Abstract
The upscaling of Xylaria cubensis, an endophyte of Eugenia brasiliensis (Myrtaceae), in PDB medium led to the isolation of known compounds including cytochalasin D (7) and cytochalasin C (8), which exhibited relatively higher phytotoxic activity in all the concentrations tested compared to the commercial herbicide GOAL®. Besides the aforementioned metabolites, one diketopiperazine (DKP) and two isocoumarins were isolated and two DKPs were also identified in the mixture. The structures were determined by 1D and 2D 1H NMR, MS analyses and were compared with the literature.
Keywords:
endophytic fungi; Xylaria cubensis; cytochalasins; phytotoxic activity
INTRODUCTION
The discovery of natural products from the microbial universe has much to be explored11 Cragg, G. M.; Grothaus, P. G.; Newman, D.; J. Chemical Rev. 2009, 109, 3043. and within this context endophytic fungi are being seen as the new source of bioactive substances.22 Strobel, G. A.; Daisy, B.; Microbiol. Mol. Biol. Rev. 2003, 67, 502. Endophytic fungi have the capacity to produce a wide variety of enzymes and secondary metabolites, which exhibit various biological activities.33 Corrêa, R. C. G.; Rhoden, S. A.; Mota, T. R.; Azevedo, J. L.; Pamphile, J. A.; Souza, C. G. M.; Polizeli, M. L. T. M.; Bracht, A.; Peralta, R. M.; J. Ind. Microbiol. Biotechnol. 2014, 41, 1478. Currently, microorganisms are one of the most important life forms, which provides biotechnological tools for the transformation of organic matter, as well as the production of useful chemicals and biochemicals.44 Ióca, L. P.; Allard, P. M.; Berlinck, R. G. S.; Nat. Prod. Rep. 2014, 31, 675.
The search for new phytotoxic compounds is the most importance for humanity, since, more and more plantations are harmed by weeds, reducing the availability of food for the populations. To combat them, synthetic herbicides are used in large quantities, which cause environmental and ecological impacts. In this context the sustainable control of weeds by bioherbicides is necessary. Although all efforts to obtain bioherbicides derived from natural sources, only thirteen are available in the market.55 Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J. P.; Crop Prot. 2016, 87, 49. The search for new bioherbicides, coupled with data from the literature, shows that natural products such as cytochalasins isolated from endophytic fungi present phytotoxic activity, and these become a promising source to explore new metabolites for the control of weeds offering food and environmental safety.
Eugenia brasiliensis (Myrtaceae), known in Brazil as “grumixama” or Brazilian cherry, grows on the coast of the Brazilian forests and it is known to be endowed with antioxidant and anti-inflammatory capacity.66 Fischer, D. C. H.; Limberger, R. P.; Henriques, A. T.; Moreno, P. R. H.; J. Essent. Oil Res. 2005, 17, 500.,77 Teixeira, L. L.; Bertoldi, F. C.; Lajolo, F. M.; Hassimotto, N. M. A.; J. Agric. Food Chem. 2015, 63, 5427. This plant species exhibits a wide range of endophytes, among them Xylaria cubensis which was selected for chemical and biological investigations due its phytotoxic, antifungal and anticholinesterasic activities. Chemical investigations of the X. cubensis revealed new natural products as sesquiterpenoids, diterpenoids, aliphatic derivative and isocoumarin.88 Fan, N. W.; Chang, H. S.; Cheng, M. J.; Hsieh, S. Y.; Liu, T. W.; Yuan, G. F.; Chen, I. S.; Helv. Chim. Acta 2014, 97, 1699. Sawadsitang et al.99 Sawadsitang, S.; Mongkolthanaruk, W.; Suwannasai, N.; Sodngam, S.; Nat. Prod. Lett. 2015, 29, 2036. reported that Xylaria cf. cubensis produced cytochalasin D, tryptoquivaline L, fiscalin C, epi-fiscalin C, ergosterol, ergosterol peroxide, chevalone C, xylaranol B and helvolic acid. Among these substances the cytochalasin D and ergosterol peroxide highlighted by highly cytotoxicity against NCI-H187 cancer cell line. In addition, the substances chevalone C and helvolic acid showed antimalarial activity.99 Sawadsitang, S.; Mongkolthanaruk, W.; Suwannasai, N.; Sodngam, S.; Nat. Prod. Lett. 2015, 29, 2036.
The isolated cytochalasins D and C in this work presented a pronounced phytotoxic potential relative to the inhibition of wheat coleoptiles growth, regarded an important activity when it comes to combating weeds. The high yield of the cytochalasins produced by X. cubensis and its already described phytotoxicity motivated its study.
EXPERIMENTAL
General information
The NMR spectra were recorded on a Bruker 300 Fourier (7,1 T) and a Bruker Avance III HD 600 (14,1 T) spectrometer using the non-deuterated residual signal (DMSO and CD3OD) as reference. Mass spectra of high resolution were obtained on a spectrometer Bruker Maxis Impact-ESI-QqTOF-MS. The mass spectra of low resolution were obtained on a spectrometer Thermo Scientific LCQ Fleet Ion Trap with electrospray ionization source (ESI). Optical rotation values were measured on a Perkin-Elmer polarimeter, model 241, at the sodium D line (λ = 589 nm). TLC analyses were performed using Macherey-Nagel gel 60 G F254. Spots on TLC plates were visualized under UV light and by spraying with anisaldehyde – H2SO4 reagent followed by heating at 120 °C. Columns chromatographies (CC) were performed over reversed-phase silica gel 50-60 mesh (Macherey-Nagel). Analytical HPLC was performed on a Shimadzu (Shimadzu SPD-M20A) with diode array ultraviolet (DAD) detector, using a Phenomenex Gemini (C-18) (250 x 4.60 mm, 5 mM) analytical column. Preparative HPLC was performed on Shimadzu (Shimadzu SPD-M20A), using a Phenomenex Luna C-18 silica (250 x 10.0 mm; 5 µm) semi-preparative column.
Fungal isolation and identification
The endophytic fungus Xylaria cubensis was isolated from healthy branches of Eugenia brasiliensis, which were subjected to surface
sterilization. The branches were first washed with running water and then immersed in a 1% aqueous sodium hypochlorite solution for 5 min and subsequently in 70% aqueous EtOH for 3 min. Thereafter, the branches were immersed in sterile H2O for 15 min. The sterilized branches were cut into 2 x 2 cm pieces and deposited approximately 3 to 4 pieces in each Petri dish containing PDA (potato-dextrose agar) and gentamicin sulfate antibiotic (66,7 µg mL-1) to inhibit the growth of endophytic bacteria. The material was incubated at 25 °C for 10 days and the endophyte Xylaria cubensis was isolated by successive replication and preserved in sterile water.1010 Teles, H. L.; Sordi, R.; Silva, G. H.; Gamboa, I. C.; Bolzani, V. S.; Pfenning, L. H.; Abreu, L. M.; Neto, C. M. C.; Young, M. C. M.; Araujo, A. R.; Phytochemistry 2006, 67, 2690.Eugenia brasiliensis was collected in the Horto of the School of Pharmaceutical Sciences, São Paulo State University - Araraquara-UNESP, Brazil, in May 2012 (21° 48’ 52,44 S 48° 12’ 7,13 W). The fungus was identified by Dr. Ludwig H. Pfenning using alpha-actin gene and deposited in the GenBank database under the access number KY006658.
Cultivation and isolation of metabolites
The endophytic fungus Xylaria cubensis was cultivated in seventeen Erlenmeyer flasks (500 mL) each containing 0.8 g of potato starch, 4.0 g dextrose (PDB) and 300 mL distilled water, which were autoclaved at 121 °C for 20 min. Following sterilization, the culture media were inoculated with the endophyte and incubated in static mode at 25 °C for 28 days. After the period of incubation, the fermentation broth was separated from the mycelium by vacuum filtration and subjected to liquid-liquid partition with EtOAc (3 × 2.5 L). The solvent was evaporated, yielding a crude EtOAc extract (641.3 mg).
This crude extract was fractioned by column chromatography (CC) using reversed phase silica gel and eluted with a H2O:CH3OH gradient (30-100% CH3OH (v/v)) resulting in six fractions (Fr1-Fr6). Fraction Fr1 (290 mg) was further fractioned using 80 mg of the sample, reversed phase and semi-preparative HPLC [λ = 220 and 254 nm, 4.0 mL min-1, H2O:CH3OH gradient (95:05-25:75-0:100-95:05 v/v)], leading to fractions 1 (1.3 mg), 2 (2.9 mg), 3 and 4 (3.1 mg). Fraction Fr2 (200.1 mg) was further fractioned using 80 mg of sample, reversed phase and prep. HPLC [λ = 254 nm, 10.0 mL min-1, H2O:CH3OH gradient (70:30-28:72-0:100-70:30 v/v)], yielding fractions 5 (3.5 mg), 6 (1.0 mg) and 7 (24.0 mg). Fr3 (80.0 mg) was further fractioned using reversed phase and semiprep. HPLC [λ = 220 and 254 nm, 4.0 mL min-1, H2O:CH3OH gradient (40:60-0:100-40:60 v/v)], yielding fractions 7 (1.7 mg) and 8 (3.5 mg).
Cyclo(L-Pro-L-Tyr) (2)
Yellow powder. [α]D37 –20 (c 0.3, CH3OH), UV (CH3OH) λmax 274 nm. The 1H and 13C NMR spectroscopic data were found to be consistent with those reported in the literature.1111 Jayatilake, G. S.; Thornton, M. P.; Leonard, A. C.; Grimwade, J. E.; Baker, B. J.; J. Nat. Prod. 1996, 59, 296.
(–)-5-carboxy-6-hydroxy-3-methyl-3,4-dihydroisocumarin (5)
Yellow powder. [α]D38 –44 (c 0.03, CH3OH). UV (CH3OH) λmax 249, 342. The 1H and 13C NMR spectroscopic data were found to be consistent with those reported in the literature.1212 Anderson, J. R.; Edwards, R. L.; Whalley, A. J. S.; J. Chem. Soc.Perkin, Trans. I 1983, 2192.,1313 Oliveira, C. M.; Regasini, L. O.; Silva, G. H.; Pfenning, L. H.; Young, M. C. M.; Berlinck, R. G. S.; Bolzani, V. S.; Araujo, A. R.; Phytochemistry Lett. 2011, 4, 96.
(R)-7-hydroxymelein (6)
Yellow powder. [α]D37 –25 (c 0.06, CHCl3). UV (CH3OH) λmax 224, 309. The 1H and 13C NMR spectroscopic data were found to be consistent with those reported in the literature.1313 Oliveira, C. M.; Regasini, L. O.; Silva, G. H.; Pfenning, L. H.; Young, M. C. M.; Berlinck, R. G. S.; Bolzani, V. S.; Araujo, A. R.; Phytochemistry Lett. 2011, 4, 96.
Cytochalasin D (7)
White crystal. [α]D39 +26 (c 0.25, CH3CH2OH). UV (CH3OH) λmax 284 nm. The 1H and 13C NMR spectroscopic data were found to be consistent with those reported in the literature.1414 Cafêu, M. C.; Silva, G. H.; Teles, H. L.; Bolzani, V. S.; Araujo, A. R.; Young, M. C. M.; Pfenning, L. H.; Quim. Nova 2005, 28, 995. HRESIMS m/z 508.2742 ([M+H]+, C30H37O6N).
Cytochalasin C (8)
Yellow powder. [α]D38 –8 (c 0.25, CH3CH2OH). UV (CH3OH) λmax 282 nm. The 1H and 13C NMR spectroscopic data were found to be consistent with those reported in the literature.1515 Cole, R. J.; Jarvis, B. B.; Schweikert, M. A.; In Handbook of Secondary Fungal Metabolites, Academic Press: San Diego, California. 2003. HRESIMS m/z 508.2682 ([M+H]+, C30H37O6N).
Phytotoxic activity on wheat coleoptiles (Triticum aestivum L.)
Phytotoxic activity was assessed in compounds 7 and 8 using wheat coleoptile bioassay (Triticuma estivum L. variety Pizon). The other substances isolated in this work did not present sufficient mass for the biological tests. First, wheat caryopses were germinated in distilled water and kept in a growth chamber at 25 °C for 4 days in the absence of light, as described by Hancock et al.1616 Hancock, C. R.; Barlow, H.W.; Lacey, H. J.; J. Exp. Bot. 1964, 15, 176. Subsequently, coleoptiles were selected and cut with a Van der Weij guillotine under green light to avoid the stagnation of cell growth.1717 Macías, F. A.; Lacret, R.; Varela, R. M.; Nogueiras, C.; Molinillo, J. M. G.; J. Chem. Ecol. 2010, 36, 404.,1818 Nitsch, J. P.; Nitsch, C.; Plant Physiol. 1956, 31, 111. The apices of the coleoptiles were discarded, while the next 4 mm was cut and placed in test tubes containing a buffer solution (pH 5.6) composed of sucrose (20 g L-1), citric acid monohydrate (1.05 g L-1) and dipotassium hydrogen (2.9 v).1717 Macías, F. A.; Lacret, R.; Varela, R. M.; Nogueiras, C.; Molinillo, J. M. G.; J. Chem. Ecol. 2010, 36, 404. 2 mL of the test solutions in DMSO at concentrations of 0.8, 0.4 and 0.2 mg mL-1 and five coleoptiles were added to each tube. The commercial herbicide GOAL® (Oxyfluorfen, 240 g.i.a L-1) was used as positive control at the same concentrations of the fractions while the buffer solution with DMSO was employed as negative control. These tubes were randomly divided and maintained at 25 °C in the dark under a constant rotation of 6 rpm, with three replicates per treatment.1717 Macías, F. A.; Lacret, R.; Varela, R. M.; Nogueiras, C.; Molinillo, J. M. G.; J. Chem. Ecol. 2010, 36, 404. After 24 hours, the coleoptiles were removed from the tubes, photographed and measured with the aid of image scanning software (Image J.). Data were evaluated by the percentage of inhibition or stimulation compared to the negative control, where 0 % denotes the control length, while positive values imply growth stimulation and negative values imply inhibition.1919 Novaes, P.; Imatomi, M.; Varela, R. M.; Molinillo, J. M.; Lacret, R.; Gualtieri, S. C.; Macías, F. A.; Chemistry & Biodiversity 2013, 10, 1548. Statistical analyses: All the results were tested for normality and homogeneity using the Shapiro-Wilk and Levene tests, respectively. Normal homogeneous data were analyzed by ANOVA, followed by Tukey test (p < 0.05) using PAST version 2.5.
RESULTS AND DISCUSSIONS
The compounds (1-8) (Figure 1) were obtained from the EtOAc extract. It should be noted that these compounds were not detected in PDB medium in the absence of the fungus (X. cubensis). The spectral data (MS, 1H and 13C NMR spectra) of compounds 1-8 were found to be identical to those reported in the literature.66 Fischer, D. C. H.; Limberger, R. P.; Henriques, A. T.; Moreno, P. R. H.; J. Essent. Oil Res. 2005, 17, 500.
7 Teixeira, L. L.; Bertoldi, F. C.; Lajolo, F. M.; Hassimotto, N. M. A.; J. Agric. Food Chem. 2015, 63, 5427.
8 Fan, N. W.; Chang, H. S.; Cheng, M. J.; Hsieh, S. Y.; Liu, T. W.; Yuan, G. F.; Chen, I. S.; Helv. Chim. Acta
2014, 97, 1699.-99 Sawadsitang, S.; Mongkolthanaruk, W.; Suwannasai, N.; Sodngam, S.; Nat. Prod. Lett. 2015, 29, 2036.,1111 Jayatilake, G. S.; Thornton, M. P.; Leonard, A. C.; Grimwade, J. E.; Baker, B. J.; J. Nat. Prod. 1996, 59, 296.,1313 Oliveira, C. M.; Regasini, L. O.; Silva, G. H.; Pfenning, L. H.; Young, M. C. M.; Berlinck, R. G. S.; Bolzani, V. S.; Araujo, A. R.; Phytochemistry Lett. 2011, 4, 96.
14 Cafêu, M. C.; Silva, G. H.; Teles, H. L.; Bolzani, V. S.; Araujo, A. R.; Young, M. C. M.; Pfenning, L. H.; Quim. Nova
2005, 28, 995.-1515 Cole, R. J.; Jarvis, B. B.; Schweikert, M. A.; In Handbook of Secondary Fungal Metabolites, Academic Press: San Diego, California. 2003.,2020 Domondon, D. L.; He, W.; Kimpe, N.; Höfte, M.; Poppe, J.; Phytochemistry
2004, 65, 187. The structures were identified as adenosine (1), cyclo(L-Pro-L-Tyr) (2), 5-carboxy-6-hydroxy-3-methyl-3,4-dihydroisocoumarin (5), 7-hydroxymelein (6), cytochalasin D (7) and cytochalasin C (8). In addition, two DKPs cyclo(Pro-Val) (3) and cyclo(Val-Tyr) (4) were also identified in the mixture.1111 Jayatilake, G. S.; Thornton, M. P.; Leonard, A. C.; Grimwade, J. E.; Baker, B. J.; J. Nat. Prod. 1996, 59, 296.,1313 Oliveira, C. M.; Regasini, L. O.; Silva, G. H.; Pfenning, L. H.; Young, M. C. M.; Berlinck, R. G. S.; Bolzani, V. S.; Araujo, A. R.; Phytochemistry Lett. 2011, 4, 96.
14 Cafêu, M. C.; Silva, G. H.; Teles, H. L.; Bolzani, V. S.; Araujo, A. R.; Young, M. C. M.; Pfenning, L. H.; Quim. Nova
2005, 28, 995.-1515 Cole, R. J.; Jarvis, B. B.; Schweikert, M. A.; In Handbook of Secondary Fungal Metabolites, Academic Press: San Diego, California. 2003.,2020 Domondon, D. L.; He, W.; Kimpe, N.; Höfte, M.; Poppe, J.; Phytochemistry
2004, 65, 187.,2121 Stark, T.; Hofmann, T.; J. Agric. Food Chem. 2005, 53, 7231. Adenosine (1) did not only exhibit potential DPPH-scavenging activities but was also found to stimulate seed germination of Raphanus sativus, Brassica napus and B. chinensis.2222 Ma, Y. T.; Qiao, L. R.; Shi, W. Q.; Zhang, A. L.; Gao, J. M.; Chem. Nat. Compd. 2010, 46, 506.,2323 Yuan, Y.; Tian, J. M.; Xiao, J.; Shao, Q.; Gao, J. M.; Nat. Prod. Res. 2014, 28, 281. The compound 2 has been reported to exhibit allelopathic and antibacterial activity apart from its ecological significance.2424 Wang, L.; Zheng, C. D.; Li, X. J.; Gao, J. M.; Zhang, X. C.; Wei, G. H.; Chem. Nat. Compd. 2011, 47, 1042. The DKPs are known to possess important biological activities including antiviral, antimicrobial, antitumor and allelopathic activities.2525 Martins, M. B.; Carvalho, I.; Tetrahedron
2007, 63, 9932.
26 Gendy, B. D. M.; Rateb, M. E.; Bioorg. Med. Chem. Lett. 2015, 25, 3128.-2727 Zhang, Q.; Wang, S. Q.; Tang, H. Y.; Li, X. J.; Zhang, L.; Xiao, J.; Gao, Y. Q.; Zhang, A. L.; Gao, J. M.; J. Agric. Food Chem. 2013, 61, 11452. The isocoumarins are likewise found to possess antioxidant, antiallergic, antimalarial, and cytotoxic activities. They also exhibit bioactive potential against phytopathogenic fungi and are used as drug prototypes for the treatment of Alzheimer’s disease.1313 Oliveira, C. M.; Regasini, L. O.; Silva, G. H.; Pfenning, L. H.; Young, M. C. M.; Berlinck, R. G. S.; Bolzani, V. S.; Araujo, A. R.; Phytochemistry Lett. 2011, 4, 96.,2828 Araujo, A. R.; Chapla, V. M.; Biasetto, C. R.; Zeraik, M.L.; Em Produtos Naturais Bioativos; Santos, L. C.; Furlan, M.; Amorim, M. R., eds.; Cultura Acadêmica: São Paulo 2016, cap. 7.,2929 Simic, M.; Paunovic, N.; Boric, I.; Randjelovic, J.; Vojnovic, S.; Runic, J. N.; Pekmezovic, M.; Savic, V.; Bioorg. Med. Chem. Lett. 2016, 26, 239.
Phytotoxic Activity
The cytochalasin D (7) and cytochalasin C (8) significantly inhibited wheat coleoptile growth at all the concentrations investigated (Figures 1S and 2S) compared to the negative control. The inhibition percentages of the compounds 7 and 8 were found to be higher compared to that of the commercial herbicide GOAL® (Oxyfluorfen 240 g mL-1) at all the concentrations tested. Tables S1 and S2 show average coleoptile growth under the effect of compounds 7 and 8 and the average coleoptile growth of the positive control (GOAL®) at the same concentrations. The average coleoptile growth for compounds 7 [10-3 mol L-1] and 8 [3.10-4 mol L-1] and [10-4 mol L-1] and GOAL® herbicide did not differ statistically.
This study confirms the phytotoxic potential of compounds 7 and 8 in wheat coleoptile elongation and their relevant usefulness in the control of weeds. Indeed, these results unfold possibilities for further studies. It is worth pointing out that the production of cytochalasin D, a bioherbicide potential, using X. cubensis was constituted by approximately 10% of crude extract in this study. Other studies reported in the literature have demonstrated that cytochalasin D presents relevant biological activities including antibiotic, antitumor, antifungal and phytotoxic activities.2828 Araujo, A. R.; Chapla, V. M.; Biasetto, C. R.; Zeraik, M.L.; Em Produtos Naturais Bioativos; Santos, L. C.; Furlan, M.; Amorim, M. R., eds.; Cultura Acadêmica: São Paulo 2016, cap. 7.
CONCLUSION
The present work has demonstrated that X. cubensis is an excellent producer of secondary metabolites derived from various biosynthetic pathways. This fungus produced isocoumarins, DKPs and cytochalasins, which are associated with numerous important biological activities. Clearly, further studies need to be conducted so as to confirm the phytotoxic activity of cytochalasins D and C. While synthetic herbicides have a high degree of toxicity to the environment and low degradation rates, contributing towards altering natural ecosystems, these metabolites could be positively exploited as future bioherbicides for the control of weeds offering environmental safety.
ACKNOWLEDGMENTS
The authors would like to express their sincerest gratitude and indebtedness to the Brazilian Research Funding Agencies - CNPq, grant no. 140980/2012-1 and FAPESP as part of CEPID/CIBFar, grant no. 2013/07600-3. CRB expresses her gratitude to the CNPq for PhD’s scholarship granted.
SUPPLEMENTARY MATERIAL
Tables 1S and 2S and Figures 1S and 2S and other data are available online.
REFERENCES
-
1Cragg, G. M.; Grothaus, P. G.; Newman, D.; J. Chemical Rev 2009, 109, 3043.
-
2Strobel, G. A.; Daisy, B.; Microbiol. Mol. Biol. Rev 2003, 67, 502.
-
3Corrêa, R. C. G.; Rhoden, S. A.; Mota, T. R.; Azevedo, J. L.; Pamphile, J. A.; Souza, C. G. M.; Polizeli, M. L. T. M.; Bracht, A.; Peralta, R. M.; J. Ind. Microbiol. Biotechnol 2014, 41, 1478.
-
4Ióca, L. P.; Allard, P. M.; Berlinck, R. G. S.; Nat. Prod. Rep 2014, 31, 675.
-
5Cordeau, S.; Triolet, M.; Wayman, S.; Steinberg, C.; Guillemin, J. P.; Crop Prot 2016, 87, 49.
-
6Fischer, D. C. H.; Limberger, R. P.; Henriques, A. T.; Moreno, P. R. H.; J. Essent. Oil Res 2005, 17, 500.
-
7Teixeira, L. L.; Bertoldi, F. C.; Lajolo, F. M.; Hassimotto, N. M. A.; J. Agric. Food Chem 2015, 63, 5427.
-
8Fan, N. W.; Chang, H. S.; Cheng, M. J.; Hsieh, S. Y.; Liu, T. W.; Yuan, G. F.; Chen, I. S.; Helv. Chim. Acta 2014, 97, 1699.
-
9Sawadsitang, S.; Mongkolthanaruk, W.; Suwannasai, N.; Sodngam, S.; Nat. Prod. Lett 2015, 29, 2036.
-
10Teles, H. L.; Sordi, R.; Silva, G. H.; Gamboa, I. C.; Bolzani, V. S.; Pfenning, L. H.; Abreu, L. M.; Neto, C. M. C.; Young, M. C. M.; Araujo, A. R.; Phytochemistry 2006, 67, 2690.
-
11Jayatilake, G. S.; Thornton, M. P.; Leonard, A. C.; Grimwade, J. E.; Baker, B. J.; J. Nat. Prod 1996, 59, 296.
-
12Anderson, J. R.; Edwards, R. L.; Whalley, A. J. S.; J. Chem. Soc.Perkin, Trans. I 1983, 2192.
-
13Oliveira, C. M.; Regasini, L. O.; Silva, G. H.; Pfenning, L. H.; Young, M. C. M.; Berlinck, R. G. S.; Bolzani, V. S.; Araujo, A. R.; Phytochemistry Lett 2011, 4, 96.
-
14Cafêu, M. C.; Silva, G. H.; Teles, H. L.; Bolzani, V. S.; Araujo, A. R.; Young, M. C. M.; Pfenning, L. H.; Quim. Nova 2005, 28, 995.
-
15Cole, R. J.; Jarvis, B. B.; Schweikert, M. A.; In Handbook of Secondary Fungal Metabolites, Academic Press: San Diego, California. 2003.
-
16Hancock, C. R.; Barlow, H.W.; Lacey, H. J.; J. Exp. Bot 1964, 15, 176.
-
17Macías, F. A.; Lacret, R.; Varela, R. M.; Nogueiras, C.; Molinillo, J. M. G.; J. Chem. Ecol 2010, 36, 404.
-
18Nitsch, J. P.; Nitsch, C.; Plant Physiol 1956, 31, 111.
-
19Novaes, P.; Imatomi, M.; Varela, R. M.; Molinillo, J. M.; Lacret, R.; Gualtieri, S. C.; Macías, F. A.; Chemistry & Biodiversity 2013, 10, 1548.
-
20Domondon, D. L.; He, W.; Kimpe, N.; Höfte, M.; Poppe, J.; Phytochemistry 2004, 65, 187.
-
21Stark, T.; Hofmann, T.; J. Agric. Food Chem 2005, 53, 7231.
-
22Ma, Y. T.; Qiao, L. R.; Shi, W. Q.; Zhang, A. L.; Gao, J. M.; Chem. Nat. Compd 2010, 46, 506.
-
23Yuan, Y.; Tian, J. M.; Xiao, J.; Shao, Q.; Gao, J. M.; Nat. Prod. Res 2014, 28, 281.
-
24Wang, L.; Zheng, C. D.; Li, X. J.; Gao, J. M.; Zhang, X. C.; Wei, G. H.; Chem. Nat. Compd 2011, 47, 1042.
-
25Martins, M. B.; Carvalho, I.; Tetrahedron 2007, 63, 9932.
-
26Gendy, B. D. M.; Rateb, M. E.; Bioorg. Med. Chem. Lett 2015, 25, 3128.
-
27Zhang, Q.; Wang, S. Q.; Tang, H. Y.; Li, X. J.; Zhang, L.; Xiao, J.; Gao, Y. Q.; Zhang, A. L.; Gao, J. M.; J. Agric. Food Chem 2013, 61, 11452.
-
28Araujo, A. R.; Chapla, V. M.; Biasetto, C. R.; Zeraik, M.L.; Em Produtos Naturais Bioativos; Santos, L. C.; Furlan, M.; Amorim, M. R., eds.; Cultura Acadêmica: São Paulo 2016, cap. 7.
-
29Simic, M.; Paunovic, N.; Boric, I.; Randjelovic, J.; Vojnovic, S.; Runic, J. N.; Pekmezovic, M.; Savic, V.; Bioorg. Med. Chem. Lett 2016, 26, 239.
Publication Dates
-
Publication in this collection
18 July 2019 -
Date of issue
May 2019
History
-
Received
18 Dec 2018 -
Accepted
29 Apr 2019 -
Published
16 May 2019