.R.; CHEN, C.Y. Tryptamine-Derived Amides and Alkaloids from the Seeds of Annona atemoya. Journal of Natural Products, Cincinnati, v.68, n.3, p.406-408, 2005. ).

In a study with volatile components of atemoya leaves, Campos et al (2019) CAMPOS, F.G.; VIEIRA, M.A.R.; SANTOS, A.A. dos; JORGE, L.G.; MARQUES, M.O.M.; BOARO, C.S.F. Chemical diversity of volatiles from parents, rootstock and atemoya hybrid. Journal of Agricultural Science, Cambridge, v.11, n.4, p.271, 2019. reported a considerable amount of hydrocarbon monoterpenes, oxygenated monoterpenes, hydrocarbon sesquiterpenes, oxygenated sesquiterpenes and other classes (CAMPOS et al., 2019 CAMPOS, F.G.; VIEIRA, M.A.R.; SANTOS, A.A. dos; JORGE, L.G.; MARQUES, M.O.M.; BOARO, C.S.F. Chemical diversity of volatiles from parents, rootstock and atemoya hybrid. Journal of Agricultural Science, Cambridge, v.11, n.4, p.271, 2019. ).

Among these compounds, we emphasize the similar presence of copaene, germacrene D, beta-ylangen in the ASOP extraction; and germacrene and n-decane in ASOH.

Thus, the essential oil of atemoya leaves proved to be rich in monoterpenes and sesquiterpenes (CAMPOS et al., 2014 CAMPOS, F.G.; BARON, D.; MARQUES, M.O.M.; FERREIRA, G.; BOARO, C.S.F. Characterization of the chemical composition of the essential oils from Annona emarginata (Schltdl.) H. Rainer'terra-fria'and Annona squamosa L. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p. 202-208, 2014. Número Especial ; KUMAR et al., 2021 KUMAR, M.; CHANGAN, S.; TOMAR, M.; PRAJAPATI, U.; SAURABH, V.; HASAN, M.; SASI, M.; MAHESHWARI, C.; SINGH, S.; DHUMAL, S.; RADHA.; THAKUR, M.; PUNIA, S.; SATANKAR, V.; AMAROWICZ, R.; MEKHEMAR, M. Custard apple (Annona squamosa L.) leaves: nutritional composition, phytochemical profile, and health-promoting biological activities. Biomolecules, Duarte, v.11, n.5, p.614, 2021. ).

For being a hybrid species, Annona atemoya has phytochemical components common to Annona squamosa and Annona cherimola, regardless of the parts of the plant from which their constituents are isolated. (KAZMAN et al., 2020 KAZMAN, B.S.M.A.; HARNETT, J.E.; HANRAHAN, J.R. The phytochemical constituents and pharmacological activities of annona atemoya: a systematic review. Pharmaceuticals, Basel, v.13, n.10, p.269, 2020. ).

The fatty acid profile found in Annona squamosa seeds has shown to have some components that were also found in Atemoya seed oil extractions. n-hexadecanoic acid; ergost-5-en-3-ol; stigmasta-5,22-dien-3-ol; gammasitosterol and octadecanoic acid (ASOP, ASOHEX, ASOCHLO and ASOACE) (ZAHID et al., 2018 ZAHID, M.; ARIF, M.; RAHMAN, M.A.; SINGH, K.; MUJAHID, M. Solvent extraction and gas chromatography–mass spectrometry analysis of Annona squamosa L. seeds for determination of bioactives, fatty acid/fatty oil composition, and antioxidant activity. Journal of Dietary Supplements, London, v.15, n.5, p.613-623, 2018. ).

Conclusion

In summary, this work presented an interesting analysis of the chemical composition of different extractions of atemoya seed oil (var. Thompson). Among the one hundred and fourteen compounds identified, 20 had antioxidant activity, 17 had anti-inflammatory activity, 10 had antibacterial activity, 9 had antifungal activity, 7 had antitumor activity, 4 had auxiliary activity in the treatment of cancer, 3 had larvicidal activity and 2 showed antidiabetic activity. Furthermore, 12 are potential adjuvants in coping with COVID-19. In addition, some compounds are pheromones, have auxiliary effects in neglected diseases, and act as biological biomarkers, among other important activities. The results have demonstrated that each method of extraction provides compounds with specific biological potential. Thus, these results give important information to aid in the selection of extraction methods when considering the desired constituents.

Acknowledgment

This study was funded in part by the Brazilian Federal Agency for the Support and Evaluation of Graduate Education (CAPES) - Finance Code 001.

  • AHMADI, A.; KHALILI, M.; MASHAEE, F.; NAHRI-NIKNAFIS, B. The effects of solvent polarity on hypoglycemic and hypolipidemic activities of Vaccinium arctostaphylos l. Unripe fruits. Pharmaceutical Chemistry Journal, New York, v.50, n.11, p.746-752, 2017/02/01 2017.
  • AHMED, A.; AKBAR, S.; SHAH, W.A. Chemical composition and pharmacological potential of aromatic water from Salix caprea inflorescence. Chinese Journal of Integrative Medicine, Beijing, 2017. Disponível em: DOI:10.1007/s11655-017-2781-5
    » DOI:10.1007/s11655-017-2781-5
  • AJIBOYE, T.O.; MOHAMMED, A.O.; BELO, S.A.; YUSUF I.I.; IBITOYE, O.B.; MURITALA H.F.; ONAJOBI, B. Antibacterial activity of Syzygium aromaticum seed: Studies on oxidative stress biomarkers and membrane permeability. Microbial Pathogenesis, London, v.95, p.208-215, 2016.
  • ALTINOZ, M.A.; BILIR, A.; ELMACI, I. Erucic acid, a component of Lorenzo's oil and PPAR-d ligand modifies C6 glioma growth and toxicity of doxorubicin. Experimental data and a comprehensive literature analysis. Chemico-Biological Interactions, Amsterdam, v.294, p.107-117, 2018.
  • AMPONIN, D.E.; PRZYBEK-SKRZYPECKA, J.; ZYABLITSKAYA, M.; TAKAOKA, A.; SUH, L.H.; NAGASAKI, T.; TROKEL, S.L.; PAIK, D.C. Ex vivo anti-microbial efficacy of various formaldehyde releasers against antibiotic resistant and antibiotic sensitive microorganisms involved in infectious keratitis. BMC Ophthalmology, London, v.20, n.1, p.28, 2020.
  • ANGELINI, A.; CENTURIONE, L.; SANCILIO, S.; CASTELLANI, M.L.; CONTI, P.; DI ILIO, C.; PORRECA, E.; CUCCURULLO, F.; DI PIETRO, R. The effect of the plasticizer diethylhexyl phthalate on transport activity and expression of P-glycoprotein in parental and doxo-resistant human sarcoma cell lines. Journal of Biological Regulators e Homeostatic Agents, Milano, v.25, n.2, p.203-211, 2011.
  • AOKI, T.; NAGAOKA,T.; KOBAYASHI, N.; KURAHASHI, M.; TSUJI, C.; TAKIGUCHI, H.; TOMOMATSU, K. OGUMA,T.; KOBAYASHI, N.; MAGATANI, K.; TAKEDA, S.; ASANO,K.; ABE, T. Editor's highlight: prospective analyses of volatile organic compounds in obstructive sleep apnea patients. Toxicological Sciences: an Official Journal of the Society of Toxicology, London, v.156, n.2, p.362-374, 2017.
  • AVETISYAN, A.A.; DZHANDZHAPANYAN, A.N.; GALSTYAN, A.V.; KARAGEZ, S.KH.; VOTYAKOV, V.I.; KHLYUSTOV, S.V.; VLADYKO, G.V; KLIMOVICH, V.YA.; KOROBCHENKO, L.V.; SHASHIKHINA, M.N.; ZHAVRID, S.V. Research on unsaturated lactones. 75. Antiviral activity of some lactones. Pharmaceutical Chemistry Journal, London, 16, n. 8, p. 580-582, 1982/08/01 1982.
  • BADAWY, M.E.I. Chemical modification of chitosan: synthesis and biological activity of new heterocyclic chitosan derivatives. Polymer International, New York, v.57, n.2, p.254-261, 2008.
  • BAI, L.; WANG, W.; HUA, J.; GUO, Z.; LUO, S. Defensive functions of volatile organic compounds and essential oils from northern white-cedar in China. BMC Plant Biology, London, v.20, n.1, p.500, 2020.
  • BAILÃO, E.F.L.C.; DEVILLA, I.A.; CONCEIÇÃO E.C.; BORGES, L.L. Bioactive compounds found in Brazilian Cerrado fruits. International Journal of Molecular Sciences, Basel, v.16, n.10, p.23760-23783, 2015.
  • BARON, D.; AMARO, A.C.E.; MACEDO, A.C.; BOARO, C.S.F.; FERREIRA, G. Physiological changes modulated by rootstocks in atemoya (Annona x atemoya Mabb.): gas exchange, growth and ion concentration. Brazilian Journal of Botany, São Paulo, v.41, n.1, p.219-225, 2018.
  • BEIER, R.C.; DUKE, S.E.; ZIPRIN, R.L.; HARVEY, R.B.; HUME, M.E; POOLE, T.L.; SCOTT, H.M.; HIGHFIELD, L.D.; ALALI, W.Q.; ANDREWS, K.; ANDERSON, R.C.; NISBET, D.J. Antibiotic and disinfectant susceptibility profiles of Vancomycin-Resistant Enterococcus faecium (VRE) isolated from community wastewater in Texas. Bulletin of Environmental Contamination and Toxicology, New York, v.80, n.3, p.188-194, 2008.
  • BHARDWAJ, A.; SATPATHY, G.; GUPTA, R. K. Preliminary screening of nutraceutical potential of Annona squamosa, an underutilized exotic fruit of India and its use as a valuable source in functional foods. Journal of Pharmacognosy and Phytochemistry, New Dehli, v.3, n.2, 2014.
  • CALDER, P. C. Immunoregulatory and anti-inflammatory effects of n-3 polyunsaturated fatty acids. Brazilian Journal of Medical and Biological Research, Raipur, v.31, p. 467-490, 1998.
  • CAMPOS, F.G.; BARON, D.; MARQUES, M.O.M.; FERREIRA, G.; BOARO, C.S.F. Characterization of the chemical composition of the essential oils from Annona emarginata (Schltdl.) H. Rainer'terra-fria'and Annona squamosa L. Revista Brasileira de Fruticultura, Jaboticabal, v.36, n.1, p. 202-208, 2014. Número Especial
  • CAMPOS, F.G.; VIEIRA, M.A.R.; SANTOS, A.A. dos; JORGE, L.G.; MARQUES, M.O.M.; BOARO, C.S.F. Chemical diversity of volatiles from parents, rootstock and atemoya hybrid. Journal of Agricultural Science, Cambridge, v.11, n.4, p.271, 2019.
  • CASTILLO, C.; CHEN, H.. GRAVES, C.; MAISONNASSE, A.; CONTE, Y.; PLETTNER, E. Biosynthesis of ethyl oleate, a primer pheromone, in the honey bee (Apis mellifera L.). Insect Biochemistry and Molecular Biology, Oxford, 42, n.6, p.404-416, 2012.
  • CAVÉ, A.; FIGADÈRE, B.; LAURENS, A.; CORTES, D. Acetogenins from annonaceae. In: HERZ, W.; KIRBY, G.W.; MOORE, R.E.; STEGLICH, W.; TAMM, CH. Fortschritte der chemie organischer naturstoffe progress in the chemistry of organic natural products. New York: Springer, 1997. p.81-288.
  • CHAI, J.W.; UMAH RANI, K.; KANTHIMATHI, M.S. Beta-sitosterol induces apoptosis in MCF-7 cells. Malaysian Journal of Biochemistry and Molecular Biology, Kuala Lumpur, v.16, n.2, p.28-30, 2008.
  • CHANDRASEKARAN, R.; SEETHARAMAN, P.; KRISHNAN, M.; GNANASEKAR, S.; SIVAPERUMAL, S. Carica papaya (Papaya) latex: a new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). 3 Biotech, Berlin, v.8, n.2, p.83, 2018.
  • CHANG, F.-R.; CHEIN, J-L.; LIN, C-Y.; CHIU, C-F; WU, M-J.; WU, Y-C. Bioactive acetogenins from the seeds of Annona atemoya. Phytochemistry, New York, v.51, n.7, p.883-889, 1999.
  • CHEENPRACHA, S.; YODSAOUE, O.; KARALAI, C.K.; PONGLIMANONT, C.; SUBHADHRASAKU, S.; TEWTRAKULB, S.; KANJANA-OPAS, A. Potential anti-allergic ent-kaurene diterpenes from the bark of Suregada multiflora. Phytochemistry, New York, v.67, n. 24, p. 2630-2634, 2006.
  • CHEN, H.W.; CHAO, C.Y.; LIN, L.L.; LU, C.Y.; LIU, K.L.; LII, C.K.; LI, C.C. . Inhibition of matrix metalloproteinase-9 expression by docosahexaenoic acid mediated by heme oxygenase 1 in 12-O-tetradecanoylphorbol-13-acetate-induced MCF-7 human breast cancer cells. Archives of Toxicology, Berlin, v.87, n.5, p.857-869, 2013.
  • CHEN, Y.-Y.; LI, F.-Q.; ZHU, X.-L.; CHEN, J.-W. Chemical composition and anti-hepatoma effect of Annona squamosa L. pericarp oil. Natural Product Research, Milton Park, p.1-4, 2020.
  • CHIEN, J.C.W.; BOSS, C.R. Sulfur compounds as synergistic antioxidants. Journal of Polymer Science Part A-1: Polymer Chemistry, Hoboken, v.10, n.6, p.1579-1600, 1972.
  • CHOWDHURY, P. In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. Journal of Biomolecular Structure and Dynamics, New York, p.1-18, 2020.
  • COSTA, M.S.; SANTANA, A.E.; OLIVEIRA, L.L.; ZANUNCIO, J.C.; SERRÃO, J.E. Toxicity of squamocin on Aedes aegypti larvae, its predators and human cells. Pest Management Science, West Sussex, v.73, n.3, p.636-640, 2017.
  • COUVREUR, T.L.P.; HELMSTETTER, A.J.; KOENEN, E.J.M.; BETHUNE, K.; BRANDÃO, R.D.; LITTLE, S.A.; SAUQUET, H.; ERKENS, R.H.J. Phylogenomics of the major tropical plant family annonaceae using targeted enrichment of nuclear genes. Frontiers in Plant Science, Lausanne, v.9, p.1941, 2019.
  • DEODHAR, S.; DASH, A.K.; NORTH, E.J.; HULCE, M. Development and in vitro evaluation of long circulating liposomes for targeted delivery of gemcitabine and irinotecan in pancreatic ductal adenocarcinoma. AAPS PharmSciTech, New York, v.21, n.6, p.231, 2020.
  • DING, L.; GUO, W.; CHEN, X. Exogenous addition of alkanoic acids enhanced production of antifungal lipopeptides in Bacillus amyloliquefaciens Pc3. Applied Microbiology and Biotechnology, Berlin, v.103, n.13, p.5367-5377, 2019. (
  • DUEHOLM, B.; DREW, D.P.; SWEETMAN, C.; SIMONSEN, H.T. In planta and in silico characterization of five sesquiterpene synthases from Vitis vinifera (cv. Shiraz) berries. Planta, Berlin, v.249, n.1, p.59-70, 2019.
  • DURET, P.; HOCQUEMILLER, R.; CAVÉ, A. Annonisin, a bis-tetrahydrofuran acetogenin from Annona atemoya seeds. Phytochemistry, New York, v.45, n.7, p.1423-1426, 1997.
  • DURET, P.; HOCQUEMILLER, R.; CAVÉ, A. Bulladecin and atemotetrolin, two bis-tetrahydrofuran acetogenins from Annona atemoya seeds. Phytochemistry, New York, v.48, n. 3, p. 499-506, 1998/06/01/ 1998.
  • EL-SHAZLY, A.; EL-SAYED, A.; FIKREY, E. Bioactive secondary metabolites from Salix tetrasperma Roxb. Zeitschrift fu¨r Naturforschung. C, A Journal of Biosciences, Berlin. v.67, n.7-8, p.353-359, 2012.
  • ELFIKY, A.A. Natural products may interfere with SARS-CoV-2 attachment to the host cell. Journal of Biomolecular Structure and Dynamics, Guilderland, p.1-10, 2020.
  • EVISON, S.E.; FERREIRA, R.S.; D'ETTORRE, P.; FRESNEAU, D.; POTEAUX, C. Chemical signature and reproductive status in the facultatively polygynous ant pachycondyla verenae. Journal of Chemical Ecology, New York, v.38, n.11, p.1441-1449, 2012.
  • FESQ, H.; BROCKOW, K.; STROM, K.; MEMPEL, M.; RING, J.; ABECK, D. Dihydroxyacetone in a new formulation--a powerful therapeutic option in vitiligo. Dermatology, Basel, v.203, n.3, p.241-243, 2001.
  • FLATH, R.A., CUNNINGHAM, R.T.; MON, T.R.; JOHN, J.O. Additional male mediterranean fruitfly (Ceratitis capitata wied.) Attractants from Angelica seed oil (Angelica archangelica L.). Journal of Chemical Ecology, New York, v.20, n.8, p.1969-1984, 1994.
  • FRANKO, J.; JACKSON, L.G.; HUBBS, A.; KASHON, M.; MEADE, B.J.; ANDERSON, S.E. Evaluation of furfuryl alcohol sensitization potential following dermal and pulmonary exposure: enhancement of airway responsiveness. Toxicological Sciences, Orlando, v.125, n.1, p.105-115, 2012.
  • FUSARO, R.M.; RICE, E.G. The maillard reaction for sunlight protection.Annals of the New York Academy of Sciences, New York, v.1043, p.174-183, 2005.
  • GADDAGUTI, V.; VENKATESWARA, R.; RAO, P. Potential mosquito repellent compounds of Ocimum species against 3N7H and 3Q8I of Anophelesgambiae. 3 Biotech, Berlin, v.6, n.1, p.26, 2016.
  • GHONGHADZE, M.; ANTELAVA, N.; LILUASHVILI, K.; OKUJAVA, M.; PACHKORIA, K. Action of L-carnitine, corvitin and their combination on functional state of liver in experimental model of Reye Syndrome in rats. Georgian Medical News, Tbilisi, n.263, p.105-111, 2017.
  • GOEDERT, J.J.; SAMPSON, J.N.; MOORE, S.C.; XIAO, Q.; XIONG, X.; HAYES, R.B.; AHN, J.; SHI, J.; SINHA, R. Fecal metabolomics: assay performance and association with colorectal cancer. Carcinogenesis, Oxford, v.35, n.9, p.2089-2096, 2014.
  • GONZÁLEZ-ILLÁN, F.; OJEDA-TORRES, G.; DÍAZ-VÁZQUEZ, L.M.; ROSARIO, O. Detection of fatty acid ethyl esters in skin surface lipids as biomarkers of ethanol consumption in alcoholics, social drinkers, light drinkers, and teetotalers using a methodology based on microwave-assisted extraction followed by solid-phase microextraction and gas chromatography-mass spectrometry. Journal of Analytical Toxicology, Oxford, v.35, n.4, p.232-237, 2011.
  • GOYAL, M.; SHINDE, L.; BAYAS, R. Study of chemical composition and larvicidal efficacy of secondary metabolites from aromatic phytoextracts against dengue vector: Aedes aegypti (Linn)(Diptera: Culicidae). International Journal of Mosquito Research, New Delhi, v.6, n.1, p.26-33, 2019.
  • HABIB, M.R.; KARIM, M.R. Antitumour evaluation of di-(2-ethylhexyl) phthalate (DEHP) isolated from Calotropis gigantea L. flower. Acta Pharmaceutica, Zagreb, v.62, n.4, p.607-615, 2012.
  • HAFEZ, M.H.; ELBLEHI, S.S.; EL-SAYED, Y.S. Date palm fruit extract ameliorated pancreatic apoptosis, endocrine dysfunction and regulatory inflammatory cytokines in Streptozotocin-induced diabetes in rats. Environmental Science and Pollution Research, Landsberg, v.27, n.34, p.43322-43339, 2020.
  • HARADA, H.; YAMASHITA, U.; KURIHARA, H.; FUKUSHI, E.; KAWABATA, J.; KAMEI, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Research, Athens, v.22, n.5, p.2587-2590, 2002.
  • HARUENKIT, R.; POOVARODOM. S.; VEARASILP, S.; NAMIESNIK, J.; SLIWKA-KASZYNSKA, M.; PARK, Y-S.; HEO, B-G.; CHO, J-Y.; JANG, H.G.; GORINSTEIN, S. Comparison of bioactive compounds, antioxidant and antiproliferative activities of Mon Thong durian during ripening. Food Chemistry, London, v.118, n.3, p.540-547, 2010.
  • HEO, H.J.; PARK, Y.J.; SUH, Y.M.; CHOI, S.J.; KIM, M.J.; CHO, H.Y.; CHANG, Y.J.; HONG, B.; KIM, H.K.; KIM, E.; KIM, C.J.; KIM, B.G.; SHIN, D.H. Effects of oleamide on choline acetyltransferase and cognitive activities. Bioscience, Biotechnology, and Biochemistry, Oxford, v.67, n.6, p.1284-1291, 2003. (
  • HIDAYATHULLA, S.; SHAHAT, A.A.; AHAMAD, S.R.; AL MOQBIL, A.A.N.; ALSAID, M.S.; DIVAKAR, D.D; GC/MS analysis and characterization of 2-Hexadecen-1-ol and beta sitosterol from Schimpera arabica extract for its bioactive potential as antioxidant and antimicrobial. Journal of Applied Microbiology, Oxford, v.124, n.5, p.1082-1091, 2018.
  • HOYE, T.R.; ZHUANG, Z.P. Validation of the proton NMR chemical shift method for determination of stereochemistry in the bistetrahydrofuranyl moiety of uvaricin-related acetogenins from Annonaceae: rolliniastatin 1 (and asimicin). The Journal of Organic Chemistry, Columbus, v.53, n.23, p.5578-5580, 1988.
  • HUANG, Y.; ZHENG, W.J.; NI, Y.S.; LI, M.S.; CHEN, J.K.; LIU, X.H.; TAN, X.H.; LI, J.Q. Therapeutic mechanism of Toujie Quwen granules in COVID-19 based on network pharmacology. BioData Mining, London, v.13, n.1, p.15, 2020.
  • ISLAM, M.T. Chemical profile and biological activities of Sonneratia apetala (Buch.-Ham.). Advances in Traditional Medicine, Singapore, v.20, n.2, p.123-132, 2020.
  • JANG, A.; SRINIVASAN, P.; LEE, N.Y.; SONG, H.P.; LEE, J.W.; LEE, M.; JO, C. Comparison of hypolipidemic activity of synthetic gallic acid-linoleic acid ester with mixture of gallic acid and linoleic acid, gallic acid, and linoleic acid on high-fat diet induced obesity in C57BL/6 Cr Slc mice. Chemico-Biological Interactions, Limerick, v.174, n.2, p.109-117, 2008.
  • JELIAZKOVA, E.; ZHELJAZKOV, V.D.; KACÁNIOVA, M.; ASTATKIE, T.; TEKWANI, B.L. Sequential elution of essential oil constituents during steam distillation of hops (Humulus lupulus L.) and influence on oil yield and antimicrobial activity. Journal of Oleo Science, Tokyo, v.67, n.7, p.871-883, 2018.
  • JOSHI-BARVE, S.; BARVE, S.S.; AMANCHERLA, K.; GOBEJISHVILI, L.; HILL, D.; CAVE, M.; HOTE, P.; MCCLAIN, C.J. Palmitic acid induces production of proinflammatory cytokine interleukin-8 from hepatocytes. Hepatology, Baltimore, v.46, n.3, p.823-830, 2007.
  • KAR, P., SHARMA, N.R.; SINGH, B.; SEN, A.; ROY, A. Natural compounds from Clerodendrum spp. as possible therapeutic candidates against SARS-CoV-2: An in silico investigation. Journal of Biomolecular Structure and Dynamics, New York, v,39, p.4774-4785, 2020.
  • KAZMAN, B.S.M.A.; HARNETT, J.E.; HANRAHAN, J.R. The phytochemical constituents and pharmacological activities of annona atemoya: a systematic review. Pharmaceuticals, Basel, v.13, n.10, p.269, 2020.
  • KETHA, A.; VEDULA, G.S.; SASTRY, A.V.S.. In vitro antioxidant, anti-inflammatory, and anticancer activities of methanolic extract and its metabolites of whole plant Cardiospermum canescens Wall. Future Journal of Pharmaceutical Sciences, New Cairo, v.6, n.1, p.11, 2020.
  • KIM HJ.; KIM YW.; CHOI SH.; CHO BM.; BANDU R.; AHN HS.; KIM KP. Triolein emulsion infusion into the carotid artery increases brain permeability to anticancer agents. Neurosurgery, Baltimore, v.78, n.5, p.726-733, 2016.
  • KOMBA, S.; KOTAKE-NARA, E.; TSUZUKI, W. Simultaneous synthesis of vitamins D(2), D(4), D(5), D(6), and D(7) from commercially available phytosterol, ß-Sitosterol, and identification of each vitamin D by HSQC NMR. Metabolites, Basel, v.9, n.6, p.107, 2019.
  • KOTHAPALLI, K.S.D.; PARK, H.G.; BRENNA, J.T. Polyunsaturated fatty acid biosynthesis pathway and genetics. implications for interindividual variability in prothrombotic, inflammatory conditions such as COVID-19. Prostaglandins, Leukotrienes and Essential Fatty Acids, Edinburg, v.162, p.102183, 2020.
  • KOUBAA M.; MHEMDI H.; BARBA FJ.; ANGELOTTI A.; BOUAZIZ F.; CHAABOUNI SE.; VOROBIEV E. Seed oil extraction from red prickly pear using hexane and supercritical CO2: assessment of phenolic compound composition, antioxidant and antibacterial activities. Journal of the Science of Food and Agriculture, London, v.97, n.2, p.613-620, 2017.
  • KRIM, S.; RIHANI, R.; MARCHAL, L.; FOUCAULT, A.; ENTAHAR, F.; LEGRAND, J.Two-phase solvent extraction of phenolics from Origanum vulgare subsp. glandulosum. Journal of Applied Research on Medicinal and Aromatic Plants, Amsterdam, v.20, p.100273, 2021.
  • KRIMAT, S.; METIDJI, C.; DAHMANE, D.; NOUASRI, A., DOB, T. Chemical analysis, antioxidant, anti-inflammatory, and cytotoxic activities of hydromethanolic extract of Origanum glandulosum Desf. Phytothérapie, Cachan, v.17, n.2, p.58-65, 2019.
  • KUMAR, M.; CHANGAN, S.; TOMAR, M.; PRAJAPATI, U.; SAURABH, V.; HASAN, M.; SASI, M.; MAHESHWARI, C.; SINGH, S.; DHUMAL, S.; RADHA.; THAKUR, M.; PUNIA, S.; SATANKAR, V.; AMAROWICZ, R.; MEKHEMAR, M. Custard apple (Annona squamosa L.) leaves: nutritional composition, phytochemical profile, and health-promoting biological activities. Biomolecules, Duarte, v.11, n.5, p.614, 2021.
  • LEE, J.H.; SONG, Y.; JUN, S-H,; SONG, S.H.; SHIN, C.H.; KI, C-S.; LEE, K.; SONG, J. High prevalence of increased sitosterol levels in hypercholesterolemic children suggest underestimation of sitosterolemia incidence. PLoS One, San Francisco, v.15, n.8, p.e0238079, 2020.
  • LEE, S-H.; PARK, O-J. Uses and production of chiral 3-hydroxy-?-butyrolactones and structurally related chemicals. Applied Microbiology and Biotechnology, New York, v.84, n.5, p.817-828, 2009.
  • LENZ, E.L.; KRASNEC, M.O.; BREED, M.D. Identification of undecane as an alarm pheromone of the ant formica argentea. Journal of Insect Behavior, Dordrecht, v.26, n.1, p.101-108, 2013.
  • LI, M.M.; JIANG, Z.E.; SONG, L.Y.; QUAN, Z.S.; YU, H.L. Antidepressant and anxiolytic-like behavioral effects of erucamide, a ioactive fatty acid amide, involving the hypothalamus–pituitary–adrenal axis in mice. Neuroscience Letters, Amsterdam, v.640, p.6-12, 2017.
  • LINGWOOD, D.; SIMONS, K. Lipid rafts as a membrane-organizing principle. Science, London, v.327, n.5961, p.46-50, 2010.
  • LIU, F.; CHEN, J.; SHI, F.; WANG, T.; WATANABE, G.; TAYA ,K. Phytosterol additive boosts adrenal response to ACTH in male Japanese quail (Coturnix coturnix japonica). Endocrine, Houndsmills, v.41, n.2, p.338-341, 2012.
  • LUO, L.; JIANG, J.; WANG, C.; FITZGERALD, M.; HU, W.; ZHOU, Y.; ZHANG, H.; CHEN, S. Analysis on herbal medicines utilized for treatment of COVID-19. Acta Pharmaceutica Sinica B, Amsterdam, v.10, n.7, p.1192-1204, 2020.
  • MA, C.; WANG, Q.; SHI, Y.; LI, Y.; WANG, X.; LI, X.; CHEN, Y.; CHEN, J. Three new antitumor annonaceous acetogenins from the seeds of Annona squamosa. Natural Product Research, Milton Park, v.31, n.18, p.2085-2090, 2017.
  • MAGALHÃES, K.T.; TAVARES, T.S.; NUNES, C.A. The chemical, thermal and textural characterization of fractions from Macauba kernel oil. Food Research International, New York, v.130, p.108925, 2020.
  • MALHOTRA, A.; KAHLON, P.; DONOHO, T.; DOYLE, I.C. Pharmacogenomic considerations in the treatment of the pediatric cardiomyopathy called Barth syndrome. Recent Patents on Biotechnology, Saif Zone, v.8, n.2, p.136-143, 2014.
  • MALLAMPATI, R.; PATLOLLA, R.R.; AGARWAL, S.; BABU, R.J.; HAYDEN, P.; KLAUSNER, M.; SINGH, M.S. Evaluation of EpiDerm full thickness-300 (EFT-300) as an in vitro model for skin irritation: studies on aliphatic hydrocarbons. Toxicology In Vitro, Oxford, v.24, n.2, p.669-676, 2010.
  • MANILAL, A.; SUJITH, S.; SABARATHNAM, B.; KIRAN, G.S.; SELVIN, J.; SHAKIR, C.; LIPTON, A.P. Bioactivity of the red algae Asparagopsis taxiformis collected from the southwestern coast of India. Brazilian Journal of Oceanography, São Paulo, v.58, n.2, p.93-100, 2010.
  • MANOSROI, A.; JANTRAWUT, P.; SAINAKHAM ,M.; MANOSROI, W.; MANOSROI, J. Anticancer activities of the extract from Longkong (Lansium domesticum) young fruits. Pharmaceutical Biology, Lisse, v.50, n.11, p.1397-1407, 2012.
  • MARGRET, A.A.; BEGUM, T.N.; PARTHASARATHY, S.; SUVAITHENAMUDHAN, S . Strategy to employ clitoria ternatea as a prospective brain drug confronting Monoamine Oxidase (MAO) against neurodegenerative diseases and depression. Natural Products and Bioprospecting, Heidelberg, v.5, n.6, p.293-306, 2015.
  • MARUYAMA, H.; AMANUMA, T.; TSUTSUMI, M.; TSUJIUCHI, T.; HORIGUCHI, K.; DENDA, A.; KONISHI, Y. Inhibition by catechol and di(2-ethylhexyl)phthalate of pancreatic carcinogenesis after initiation with N-nitrosobis(2-hydroxypropyl)amine in Syrian hamsters. Carcinogenesis, Oxford, v.15, n.6, p.1193-1196, 1994.
  • MAURYA, V.K.; KUMAR, S.; BHATT, M.L.B.; SAXENA, S.K. Antiviral activity of traditional medicinal plants from Ayurveda against SARS-CoV-2 infection. Journal of Biomolecular Structure and Dynamics, Guilderland, p.1-17, 2020.
  • MONLEÓN, D.; MORALES, J.M.; BARRASA,A.; LÓPEZ, J.A.; VÁZQUEZ, C.; CELDA, B. Metabolite profiling of fecal water extracts from human colorectal cancer. NMR Biomedicine, London, v.22, n.3, p.342-348, 2009.
  • MORTON, J.F. Fruits of warm climates. Miami: Echo Point Books e Media 1987. 550 p.
  • Mozafari, A.A.; Vafaee, Y.; Shahyad, M. Phytochemical composition and in vitro antioxidant potential of Cynodon dactylon leaf and rhizome extracts as affected by drying methods and temperatures. Journal of Food Science and Technology, Mysore, v.55, n.6, p.2220-2229, 2018.
  • MURUGAN, K.; SEKAR, K.; SANGEETHA, S.; RANJITHA, S.; SOHAIBANI, SA. Antibiofilm and quorum sensing inhibitory activity of Achyranthes aspera on cariogenic Streptococcus mutans: An in vitro and in silico study. Pharmaceutical Biology, London, v.51, n.6, p.728-736, 2013.
  • NARKHEDE, R.R.; PISE, A.V.; CHEKE, R.S.; SHINDE. S;D. Recognition of natural products as potential inhibitors of COVID-19 Main Protease (Mpro): in-silico evidences. Natural Products and Bioprospecting, Heidelberg, v.10, n.5, p.297-306, 2020.
  • NASEER, S.; LONE, S.H.; LONE, J.A.; KHUROO, M.A.; BHAT, K.A. LC–MS guided isolation, quantification and antioxidant evaluation of bioactive principles from Epimedium elatum. Journal of Chromatography B, Amsterdam, v.989, p.62-70, 2015.
  • NESKE, A.; RUIZ HIDALGO, J.; CABEDO, N.; CORTES, D. Acetogenins from Annonaceae family. Their potential biological applications. Phytochemistry, London, v.174, p.112332, 2020.
  • NODA, A.; SHIBATA, T.; HAYAKAWA, T.; KONDO, T.; NAGAI, K.; HAMANO, H. Pancreatic stone dissolution with dimethadione (DMO). II. Roentgenological follow-up study in canine experimental pancreatic stones. Nihon Shokakibyo Gakkai Zasshi, Tokyo, v.81, n.2, p.254-262, 1984.
  • NWAEHUJOR, I.U.; OLATUNJI, G.A.; FABIYI, O.A.; AKANDE, S.A. Antioxidant and anti-inflammatory potential, and chemical composition of fractions of ethanol extract of Annona muricata leaf. Ruhuna Journal of Science, Matara, v.11, n.2, 2020.
  • OGUNLAKIN, A.D.; SONIBARE, M.A.; JABEEN, A. Antiproliferative and ameliorative effects of Tetracera potatoria and its constituent. Advances in Traditional Medicine, South Korea, 2020. (
  • OKAMOTO, M.; ROSENBERG, H.C.; BOISSE, N.R. Evaluation of anticonvulsants in barbiturate withdrawal. The Journal of Pharmacology and Experimental Therapeutics, Baltimore, v.202, n.2, p.479-489, 1977.
  • OLIVEIRA-TINTINO, C.D.M.; PESSOA, R.T.; FERNANDES, M.N.M.; ALCÂNTARA, I.S.; DA SILVA, B.A.F.; DE OLIVEIRA, M.R.C.; MARTINS, A.O.B.P.B.; DA SILVA, M.D.S.; TINTINO, S.R.; RODRIGUES, F.F.G.; DA COSTA, J.G.M.; DE LIMA, S.G.; KERNTOPF, M.R.; DA SILVA, T.G.; DE MENEZES, I.R.A. Anti-inflammatory and anti-edematogenic action of the Croton campestris A. St.-Hil (Euphorbiaceae) essential oil and the compound ß-caryophyllene in vivo models. Phytomedicine, Stuttgart, v.41, p.82-95, 2018.
  • PETROPOULOS, S.A.; FERNANDES, A., CALHELHA, R.C.; DANALATOS, N.; BARROS, L.; FERREIRA, I.C.F.R. How extraction method affects yield, fatty acids composition and bioactive properties of cardoon seed oil? Industrial Crops and Products, Amsterdam, v.124, p.459-465, 2018.
  • PHUA, L.C.; CHUE, X.P.; KOH, P.K.; CHEAH, P.Y.; HO, H.K.; CHAN. E.C. Non-invasive fecal metabonomic detection of colorectal cancer. Cancer Biology e Therapy, Georgetown, v.15, n.4, p.389-397, 2014.
  • PICCOLO, B.D.; GRAHAM, J.L.; STANHOPE, K.L.; FIEHN, O.; HAVEL, P.J.; ADAMS, S.H. Plasma amino acid and metabolite signatures tracking diabetes progression in the UCD-T2DM rat model. American Journal of Physiology. Endocrinology and Metabolism, Bethesda, v.310, n.11, p.E958-969, 2016.
  • POLITI, L.; MARI, F.; FURLANETTO, S.; DEL BRAVO, E.; BERTOL, E. Determination of fatty acid ethyl esters in hair by GC-MS and application in a population of cocaine users. Journal of Pharmaceutical and Biomedical Analysis, Oxford, v.54, n.5, p.1192-1195, 2011.
  • POUDEL, A.; SATYAL, P.; SETZER, W.N. Composition and bioactivities of the leaf essential oil of Ficus religiosa Linn. American Journal of Essential Oils and Natural Products, New Delhi, v.2, n.3, p.16-17, 2015.
  • RABÊLO, S.V.; OLIVEIRA, F.G.D.S.; DE LIRA, M.M.C.; DUTRA, L.M. Non-polar chemical constituents of atemoya and evaluation of the cytotoxic and antimicrobial activity. Phyton, Horn, v.90, n.3, p.921, 2021.
  • RITCHIE, S.A.; AHIAHONU, P.W.; JAYASINGHE, D.; HEATH, D.; LIU, J.; LU, Y.; JIN, W.; KAVIANPOUR, A.; YAMAZAKI, Y.; KHAN, A.M.; HOSSAIN, M.; SU-MYAT, K.K.; WOOD, P.L.; KRENITSKY, K.; TAKEMASA, I.; MIYAKE, M.; SEKIMOTO, M.; MONDEN, M.; MATSUBARA, H.; NOMURA, F.; GOODENOWE, D.B. Reduced levels of hydroxylated, polyunsaturated ultra long-chain fatty acids in the serum of colorectal cancer patients: implications for early screening and detection. BMC Medicine, London, v.8, p.13, 2010.
  • RUPPRECHT, J.K.; CHING-JER, C.; CASSADY, J.; KENNETH, M.; WEISLEDER, D. Asimicin, a new cytotoxic and pesticidal acetogenin from the pawpaw, Asimina triloba (Annonaceae). Heterocycles, Sendai, v.24, n.5, p.1197-1201, 1986.
  • SALES-CAMPOS, H.; SOUZA, P.R.; PEGHINI, B.C.; DA SILVA, J.S.; CARDOSO, C.R. An overview of the modulatory effects of oleic acid in health and disease. Mini Reviews in Medicinal Chemistry, Hilversum, v.13, n.2, p.201-210, 2013.
  • SHAROPOV, F.; SATYAL, P.; WINK, M. The chemical composition and biological activities of essential oil from the leaves of philadelphus x purpureomaculatus lemoine. Pharmaceutical Chemistry Journal, New York, v.54, n.4, p.386-388, 2020.
  • SHENG, Z.; JIAN, R.; XIE, F.; CHEM, B.; ZHANG, K.; LI, D.; CHEM W.; HUANG, C.; ZHANG, T. Screening of larvicidal activity of 53 essential oils and their synergistic effect for the improvement of deltamethrin efficacy against Aedes albopictus. Industrial Crops and Products, Amsterdam, v.145, p.112131, 2020.
  • SHEU, M.Y.; FOWLER, A.J.; KAO, J.; SCHMUTH, M.; SCHOONJANS, K.; AUWERX, J.; FLUHR, J.W.; MAN. M.Q.; ELIAS. P.M.; FEINGOLD. K.R. Topical peroxisome proliferator activated receptor-alpha activators reduce inflammation in irritant and allergic contact dermatitis models. The Journal of Investigative Dermatology, Baltimore, v.118, n.1, p.94-101, 2002.
  • SHOBANA, S. GOPALAKRISHNAN, V.; MOHANDASS, R. Antibacterial activity of garlic varieties (ophioscordon and sativum) on enteric pathogens. Current Research Journal of Biological Sciences, New York, v.1, n.3, p.123-126, 2009.
  • SINHA, R.; AHN, J.; SAMPSON, J.N.; SHI, J.; YU, G.; XIONG, X.; HAYES, RB.; GOEDERT, J.J. Fecal microbiota, fecal metabolome, and colorectal cancer interrelations. PLoS One, San Francisco, v.11, n.3, p.e0152126, 2016.
  • SIQUEIRA, C.A.; SERAIN, A.F.; PASCOAL, A.C.; ANDREAZZA, N.L.; DE LOURENÇO, C.C.; RUIZ, A.L.; DE CARVALHO, J.E.; DE SOUZA, A.C.; MESQUITA, J.T.; TEMPONE, A.G.; SALVADOR, M.J. Bioactivity and chemical composition of the essential oil from the leaves of Guatteria australis A.St.-Hil. Natural Product Research, Milton Park, v.29, n.20, p.1966-1969, 2015.
  • SOUZA, M.M.C.; BEVILAQUE C.M.L.; MORAIS, S.M.; COSTA, C.T.C.; SILVA, A.R.A.; BRAZ FILHO, R. Anthelmintic acetogenin from Annona squamosa L. seeds. Anais da Academia Brasileira de Ciências, São Paulo, v.80, n.2, p.271-277, 2008.
  • SPALDING, J.W.; FRENCH, J.E.; STASIEWICZ, S.; FUREDI-MACHACEK, M.; CONNER, F.; TICE, R.R.; TENNANT, R.W. Responses of transgenic mouse lines p53(+/-) and Tg.AC to agents tested in conventional carcinogenicity bioassays. Toxicological Science, Orlando, v.53, n.2, p.213-223, 2000.
  • STEFANI, T.; GARZA-GONZÁLEZ, E.; RIVAS-GALINDO, V.M.; RIOS, M.Y.; ALVAREZ, L.; CAMACHO-CORONA, M.D.R. Hechtia glomerata Zucc: phytochemistry and activity of its extracts and major constituents against resistant bacteria. Molecules, Basel, v.24, n.19, 2019.
  • STOPIGLIA, C.D.; VIEIRA, F.J.; MONDADORI, A.G.; OPPE, T.P.; SCROFERNEKER, M.L. In vitro antifungal activity of dihydroxyacetone against causative agents of dermatomycosis. Mycopathologia, Dordrecht, v.171, n.4, p.267-271, 2011.
  • SURESH, A.; RAMASAMY, P.; THANGARAJ, R.; OSCAR, F.; BALDEV, E.; DHARUMADURAI, D.; THAJUDDIN, N. Microalgal fatty acid methyl ester a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Disease, Singapor, v.4, p.S979-S984, 2014
  • SWANTARA, M.D.; RITA, W.S.; SUARTHA, N.; AGUSTINA, K.K. Anticancer activities of toxic isolate of Xestospongia testudinaria sponge. Veterinary World, Rajkot, v.12, n.9, p.1434-1440, 2019.
  • TAECHOWISAN, T.; SINGTOTONG, C.; PHUTDHAWONG, W.S. Antibacterial and Antioxidant Activities of Acetogenins from Streptomyces sp. VE2; An Endophyte in Vernonia cinerea (L.) Less. Journal of Applied Pharmaceutical Science, Gwalior, v.6, n.8, p.67-72, 2016.
  • TAMFU, A.N.; TAGATSING FOTSING, M.; TALLA, E.; JABEEN, A.; MBAFOR TANYI, J.; SHAHEEN, F. Bioactive constituents from seeds of Annona Senegalensis Persoon (Annonaceae). Natural Product Research, Milton Park, v.35, n.10, p.1746-1751, 2021.
  • TANG, R.; ZHANG, F.; KONE, N.G.; CHEN, J-H.; ZHU, F.; HAN, R-C.; LEI, C-L.; KENIS, M.; HUANG, L-Q.; WANG, C-Z. Identification and testing of oviposition attractant chemical compounds for Musca domestica. Scientific Reports, London, v.6, n.1, p.33017, 2016.
  • TANG, W.; BOREL, A.G.; FUJIMIYA, T.; ABBOTT, F.S. Fluorinated analogues as mechanistic probes in valproic acid hepatotoxicity: hepatic microvesicular steatosis and glutathione status.
  • TEAL, P.E.; HEATH, R.R.; TUMLINSON, J.H.; MCLAUGHLIN, J.R. Identification of a sex pheromone ofHeliothis subflexa (GN.) (Lepidoptera: Noctuidae) and field trapping studies using different blends of components. Journal of Chemical Eecology, New York, v.7, n.6, p.1011-1022, 1981.
  • TOELZER, C.; GUPTA, K.; YADAV, S.K.N.; BORUCU, U.; DAVIDSON, A.D.; KAVANAGH WILLIAMSON, M.; SHOEMARK, D.K.; GARZONI. F.; STAUFER. O.; MILLIGAN. R.; CAPIN. J.; MULHOLLAND. A.J.; SPATZ, J.; FITZGERALD, D.; BERGER, I.; SCHAFFITZEL, C. Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein. Science, London, v.370, n.6517, p.725-730, 2020.
  • TORIYAMA-BABA, H.; IIGO, M.; ASAMOTO, M.; IWAHORI, Y.; PARK, C.B.; HAN, B.S.; TAKASUKA, N.; KAKIZOE T.; ISHIKAWA, C.; YAZAWA, K.; ARAKI, E.; TSUDA, H. Organotropic chemopreventive effects of n-3 unsaturated fatty acids in a rat multi-organ carcinogenesis model. Japanese Journal of Cancer Research, Tokyo, v.92, n.11, p.1175-1183, 2001.
  • ULBRICHT, C.E. An Evidence-based systematic review of beta-sitosterol, sitosterol (22,23- dihydrostigmasterol, 24-ethylcholesterol) by the natural standard research collaboration. Journal of Dietary Supplements, New York, v.13, n.1, p.35-92, 2016.
  • VILA-NOVA, N.S.; MORAIS, S.M.; LYEGHYNA, M.J.C.F.; MACHADO, K.A.; BEVILÁQUALGOR, C.M.L.; COSTA, R.S.; BRASIL, N.V.G.P.S.; ANDRADE JUNIOR, H.F. Leishmanicidal activity and cytotoxicity of compounds from two Annonacea species cultivated in Northeastern Brazil. Revista da Sociedade Brasileira de Medicina Tropical, Uberaba, v.44, n.5, p.567-571, 2011.
  • WALKER, C.I.B.; OLIVEIRA, S.M.; TONELLO, R.; ROSSATO, M.F.; DA SILVA BRUM, E.; FERREIRA, J.; TREVISAN, G. Anti-nociceptive effect of stigmasterol in mouse models of acute and chronic pain. Naunyn-Schmiedeberg's Archives of Pharmacology, Berlin, v.390, n.11, p.1163-1172, 2017.
  • WANG, J.; ZHANG, X.; OMARINI, A.N.; LI, B. Virtual screening for functional foods against the main protease of SARS-CoV-2. Journal of Food Biochemistry, Oxford, 2020. Disponível em: https://doi.org/10.1111/jfbc.13481.
  • WEIR, T.L.; MANTER, D.K.; SHEFLIN, A.M.; BARNETT, B.A.; HEUBERGER, A.L.; RYAN. EP. Stool microbiome and metabolome differences between colorectal cancer patients and healthy adults. PLoS One, San Francisco, v.8, n.8, p.e70803, 2013.
  • WOYKE S.; RAUCH S.; STRÖHLE M.; GATTERER H. Modulation of Hb-O2 affinity to improve hypoxemia in COVID-19 patients. Clinical Nutrition, Edinburgh, v.40, n.1, p.38-39, 2021
  • WU, C.F.; LI, C.L.; SONG, H.R.; ZHANG, H.F.; YANG, J.Y.; WANG, Y.L. Selective effect of oleamide, an endogenous sleep-inducing lipid amide, on pentylenetetrazole-induced seizures in mice. The Journal of Pharmacy and Pharmacology, London, v.55, n.8, p.1159-1162, 2003.
  • WU, Y.C.; CHANG, F.R.; CHEN, C.Y. Tryptamine-Derived Amides and Alkaloids from the Seeds of Annona atemoya. Journal of Natural Products, Cincinnati, v.68, n.3, p.406-408, 2005.
  • XU, F.J.; YUAN, S.; SIMO, P.; KANG, E.; NEOH, K.Antimicrobial surfaces of viologen-quaternized poly((2-dimethyl amino)ethyl methacrylate)-Si(100) hybrids from surface-initiated atom transfer radical polymerization. NanoBiotechnology, Totowa, v.2, n.3, p.123-134, 2006.
  • YAMAGATA, N.; FUJIWARA-TSUJII, N.; YAMAOKA, R.; MIZUNAMI, M. Pheromone communication and the mushroom body of the ant, Camponotus obscuripes (Hymenoptera: Formicidae). Naturwissenschaften, Berlin, v.92, n.11, p.532-536, 2005.
  • YANO, M.; IKEDA, M.; ABE, K.; DANSAKO, H.; OHKOSHI, S.; AOYAGI, Y.; KATO, N. Comprehensive analysis of the effects of ordinary nutrients on hepatitis C virus RNA replication in cell culture. Antimicrobial Agents and Chemotherapy, Washington, v.51, n.6, p.2016-2027, 2007.
  • ZAFRA-POLO, M.C.; FIGADÈRE, B.; GALLARDO, T.; TORMO, J.R.; CORTES, D. Natural acetogenins from Annonaceae, synthesis and mechanisms of action. Phytochemistry, New York, v.48, n.7, p.1087-1117, 1998.
  • ZAHID, M.; ARIF, M.; RAHMAN, M.A.; SINGH, K.; MUJAHID, M. Solvent extraction and gas chromatography–mass spectrometry analysis of Annona squamosa L. seeds for determination of bioactives, fatty acid/fatty oil composition, and antioxidant activity. Journal of Dietary Supplements, London, v.15, n.5, p.613-623, 2018.
  • ZHAO, L.; CHEN, J.; SU, J.; LI, L.; HU, S.; LI, B.; ZHANG, X.; XU, Z.; CHEN, T. In vitro antioxidant and antiproliferative activities of 5-hydroxymethylfurfural. Journal of Agricultural and Food Chemistry, Washington, v.61, n.44, p.10604-10611, 2013.
  • ZHAO, Y.; WANG, B.; WANG, G.; HUANG, L.; YIN, T,; LI, X.; WANG, Q.; JING, J.; ZHANG, Y.. Functional interaction between plasma phospholipid fatty acids and insulin resistance in leucocyte telomere length maintenance. Lipids in Health and Disease, London, v.19, n.1, p.11, 2020.
  • ZHUANG, Z.; ZHONG, X.; ZHANG, H.; CHEN, H.; HUANG, B.; LIN, D.; WEN, J. Exploring the potential mechanism of shufeng jiedu capsule for treating COVID-19 by comprehensive network pharmacological approaches and molecular docking validation. Combinatorial Chemistry e High Throughput Screening, Hilversum, v.23, p.1-20, 2020.

Publication Dates

  • Publication in this collection
    07 Oct 2021
  • Date of issue
    2021

History

  • Received
    04 Mar 2021
  • Accepted
    08 Sept 2021
Sociedade Brasileira de Fruticultura Via de acesso Prof. Paulo Donato Castellane, s/n , 14884-900 Jaboticabal SP Brazil, Tel.: +55 16 3209-7188/3209-7609 - Jaboticabal - SP - Brazil
E-mail: rbf@fcav.unesp.br