ABSTRACT
OBJECTIVE:
To test several weaning predictors as determinants of successful extubation after elective cardiac surgery.
METHODS:
The study was conducted at a tertiary hospital with 100 adult patients undergoing elective cardiac surgery from September to December 2014. We recorded demographic, clinical and surgical data, plus the following predictive indexes: static compliance (Cstat), tidal volume (Vt), respiratory rate (f), f/ Vt ratio, arterial partial oxygen pressure to fraction of inspired oxygen ratio (PaO2/FiO2), and the integrative weaning index (IWI). Extubation was considered successful when there was no need for reintubation within 48 hours. Sensitivity (SE), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (LR+), and negative likelihood ratio (LR-) were used to evaluate each index.
RESULTS:
The majority of the patients were male (60%), with mean age of 55.4±14.9 years and low risk of death (62%), according to InsCor. All of the patients were successfully extubated. Tobin Index presented the highest SE (0.99) and LR+ (0.99), followed by IWI (SE=0.98; LR+ =0.98). Other scores, such as SP, NPV and LR-were nullified due to lack of extubation failure.
CONCLUSION:
All of the weaning predictors tested in this sample of patients submitted to elective cardiac surgery showed high sensitivity, highlighting f/Vt and IWI.
Cardiac Surgical Procedures; Ventilator Weaning; Respiration, Artificial
INTRODUCTION
Cardiac surgery is a complex procedure that alters several mechanisms required for homeostasis, leading the patient to a critical condition. To ensure adequate recovery, intensive care are needed during post-operative period, including vital signs monitoring and mechanical ventilation (MV)[11 Alcade RV, Guaragna JC, Bodanese LC, Castro I, Sussenbach E, Noer R, et al. High dose of amiodarone in a short-term period reduces the incidence of postoperative atrial fibrillation and atrial flutter. Arq Bras Cardiol. 2006;87(3):236-40.,22 Bianco ACM, Timerman A, Paes AT, Gun C, Ramos RF, Freire RBP, et al. Prospective risk analysis in patients submitted to myocardial revascularization surgery. Arq Bras Cardiol. 2005;85(4):254-61.].
Ventilatory support is often removed right after admission to the intensive care unit (ICU), since the patient is lucid and has hemodynamic stability, receiving low doses of vasoactive drugs[33 Nozawa E, Kobayashi E, Matsumoto ME, Feltrim MIZ, Carmona MJC, Auler Júnior JAC, et al. Avaliação de fatores que influenciam no desmame de pacientes em ventilação mecânica prolongada após cirurgia cardíaca. Arq Bras Cardiol. 2003;80(3):301-5.
4 Gonçalves JQ, Martins RC, Andrade APA, Cardoso FPF, Melo MHO. Características do processo de desmame da ventilação mecânica em hospitais do Distrito Federal. Rev Bras Ter Intensiva. 2007;19(1):38-43.-55 Goldwasser R, Farias A, Freitas EE, Saddy F, Amado V, Okamoto V. Desmame e interrupção da ventilação mecânica. J Bras Pneumol. 2007;33(supl 2):128-36.]. However, sometimes patients need prolonged MV, which increases both the cost and the risk of complications[66 Lellouche F, Mancebo J, Jolliet P, Roeseler J, Schortgen F, Dojat M, et al. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med. 2006;174(8):894-900.,77 Carson SS, Bach PB, Brzozowski L, Leff A. Outcomes after long-term acute care. An analysis of 133 mechanically ventilated patients. Am J Respir Crit Care Med. 1999;159(5 pt 1):1568-73.].
Ventilator weaning decision must be based not only on clinical judgment[88 Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344(26):1986-96.,99 Ely EW, Baker AM, Dunagan DP, Burke HL, Smith AC, Kelly PT, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335(25):1864-9.], but also on several predictors that may be applied to support the decision-making process[1010 Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-56.]. The McMaster Report from the Agency for Healthcare Policy and Research (AHCPR) reviewed and analyzed 66 predictors, but only eight showed consistently significant likelihood ratios: minute volume (Ve); negative inspiratory force (NIF); maximal inspiratory pressure (MIP); airway occlusion pressure at 0.1 second to MIP ratio (P0.1/MIP); static compliance (Cstat); respiratory rate, oxygenation and pressure index (CROP); respiratory rate (f); tidal volume (Vt); and, in particular, the ratio of respiratory frequency to tidal volume (f/Vt), known as the Tobin Index[1111 MacIntyre NR, Cook DJ, Ely Jr EW, Epstein SK, Fink JB, Heffner JE, et al.; American Association for Respiratory Care; American College of Critical Care Medicine. Evidence-based guidelines for weaning and discontinuing ventilator support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 suppl.):375S-95S.,1212 Tobin MJ, Jubran A. Meta-analysis under the spotlight: focused on meta-analysis of ventilator weaning. Crit Care Med. 2008;36(1):1-7.].
In 2009, Nemer et al.[1313 Nemer SN, Barbas CS, Caldeira JB, Cárias TC, Santos RG, Almeida RC, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009;13(5):R152.] presented the Integrative Weaning Index (IWI). It evaluates, in a single equation, respiratory mechanics, oxygenation and respiratory pattern through static compliance, arterial oxygen saturation (SaO2) and f/Vt [(Cstat x SaO2)/(f/Vt)], respectively. Values > 25 ml/cmH2O/cycles/min/L may predict weaning success.
Research on MV weaning predictors applied after cardiac surgery are scarce. Therefore, the objective of this study is to test several weaning predictors as determinants of successful extubation after elective cardiac surgery.
METHODS
This prospective and quantitative study was conducted at a university hospital in São Luís, Maranhão, Brazil. We used a non-probabilistic sample of adult patients submitted to elective cardiac surgery and admitted to the Cardio ICU between September and December 2014. The study was approved by the Institutional Ethics Committee (nº 785.917) and all patients signed an Informed Consent Form.
We excluded patients with neurological, pulmonary or congenital heart diseases and those submitted to emergency surgery. Patients who needed surgical re-intervention, died, required MV over 48 hours after surgery, or had incomplete medical records were also excluded.
Upon ICU admission, all patients received mechanical ventilation performed using Evita 2 dura ventilator (Dräger Medical, Lübeck, Germany) in volume-controlled ventilation mode, with the following parameters: Vt: 6-8 ml/kg of predicted weight; f: 12 to 16 rpm; PEEP: 8 cmH2O; inspiratory flow: 8 to 10 times the minute volume (Vt x f); inspiratory time: 1.0 second; and FiO2: 40%.
Weaning predictors evaluated and their indicative values of successful extubation are shown in Table 1. Static compliance was obtained directly from MV monitor, thirty minutes after ICU admission.
Once the patient began to have spontaneous breaths and presented satisfactory clinical conditions, such as hemodynamic stability, absence or minimal bleeding and adequate level of consciousness (Glasgow Scale > 10), we switched ventilation mode to pressure support (PSV). After 30 minutes with minimal parameters (pressure support: 7 cmH2O/Positive end expiratory pressure: 8 cmH2O / FiO2: 30%), an arterial blood sample was collected to analyze SaO2 and PaO2/FiO2 ratio.
Predictive weaning indexes and reference values[1111 MacIntyre NR, Cook DJ, Ely Jr EW, Epstein SK, Fink JB, Heffner JE, et al.; American Association for Respiratory Care; American College of Critical Care Medicine. Evidence-based guidelines for weaning and discontinuing ventilator support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 suppl.):375S-95S.,1212 Tobin MJ, Jubran A. Meta-analysis under the spotlight: focused on meta-analysis of ventilator weaning. Crit Care Med. 2008;36(1):1-7.]
Subsequently, ventilometry was performed to determine minute volume, using an analogical Wright spirometer model Mark 8 (Ferraris Development and Engineering Company Limited, Hertford, England). The patient was instructed to breathe normally for one minute, meanwhile the total amount of exhaled volume and respiratory rate were recorded in order to determine tidal volume (Ve/f) and f/Vt (in liters). Integrative Weaning Index was obtained by the following equation, proposed by Nemer et al.[1313 Nemer SN, Barbas CS, Caldeira JB, Cárias TC, Santos RG, Almeida RC, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009;13(5):R152.]: (Cstat x SaO2)/(f/Vt).
During the spontaneous breathing test (SBT), the patient was monitored for evidence of weaning failure, such as f > 35 rpm; SaO2 < 90%; heart rate > 140 bpm; systolic blood pressure > 180 mmHg or < 90 mmHg; agitation; sweating; and altered level of consciousness[1414 Nemer SN, Barbas CS, Caldeira JB, Guimarães B, Azeredo LM, Gago R, et al. Evaluation of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the weaning outcome. J Crit Care. 2009;24(3):441-6.]. If none of these signs were observed and after registering of weaning predictors, patients were extubated. Extubation was considered successful if the patient did not require reintubation within 48 hours[1111 MacIntyre NR, Cook DJ, Ely Jr EW, Epstein SK, Fink JB, Heffner JE, et al.; American Association for Respiratory Care; American College of Critical Care Medicine. Evidence-based guidelines for weaning and discontinuing ventilator support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 suppl.):375S-95S.].
Statistical analysis was performed using Stata/SE 12 (Statacorp, CollegeStation, Texas, USA). Continuous variables are presented as mean and standard deviation, categorical variables as frequencies and percentages. To test normality, we applied Shapiro-Wilk test.
Sensitivity (SE = true positive/true positive + false negative), specificity (SP = true negative/true negative + false positive), positive predictive value (PPV = true positive/true positive + false positive), negative predictive value (NPV = true negative/true negative + false negative), positive likelihood ratio (LR+ = SE/[100-SP]), and negative likelihood ratio (LR- = [100 - SE]/SP) were used to evaluate each index.
RESULTS
Of the 120 patients initially included, 20 were excluded: 10 due to MV over 48 hours, 5 due to associated congenital heart disease, 3 due to incomplete medical records, and 2 due to death after surgery. Therefore, the final sample was comprised of 100 patients.
Clinical and surgical data are described in Table 2. The sample was predominantly male (60%), with mean age of 55.4±14.9 years. 62% of patients presented low risk of mortality (62%), according to InsCor[1515 Lisboa LAF, Mejia OAV, Moreira LFP, Dallan LAO, Pomerantzeff PMA, Dallan LRP, et al. EuroSCORE II and the importance of a local model, InsCor and the future SP-SCORE. Braz J Cardiovasc Surg. 2014;29(1):1-8.,1616 Tiveron MG, Bomfim HA, Simplício MS, Bergonso MH, Matos MPB, Ferreira SM, et al. Performance of InsCor and three international scores in cardiac surgery at Santa Casa de Marília. Braz J Cardiovasc Surg. 2015;30(1):1-8.]. Most common intervention was heart valve surgery (52%). Respiratory variables, as static compliance, airway resistance, minute volume, tidal volume, respiratory rate, oxygen saturation, f/Vt, IWI, and MV duration are shown in Table 3.
All patients were successfully extubated. Sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio are shown in Table 4. All predictors analyzed had high SE and LR+. Other scores, such as SP, NPV and LR- were nullified due to lack of extubation failure.
DISCUSSION
In our study, which tested MV weaning predictors after cardiac surgery, all patients were successfully extubated. This was expected since most of the patients had low risk of mortality. It is known that the objective of intra- and post-operative MV is to guarantee adequate pulmonary ventilation until the patient is clinically able to breathe spontaneously. Thus, weaning must be considered as soon as possible[55 Goldwasser R, Farias A, Freitas EE, Saddy F, Amado V, Okamoto V. Desmame e interrupção da ventilação mecânica. J Bras Pneumol. 2007;33(supl 2):128-36.].
It is important to mention that little research concerning weaning predictors after cardiac surgery has been found in the literature, emphasizing the importance of our study.
All predictors analyzed showed high sensibility. This result is corroborated by other studies that showed better performance of weaning predictors in patients under mechanical ventilation for short periods, as our sample[1010 Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-56.,1717 Purro A, Appendini L, De Gaetano A, Gudjonsdottir M, Donner CF, Rossi A. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med. 2000;161(4 pt 1):1115-23.
18 Rudy EB, Daly BJ, Douglas S, Montenegro HD, Song R, Dyer MA. Patient outcome for the chronically critically ill: special care unit versus intensive care unit. Nurs Res. 1995;44(6):324-31.-1919 Seneff MG, Wagner D, Thompson D, Honeycutt C, Silver MR. The impact of long-term acute-care facilities on the outcome and cost of care for patients undergoing prolonged mechanical ventilation. Crit Care Med. 2000;28(2):342-50.].
Tobin Index (f/Vt) is considered the most sensitive parameter for predicting weaning success[1010 Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-56.,1212 Tobin MJ, Jubran A. Meta-analysis under the spotlight: focused on meta-analysis of ventilator weaning. Crit Care Med. 2008;36(1):1-7.,1414 Nemer SN, Barbas CS, Caldeira JB, Guimarães B, Azeredo LM, Gago R, et al. Evaluation of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the weaning outcome. J Crit Care. 2009;24(3):441-6.,2020 Epstein SK. Weaning from ventilatory support. Curr Opin Crit Care. 2009;15(1):36-43.,2121 Eskandar N, Apostolakos MJ. Weaning from mechanical ventilation. Crit Care Clin. 2007;23(2):263-74.], supporting our findings. However, research has demonstrated that this index is not as accurate[2222 Conti G, Montini L, Pennisi MA, Cavaliere F, Arcangeli A, Bocci MG, et al. A prospective, blinded evaluation of indexes proposed to predict weaning from mechanical ventilation. Intensive Care Med. 2004;30(5):830-6.
23 Shikora SA, Benotti PN, Johannigman JA. The oxygen cost of breathing may predict weaning from mechanical ventilation better than the respiratory rate to tidal volume ratio. Arch Surg. 1994;129(3):269-74.
24 Lee KH, Hui KP, Chan TB, Tan WC, Lim TK. Rapid shallow breathing (frequency-tidal volume ratio) did not predict extubation outcome. Chest. 1994;105(2):540-3.
25 Savi A, Teixeira C, Silva JM, Borges LG, Pereira PA, Pinto KB, et al. Weaning predictors do not predict extubation failure in simple-towean patients. J Crit Care. 2012;27(2):221.e.1-8.-2626 Reis HFC, Almeida MLO, Silva MF, Moreira JO, Rocha MS. Association between the rapid shallow breathing index and extubation success in patients with traumatic brain injury. Rev Bras Ter Intensiva. 2013;25(3):212-7.]. This is explained by differences in the studied populations, which lead to variation in pretest probability and, consequently, test referral bias[2727 Tobin MJ, Jubran A. Variable performance of weaning-predictor tests: role of Bayes' theorem and spectrum and testes-referral bias. Intensive Care Med 2006;32(12):2002-12.].
Different from our findings, a recent study with 72 patients demonstrated that evolution of breathing pattern, assessed by percent change in f/VT during SBT, was better than a single mensuration. A 5% increase in f/Vt after 30 minutes of SBT revealed an area under the ROC curve of 0.83, 83% of sensitivity and 78% of specificity[2828 Segal LN, Oei E, Oppenheimer BW, Goldring RM, Bustami RT, Ruggiero S, et al. Evolution of pattern of breathing during a spontaneous breathing trial predicts successful extubation. Intensive Care Med. 2010;36(3):487-95.].
The IWI is a promising new weaning predictor. Nemer et al.[1313 Nemer SN, Barbas CS, Caldeira JB, Cárias TC, Santos RG, Almeida RC, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009;13(5):R152.] found an area under the ROC curve greater than f/Vt (0.96 vs. 0.85;P=0.003) as well as better SE (0.97), SP (0.94), PPV (0.99), NPV (0.14), LR+ (16.05) and LR- (0.03), with highly accurate values, same as Madani et al.[2929 Madani SJ, Saghafinia M, Nezhad HS, Ebadi A, Ghochani A, Tavasoli AF, et al. Validity of integrative weaning index of discontinuation from mechanical ventilation in Iranian ICUs. Thrita. 2013;2(2):62-8.]. In our study, we found similar SE values for the IWI (SE 0.98), although lower than f/ Vt (SE 0.99).
On the other hand, Boniatti et al.[3030 Boniatti VM, Boniatti MM, Andrade CF, Zigiotto CC, Kaminski P, Gomes SP, et al. The modified integrative weaning index as a predictor of extubation failure. Respir Care. 2014;59(7):1042-7.] evaluated a modified IWI, which utilized peripheral oxygen saturation instead of SaO2, and concluded that this index, similar to other predictors, does not accurately predict extubation failure.
Some studies showed that PaO2/FiO2 ratio was not accurate for predicting successful weaning[1313 Nemer SN, Barbas CS, Caldeira JB, Cárias TC, Santos RG, Almeida RC, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009;13(5):R152.,3131 Frutos-Vivar F, Ferguson ND, Esteban A, Epstein SK, Arabi Y, Apezteguía C, et al. Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest. 2006;130(6):1664-71.]. A large variation of its values may predict extubation success (<150 to 300 mmHg)[1010 Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-56.,3232 Brochard L, Thille AW. What is the proper approach to liberating the weak from mechanical ventilation? Crit Care Med. 2009;37(10 Suppl):S410-5.] and this could explain differing results. Another point that must be considered is the possibility of extubation even with lowerthan-recommended values[3333 Khamiees M, Raju P, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Predictors of extubation outcome in patients who have successfully completed a spontaneous breathing trial. Chest. 2001;120(4):1262-70.].
Concerning respiratory rate, a recent study reported that the best cut-off value generated by the ROC curve is f < 24 rpm. This result suggests that the cut-off values found in literature are excessively high. In this same study, f was considered an efficient predictor of weaning failure (SE 100%; SP 85%; NPV 100%; PPV 60%, LR+ 6.68; LR- 0; and accuracy 88%,P<0.0001)[3434 Lima EJ. Respiratory rate as a predictor of weaning failure from mechanical ventilation. Rev Bras Anestesiol. 2013;63(1):1-6.].
The small sample is a major limitation of our study. In addition, the lack of extubation failure compromised statistical analysis, although this may be justified by the sample characteristics.
CONCLUSION
All of the weaning predictors tested in this sample of patients submitted to elective cardiac surgery showed high sensitivity, highlighting f/Vt and IWI.
-
This study was carried out at the University Hospital of the Federal University of Maranhão (HUUFMA), São Luís, MA, Brazil.
-
No financial support.
REFERENCES
-
1Alcade RV, Guaragna JC, Bodanese LC, Castro I, Sussenbach E, Noer R, et al. High dose of amiodarone in a short-term period reduces the incidence of postoperative atrial fibrillation and atrial flutter. Arq Bras Cardiol. 2006;87(3):236-40.
-
2Bianco ACM, Timerman A, Paes AT, Gun C, Ramos RF, Freire RBP, et al. Prospective risk analysis in patients submitted to myocardial revascularization surgery. Arq Bras Cardiol. 2005;85(4):254-61.
-
3Nozawa E, Kobayashi E, Matsumoto ME, Feltrim MIZ, Carmona MJC, Auler Júnior JAC, et al. Avaliação de fatores que influenciam no desmame de pacientes em ventilação mecânica prolongada após cirurgia cardíaca. Arq Bras Cardiol. 2003;80(3):301-5.
-
4Gonçalves JQ, Martins RC, Andrade APA, Cardoso FPF, Melo MHO. Características do processo de desmame da ventilação mecânica em hospitais do Distrito Federal. Rev Bras Ter Intensiva. 2007;19(1):38-43.
-
5Goldwasser R, Farias A, Freitas EE, Saddy F, Amado V, Okamoto V. Desmame e interrupção da ventilação mecânica. J Bras Pneumol. 2007;33(supl 2):128-36.
-
6Lellouche F, Mancebo J, Jolliet P, Roeseler J, Schortgen F, Dojat M, et al. A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med. 2006;174(8):894-900.
-
7Carson SS, Bach PB, Brzozowski L, Leff A. Outcomes after long-term acute care. An analysis of 133 mechanically ventilated patients. Am J Respir Crit Care Med. 1999;159(5 pt 1):1568-73.
-
8Tobin MJ. Advances in mechanical ventilation. N Engl J Med. 2001;344(26):1986-96.
-
9Ely EW, Baker AM, Dunagan DP, Burke HL, Smith AC, Kelly PT, et al. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously. N Engl J Med. 1996;335(25):1864-9.
-
10Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-56.
-
11MacIntyre NR, Cook DJ, Ely Jr EW, Epstein SK, Fink JB, Heffner JE, et al.; American Association for Respiratory Care; American College of Critical Care Medicine. Evidence-based guidelines for weaning and discontinuing ventilator support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 suppl.):375S-95S.
-
12Tobin MJ, Jubran A. Meta-analysis under the spotlight: focused on meta-analysis of ventilator weaning. Crit Care Med. 2008;36(1):1-7.
-
13Nemer SN, Barbas CS, Caldeira JB, Cárias TC, Santos RG, Almeida RC, et al. A new integrative weaning index of discontinuation from mechanical ventilation. Crit Care. 2009;13(5):R152.
-
14Nemer SN, Barbas CS, Caldeira JB, Guimarães B, Azeredo LM, Gago R, et al. Evaluation of maximal inspiratory pressure, tracheal airway occlusion pressure, and its ratio in the weaning outcome. J Crit Care. 2009;24(3):441-6.
-
15Lisboa LAF, Mejia OAV, Moreira LFP, Dallan LAO, Pomerantzeff PMA, Dallan LRP, et al. EuroSCORE II and the importance of a local model, InsCor and the future SP-SCORE. Braz J Cardiovasc Surg. 2014;29(1):1-8.
-
16Tiveron MG, Bomfim HA, Simplício MS, Bergonso MH, Matos MPB, Ferreira SM, et al. Performance of InsCor and three international scores in cardiac surgery at Santa Casa de Marília. Braz J Cardiovasc Surg. 2015;30(1):1-8.
-
17Purro A, Appendini L, De Gaetano A, Gudjonsdottir M, Donner CF, Rossi A. Physiologic determinants of ventilator dependence in long-term mechanically ventilated patients. Am J Respir Crit Care Med. 2000;161(4 pt 1):1115-23.
-
18Rudy EB, Daly BJ, Douglas S, Montenegro HD, Song R, Dyer MA. Patient outcome for the chronically critically ill: special care unit versus intensive care unit. Nurs Res. 1995;44(6):324-31.
-
19Seneff MG, Wagner D, Thompson D, Honeycutt C, Silver MR. The impact of long-term acute-care facilities on the outcome and cost of care for patients undergoing prolonged mechanical ventilation. Crit Care Med. 2000;28(2):342-50.
-
20Epstein SK. Weaning from ventilatory support. Curr Opin Crit Care. 2009;15(1):36-43.
-
21Eskandar N, Apostolakos MJ. Weaning from mechanical ventilation. Crit Care Clin. 2007;23(2):263-74.
-
22Conti G, Montini L, Pennisi MA, Cavaliere F, Arcangeli A, Bocci MG, et al. A prospective, blinded evaluation of indexes proposed to predict weaning from mechanical ventilation. Intensive Care Med. 2004;30(5):830-6.
-
23Shikora SA, Benotti PN, Johannigman JA. The oxygen cost of breathing may predict weaning from mechanical ventilation better than the respiratory rate to tidal volume ratio. Arch Surg. 1994;129(3):269-74.
-
24Lee KH, Hui KP, Chan TB, Tan WC, Lim TK. Rapid shallow breathing (frequency-tidal volume ratio) did not predict extubation outcome. Chest. 1994;105(2):540-3.
-
25Savi A, Teixeira C, Silva JM, Borges LG, Pereira PA, Pinto KB, et al. Weaning predictors do not predict extubation failure in simple-towean patients. J Crit Care. 2012;27(2):221.e.1-8.
-
26Reis HFC, Almeida MLO, Silva MF, Moreira JO, Rocha MS. Association between the rapid shallow breathing index and extubation success in patients with traumatic brain injury. Rev Bras Ter Intensiva. 2013;25(3):212-7.
-
27Tobin MJ, Jubran A. Variable performance of weaning-predictor tests: role of Bayes' theorem and spectrum and testes-referral bias. Intensive Care Med 2006;32(12):2002-12.
-
28Segal LN, Oei E, Oppenheimer BW, Goldring RM, Bustami RT, Ruggiero S, et al. Evolution of pattern of breathing during a spontaneous breathing trial predicts successful extubation. Intensive Care Med. 2010;36(3):487-95.
-
29Madani SJ, Saghafinia M, Nezhad HS, Ebadi A, Ghochani A, Tavasoli AF, et al. Validity of integrative weaning index of discontinuation from mechanical ventilation in Iranian ICUs. Thrita. 2013;2(2):62-8.
-
30Boniatti VM, Boniatti MM, Andrade CF, Zigiotto CC, Kaminski P, Gomes SP, et al. The modified integrative weaning index as a predictor of extubation failure. Respir Care. 2014;59(7):1042-7.
-
31Frutos-Vivar F, Ferguson ND, Esteban A, Epstein SK, Arabi Y, Apezteguía C, et al. Risk factors for extubation failure in patients following a successful spontaneous breathing trial. Chest. 2006;130(6):1664-71.
-
32Brochard L, Thille AW. What is the proper approach to liberating the weak from mechanical ventilation? Crit Care Med. 2009;37(10 Suppl):S410-5.
-
33Khamiees M, Raju P, DeGirolamo A, Amoateng-Adjepong Y, Manthous CA. Predictors of extubation outcome in patients who have successfully completed a spontaneous breathing trial. Chest. 2001;120(4):1262-70.
-
34Lima EJ. Respiratory rate as a predictor of weaning failure from mechanical ventilation. Rev Bras Anestesiol. 2013;63(1):1-6.
Publication Dates
-
Publication in this collection
Nov-Dec 2015
History
-
Received
17 July 2015 -
Accepted
03 Nov 2015