Abstract
Diaporthe phaseolorum, an endophyte isolated from Combretum lanceolatum, has exhibited diverse biological activities including antimicrobial, leishmanicidal, antitumoral, and herbicidal properties. Regardless of these activities, there remains limited research on its chemical constituents. Therefore, this study aimed to investigate the metabolome of D. phaseolorum employing mass spectrometry data dereplication through molecular networking and MolNetEnhancer tools. Twenty two molecular families were annotated, including prenol lipids, benzenoids, organoheterocyclic compounds, and nucleosides. Among the 41 nodes annotated, 36 metabolites were confirmed via spectral references, including alismol, farnesol, linoleic acid, tyramine, N-acetyl-tyramine, 5-methoxy-1H-indole-3-carbaldehyde, 6-pentyl-2H-pyran-2-one, and adenosine. Further node annotation was achieved through MolNetEnhancer, resulting in the classification of an additional 68 nodes into various molecular families. Consequently, this study represents a significant contribution to the identification of the D. phaseolorum metabolome, highlighting its secondary metabolites and providing valuable chemical insights to elucidate its demonstrated biological activities.
Keywords:
alismol; dereplication; Diaporthe phaseolorum; farnesol; GNPS; molecular networking
Introduction
Natural products serve as a remarkable source of biologically active small molecules with diverse applications. For instance, phomanolide is an antiviral nordrimane-type sesquiterpenoid,11 Liu, S.-S.; Jiang, J.-X.; Huang, R.; Wang, Y.-T.; Jiang, B. G.; Zheng, K.-X.; Wu, S.-H.; Phytochem. Lett. 2019, 29, 75. [Crossref]
Crossref...
stemphyperylenol acts as a fungicide polyketide,22 Chagas, F. O.; Dias, L. G.; Pupo, M. T.; J. Chem. Ecol. 2013, 39, 1335. [Crossref]
Crossref...
and 3-hydroxypropionic acid exhibits antibacterial properties.33 Silva, F. A.; Liotti, R. G.; Boleti, A. P. A.; Reis, É. M.; Passos, M. B. S.; dos Santos, E. L.; Sampaio, O. M.; Januário, A. H.; Branco, C. L. B.; da Silva, G. F.; de Mendonça, E. A. F.; Soares, M. A.; PLoS One 2018, 13, e0195874. [Crossref]
Crossref...
Additionally, compounds like the alkaloids antidesmone and arborinine act as photosynthesis inhibitors,44 Sampaio, O. M.; Vieira, L. C. C.; Bellete, B. S.; King-Diaz, B.; Lotina-Hennsen, B.; da Silva, M. F. G. F.; Veiga, T. A. M.; Molecules 2018, 23, 2693. [Crossref]
Crossref...
,55 de Medeiros, L. S.; Sampaio, O. M.; da Silva, M. F. G. F.; Rodrigues Filho, E.; Veiga, T. A. M.; J. Braz. Chem. Soc. 2012, 23, 1551. [Crossref]
Crossref...
while graveoline demonstrates herbicidal activity.66 Sampaio, O. M.; Lima, M. M. C.; Veiga, T. A. M.; King-Díaz, B.; da Silva, M. F. G. F.; Lotina-Hennsen, B.; Pestic. Biochem. Physiol. 2016, 134, 55. [Crossref]
Crossref...
Furthermore, pestaloficiol derivatives exhibit antitumor properties,77 Kharwar, R. N.; Mishra, A.; Gond, S. K.; Stierle, A.; Stierle, D.; Nat. Prod. Rep. 2011, 28, 1208. [Crossref]
Crossref...
and chenopodolin and sphaeropsidin C serve as larvicides against Aedes aegypti.88 Masi, M.; Cimmino, A.; Tabanca, N.; Becnel, J. J.; Bloomquist, J. R.; Evidente, A.; Open Chem. 2017, 15, 156. [Crossref]
Crossref...
Notably, (-)-mammea A/BB demonstrates anti mycobacterium tuberculosis activity.99 Pires, C. T. A.; Scodro, R. B. L.; Cortez, D. A. G.; Brenzan, M. A.; Siqueira, V. L. D.; Caleffi-Ferracioli, K. R.; Vieira, L. C. C.; Monteiro, J. L.; Corrêa, A. G.; Cardoso, R. F.; Future Med. Chem. 2020, 12, 1533. [Crossref]
Crossref...
Overall, research involving natural products is a relevant area for the discovery and development of new biologically active compounds.1010 King-Díaz, B.; Soares, M. S.; da Silva, M. F. G. F.; Lotina-Hennsen, B.; Veiga, T. A. M.; Am. J. Plant Sci. 2014, 5, 2528. [Crossref]
Crossref...
11 Nebo, L.; Varela, R. M.; Molinillo, J. M. G.; Sampaio, O. M.; Severino, V. G. P.; Cazal, C. M.; Fernandes, M. F. G.; Fernandes, J. B.; Macías, F. A.; Phytochem. Lett. 2014, 8, 226. [Crossref]
Crossref...
12 Pinto, A. C.; Silva, D. H. S.; Bolzani, V. D. S.; Lopes, N. P.; Epifanio, R. D. A.; Quim. Nova 2002, 25, 45. [Crossref]
Crossref...
13 Li, Z.; Wang, Y.; Ouyang, H.; Lu, Y.; Qiu, Y.; Feng, Y.; Jiang, H.; Zhou, X.; Yang, S.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2015, 988, 45. [Crossref]
Crossref...
14 Newman, D. J.; Cragg, G. M.; J. Nat. Prod. 2016, 79, 629. [Crossref]
Crossref...
-1515 Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T.; Nat. Rev. Drug Discovery 2021, 20, 200. [Crossref]
Crossref...
The dereplication approach has emerged as a prominent method in metabolome studies, particularly for fast investigation of chemical profiles of large and complex spectrometric datasets.1616 Hubert, J.; Nuzillard, J.-M.; Renault, J.-H.; Phytochem. Rev. 2017, 16, 55. [Crossref]
Crossref...
17 Wolfender, J.-L.; Litaudon, M.; Touboul, D.; Queiroz, E. F.; Nat. Prod. Rep. 2019, 36, 855. [Crossref]
Crossref...
18 Sedio, B. E.; New Phytol. 2017, 214, 952. [Crossref]
Crossref...
19 Nothias, L. F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; Paolini, J.; Alexandrov, T.; Litaudon, M.; Dorrestein, P. C.; J. Nat. Prod. 2018, 81, 758. [Crossref]
Crossref...
-2020 Woo, S.; Kang, K. B.; Kim, J.; Sung, S. H.; J. Nat. Prod. 2019, 82, 1820. [Crossref]
Crossref...
In recent years, research integrating analytical techniques with computational tools for studying endophytic fungi metabolomes has significantly expanded. This expansion has broadened the scope of annotated metabolites within fungal metabolomes, thereby facilitating the identification of bioactive natural products derived from fungi.2121 Hoang, T. P. T.; Roullier, C.; Boumard, M. C.; Robiou Du Pont, T.; Nazih, H.; Gallard, J. F.; Pouchus, Y. F.; Beniddir, M. A.; Grovel, O.; J. Nat. Prod. 2018, 81, 2501. [Crossref]
Crossref...
22 Han, X.; Tang, X.; Luo, X.; Sun, C.; Liu, K.; Zhang, Y.; Li, P.; Li, G.; Chem. Biodiversity 2020, 17, e2000208. [Crossref]
Crossref...
23 Chen, F.; Ma, R.; Chen, X.-L.; Metabolites 2019, 9, 169. [Crossref]
Crossref...
-2424 Zhu, G.; Hou, C.; Yuan, W.; Wang, Z.; Zhang, J.; Jiang, L.; Karthik, L.; Li, B.; Ren, B.; Lv, K.; Lu, W.; Cong, Z.; Dai, H.; Hsiang, T.; Zhang, L.; Liu, X.; Chem. Commun. 2020, 56, 10171. [Crossref]
Crossref...
In the current context, molecular networking (MN) dereplication emerges as a valuable strategy for identifying secondary metabolites, as this method avoids the need for isolating and determining the structure of known molecules. MN has recently been applied to evaluate fungal metabolomes, enabling the identification of various secondary bioactive metabolites. For instance, MN was used for the discovery of secondary cytotoxic metabolites in Colletotrichum strains isolated from leaves of the tropical palm species Astrocaryum sciophilum,2525 Barthélemy, M.; Guérineau, V.; Genta-Jouve, G.; Roy, M.; Chave, J.; Guillot, R.; Pellissier, L.; Wolfender, J. L.; Stien, D.; Eparvier, V.; Touboul, D.; Sci. Rep. 2020, 10, 19788. [Crossref]
Crossref...
as well as the identification of cytosporone derivatives in Phomopsis sp. isolated from Casearia arborea leaves.2626 Santos, A. L.; Ionta, M.; Horvath, R.; Soares, M. G.; de Medeiros, L. S.; Uemi, M.; Kawafune, E. S.; Tangerina, M. M. P.; Ferreira, M. J. P.; Sartorelli, P.; Phytochem. Lett. 2021, 42, 1. [Crossref]
Crossref...
Furthermore, MN has been applied in the chemical evaluation of Aspergillus fumigatus collected from the lateral buds of Crocus sativus2727 Jiang, Y.; Wu, J.; Kawagishi, H.; Jiang, C.; Zhou, Q.; Tong, Z.; Tong, Y.; Wang, P.; Int. J. Anal. Chem. 2022, 2022, ID 7067665. [Crossref]
Crossref...
and in the metabolomic study of Cophinforma mamane and Fusarium solani isolated from Bixa orellana L. and Plantago lanceolate, respectively.2828 Triastuti, A.; Haddad, M.; Barakat, F.; Mejia, K.; Rabouille, G.; Fabre, N.; Amasifuen, C.; Jargeat, P.; Vansteelandt, M.; Chem. Biodiversity 2021, 18, e200067. [Crossref]
Crossref...
Among fungal endophytes, the genus Diaporthe has exhibited numerous biological activities2929 Xu, T.-C.; Lu, Y.-H.; Wang, J.-F.; Song, Z.-Q.; Hou, Y.-G.; Liu, S.-S.; Liu, C.-S.; Wu, S.-H.; Microorganisms 2021, 9, 217. [Crossref]
Crossref...
,3030 Chepkirui, C.; Stadler, M.; Mycol. Progress 2017, 16, 477. [Crossref]
Crossref...
and several bioactive secondary metabolites have been isolated from it. These include alkaloids,3131 Cui, H.; Yu, J.; Chen, S.; Ding, M.; Huang, X.; Yuan, J.; She, Z.; Bioorg. Med. Chem. Lett. 2017, 27, 803. [Crossref]
Crossref...
,3232 Cui, H.; Ding, M.; Huang, D.; Zhang, Z.; Liu, H.; Huang, H.; She, Z.; RSC Adv. 2017, 7, 20128. [Crossref]
Crossref...
terpenoids,3333 Li, G.; Kusari, S.; Kusari, P.; Kayser, O.; Spiteller, M.; J. Nat. Prod. 2015, 78, 2128. [Crossref]
Crossref...
cytosporones,3434 Kongprapan, T.; Xu, X.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J.; Chen, J.; Shen, X.; Phytochem. Lett. 2017, 22, 219. [Crossref]
Crossref...
dothiorelone derivatives,3535 Liu, Z.; Zhao, J.; Liang, X.; Lv, X.; Li, Y.; Qu, J.; Liu, Y.; Fitoterapia 2018, 127, 7. [Crossref]
Crossref...
bisanthroquinones,3636 Tian, W.; Liao, Z.; Zhou, M.; Wang, G.; Wu, Y.; Gao, S.; Qiu, D.; Liu, X.; Lin, T.; Chen, H.; Fitoterapia 2018, 128, 253. [Crossref]
Crossref...
chloroazaphilone derivatives,3737 Luo, X.; Lin, X.; Tao, H.; Wang, J.; Li, J.; Yang, B.; Zhou, X.; Liu, Y.; J. Nat. Prod. 2018, 81, 934. [Crossref]
Crossref...
cytochalasins and polyketides.3838 de Carvalho, C. R.; Ferreira-D’Silva, A.; Wedge, D. E.; Cantrell, C. L.; Rosa, L. H.; Can. J. Microbiol. 2018, 64, 835. [Crossref]
Crossref...
Diaporthe phaseolorum, for instance, is an endophyte isolated from Combretum lanceolatum roots,3939 de Siqueira, K. A.; Brissow, E. R.; dos Santos, J. L.; White, J. F.; Santos, F. R.; de Almeida, E. G.; Soares, M. A.; Symbiosis 2017, 71, 211. [Crossref]
Crossref...
and the extract obtained from its fermentation has demonstrated various biological activities, including antioxidant and leishmanicidal effects,4040 Brissow, E. R.; da Silva, I. P.; de Siqueira, K. A.; Senabio, J. A.; Pimenta, L. P.; Januário, A. H.; Magalhães, L. G.; Furtado, R. A.; Tavares, D. C.; Sales Jr., P. A.; Santos, J. L.; Soares, M. A.; Parasitol. Res. 2017, 116, 1823. [Crossref]
Crossref...
antimicrobial properties,4141 Kumala, S.; DwiYuliani, K.; Simanjuntak, P.; Khare, E.; Mishra, J.; Arora, N. K.; Balouiri, M.; Sadiki, M.; Ibnsouda, S. K.; Hanum, A. S.; Prihastanti, E.; Padhi, L.; Pansanit, A.; Pripdeevech, P.; Pavithra, G.; Bindal, S.; Rana, M.; Srivastava, S.; Sarsaiya, S.; Shi, J.; Chen, J.; Deepika, K.; Int. J. Pharm. Sci. Res. 2016, 6, 2349. [Crossref]
Crossref...
,4242 Tong, W. Y.; Leong, C. R.; Tan, W. N.; Khairuddean, M.; Zakaria, L.; Ibrahim, D.; J. Microbiol. Biotechnol. 2017, 27, 1065. [Crossref]
Crossref...
antitumoral activity4343 Niu, Z.; Chen, Y.; Guo, H.; Li, S. N.; Li, H. H.; Liu, H. X.; Liu, Z.; Zhang, W.; Molecules 2019, 24, 3062. [Crossref]
Crossref...
and herbicidal potential.4444 Moura, M. S.; Lacerda, J. W. F.; Siqueira, K. A.; Bellete, B. S.; Sousa, P. T.; Dall´Óglio, E. L.; Soares, M. A.; Vieira, L. C. C.; Sampaio, O. M.; J. Environ. Sci. Health, Part B 2020, 55, 470. [Crossref]
Crossref...
Previous chemical profile studies have revealed that the D. phaseolorum produces various bioactive secondary metabolites, including alkaloids like 18-des-hydroxycytochalasin H,4040 Brissow, E. R.; da Silva, I. P.; de Siqueira, K. A.; Senabio, J. A.; Pimenta, L. P.; Januário, A. H.; Magalhães, L. G.; Furtado, R. A.; Tavares, D. C.; Sales Jr., P. A.; Santos, J. L.; Soares, M. A.; Parasitol. Res. 2017, 116, 1823. [Crossref]
Crossref...
anthraquinones such as 1,1-bislunatin, 5-deoxybostrycoidin and 1-hydroxy-8 methoxyanthraquinone,4545 Agusta, A.; Ohashi, K.; Shibuya, H.; Chem. Pharm. Bull. 2006, 54, 579. [Crossref]
Crossref...
chromones like phomopsichins A and B and diaporchromanones C and D,3232 Cui, H.; Ding, M.; Huang, D.; Zhang, Z.; Liu, H.; Huang, H.; She, Z.; RSC Adv. 2017, 7, 20128. [Crossref]
Crossref...
benzofuran derivatives like 7-methoxy-4,6-dimethyl-benzofuran and 3H-isobenzofuran-1-one,4646 Wang, R. Y.; Fang, M. J.; Huang, Y. J.; Zheng, Z. H.; Shen, Y. M.; Acta Crystallogr., Sect. E: Struct. Rep. Online 2006, 62, 4172. [Crossref]
Crossref...
as well as xanthone fomoxanthone A,4343 Niu, Z.; Chen, Y.; Guo, H.; Li, S. N.; Li, H. H.; Liu, H. X.; Liu, Z.; Zhang, W.; Molecules 2019, 24, 3062. [Crossref]
Crossref...
among others.4747 Guo, H.; Liu, Z.-M.; Chen, Y.-C.; Tan, H.-B.; Li, S.-N.; Li, H. H.; Gao, X.-X.; Liu, H.-X.; Zhang, W.-M.; Mar. Drugs 2019, 17, 182. [Crossref]
Crossref...
,4848 Sebastianes, F. L. S.; Cabedo, N.; El Aouad, N.; Valente, A. M. M. P.; Lacava, P. T.; Azevedo, J. L.; Pizzirani-Kleiner, A. A.; Cortes, D.; Curr. Microbiol. 2012, 65, 622. [Crossref]
Crossref...
Considering the biological potential exhibited by D. phaseolorum endophyte and the limited number of metabolites described for this fungus, our study aims to explore the D. phaseolorum metabolome using MN dereplication, employing in silico bioinformatics tools such as substructure annotation (MS2LDA), network annotation propagation (NAP), and MolNetEnhancer to enhance metabolite identification.
Experimental
Reagents and solvents
Acetonitrile and methanol of high-performance liquid chromatography (HPLC) grade were purchased from Mallinckrodt Baker (St. Louis, MO, USA). Ethyl acetate and formic acid were purchased from Synth (São Paulo, Brazil) and Sigma-Aldrich (St. Louis, USA), respectively. Potato dextrose agar was obtained from Merck (São Paulo, Brazil). Ultrapure deionized water was obtained from a Milli-Q water purification system (Millipore Corporation, Watford, UK).
Preparation of D. phaseolorum crude extract
The crude extract of D. phaseolorum (Access GenBank KF555229)3939 de Siqueira, K. A.; Brissow, E. R.; dos Santos, J. L.; White, J. F.; Santos, F. R.; de Almeida, E. G.; Soares, M. A.; Symbiosis 2017, 71, 211. [Crossref]
Crossref...
was prepared following a modified literature procedure.4444 Moura, M. S.; Lacerda, J. W. F.; Siqueira, K. A.; Bellete, B. S.; Sousa, P. T.; Dall´Óglio, E. L.; Soares, M. A.; Vieira, L. C. C.; Sampaio, O. M.; J. Environ. Sci. Health, Part B 2020, 55, 470. [Crossref]
Crossref...
Initially, the fungal strain was grown on potato dextrose agar for 7 days. Subsequently, the culture was transferred to Erlenmeyer flasks containing 0.150 kg of parboiled rice and incubated statically in the dark. After 20 days of incubation, ethyl acetate (150 mL) was added, and the mixture was stirred for 24 h at 75 rpm. Finally, the mixture was sonicated for 10 s in an ultrasonic bath (UltraSonic Cleaner, Model USC3380/Unique Ind. Brasileira, São Paulo, Brazil), filtered, and the solvent was evaporated under reduced pressure. The resulting crude extract was then stored at -20 °C until further analysis.
Data acquisition
The D. phaseolorum extract was analyzed using a Shimadzu UHPLC system (Shimadzu, Kyoto, Japan) equipped with a reverse-phase column (Waters Acquity UPLC BEH C-18, 100 mm × 2.1 mm inner diameter, particle size 1.8 μm) maintained at 40 °C. The mobile phases consisted of 0.1% (v/v) formic acid in ultrapure water (A) and acetonitrile (B). Elution condition was performed under the following conditions: 0-12 min, linear gradient from 5 to 100% B, followed by column reconditioning with 5% B. The flow rate was set at 0.30 mL min-1, and 1 μL of D. phaseolorum extract solution in methanol at 0.5 mg mL-1 was injected for analysis.
High-resolution mass spectrometry (HRMS) analyses were carried out using an electrospray ionization quadrupole time-of-flight (ESI-qTOF) mass spectrometer (Bruker Daltonics, Bremen, Germany). The MS analysis employed data-dependent acquisition MS11 Liu, S.-S.; Jiang, J.-X.; Huang, R.; Wang, Y.-T.; Jiang, B. G.; Zheng, K.-X.; Wu, S.-H.; Phytochem. Lett. 2019, 29, 75. [Crossref]
Crossref...
and MS22 Chagas, F. O.; Dias, L. G.; Pupo, M. T.; J. Chem. Ecol. 2013, 39, 1335. [Crossref]
Crossref...
modes, with the mass spectra ranging from 50 to 1100 Da. The ionization source operated in positive electrospray ionization (ESI) mode, with a capillary voltage set at 3600 V and a plate end potential of 450 V. Dry gas parameters were set to 8.0 L min-1 at 180 °C, with a nebulization gas pressure of 4.0 bar. Subsequently, the MS/MS data were converted to mzXML format, compressed using the Core FTP LE online server,4949 Core FTP LE, version 2.2; CoreFTP; Shelton, WA, USA, 2020. [Link] accessed in March 2024
Link...
and then transferred to the Global Natural Products Social (GNPS)5050 Global Natural Products Social (GNPS), https://gnps.ucsd.edu, accessed in March 2024.
https://gnps.ucsd.edu...
platform for MN analysis.
Molecular networking
The MN was generated following a modified literature procedure.5151 Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W. T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C. C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C. C.; Yang, Y. L.; Humpf, H. U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya, C. A. P.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P. M.; Phapale, P.; Nothias, L. F.; Alexandrov, T.; Litaudon, M.; Wolfender, J. L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D. T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N.; Nat. Biotechnol. 2016, 34, 828. [Crossref]
Crossref...
The MS/MS data was uploaded to the GNPS MN server to generate the chemical map (ID = c65a5130891e4634ade323c360da3345). The MN was obtained using a parent mass tolerance of 0.02 Da and the mass variances of ion fragments within ± 0.02 Da for each group to create consensus spectrum. Network edges were produced only if the cosine score exceeded 0.7 and with a minimum correspondence of six peaks in the fragmentation spectrum. Additionally, the MN spectra were compared against the GNPS spectral libraries, and the data obtained were visualized using the Cytoscape 3.8.1 software.5252 Cytoscape, https://cytoscape.org, accessed in March 2024.
https://cytoscape.org...
Fragmentation spectra showing similarities to the mass spectral libraries underwent manual verification, and the mass error was calculated with a mass error with a tolerance of less than 5 ppm.
Network annotation propagation
The MN generated by GNPS was utilized to perform in silico annotation propagation using NAP (ID = 152bb9c9f0f442f684b7c63b2cac304b). The parameters employed for this annotation propagation were as follows: considering the 10 candidates for consensus score, an accuracy of exact mass search set at 15 ppm, and utilizing structural databases including GNPS, HMDB,5353 Human Metabolome Database (HMDB), https://hmdb.ca, accessed in March 2024.
https://hmdb.ca...
SUPNAT,5454 SuperNatural 3.0, https://bioinf-applied.charite.de/supernatural_3, accessed in March 2024.
https://bioinf-applied.charite.de/supern...
CHEBI,5555 Chemical Entities of Biological Interest, https://www.ebi.ac.uk/chebi, accessed in March 2024.
https://www.ebi.ac.uk/chebi...
DRUGBANK,5656 DrugBank, https://go.drugbank.com, accessed in March 2024.
https://go.drugbank.com...
and FooDB.5757 The Food Database, https://foodb.ca, accessed in March 2024.
https://foodb.ca...
MS2LDA substructural model
Mass2Motifs inspection and annotation were carried out using the MS2LDA5858 MS2LDA - Unsupervised Substructure Discovery, https://ms2lda.org, accessed in March 2024.
https://ms2lda.org...
web platform (ID = 2df7012ed58d4e609f55f5aff62b874e), following a modified literature procedure.5959 Kang, K. B.; Woo, S.; Ernst, M.; van der Hooft, J. J. J.; Nothias, L. F.; da Silva, R. R.; Dorrestein, P. C.; Sung, S. H.; Lee, M.; Phytochemistry 2020, 173, 112292. [Crossref]
Crossref...
The MS2LDA parameters were configured as follows: a m/z tolerance of 5.0 ppm, a retention time (tR) tolerance of 10.0 s, minimum MS1 intensity of 10.0 au, minimum MS2 intensity of 100.0 au, 1000 interactions, 300 Mass2Motifs, and no duplicated filtering.
Integration of annotation data using MolNetEnhacer
To enhance chemical structural information within the MN, the in silico annotations obtained from NAP and Mass2Motifs extracted by MS2LDA were incorporated into the network using the GNPS MolNetEnhancer workflow (ID = 35744a1aa5bc4ff8951d2a7cdfcc844b). Chemical class annotations were conducted utilizing the ClassyFire chemical ontology to identify the most prevalent chemical classes per molecular family (MF) based on GNPS structural library hits. The integration of the standard distribution of Mass2Motifs on the network was accomplished using the R package (rMolNetEnhancer).
Results and Discussion
To investigate the chemical profile of D. phaseolorum fungus, a crude extract was prepared using ethyl acetate after seven days of fungal inoculation in a culture medium. The extract was then analyzed by HPLC-HRMS/MS employing an ESI qTOF. The analyses were conducted using a data-dependent acquisition procedure, which generated fragmentation spectra for all precursor ions above a defined threshold. The obtained fragmentation data was organized into MNs using the GNPS platform. This approach facilitated the exploration of the main chemical classes and enabled the annotation of metabolites produced by D. phaseolorum.
Molecular networking
The chemical profile of D. phaseolorum was investigated using a dereplication strategy towards GNPS spectra library analysis. This approach generated a MN comprising 238 nodes, with 65.12% of the nodes organized into a total of 22 MFs, each consisting of two or more nodes with similarity scores (CScore ≥ 0.7). Additionally, 83 nodes were identified as singletons, lacking molecular relatives. Considering the limited information contained in natural product spectral libraries, automated spectral similarity led to the addition of 41 putative annotations among all registered data in the MN. Subsequently, all node annotations underwent mirror match, cosine scores, and the number of shared peaks, resulting in 36 hits with level 2 and 3 annotations according to the 2007 Metabolomics Standards Initiative.6060 Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.; Daykin, C. A.; Fan, T. W. M.; Fiehn, O.; Goodacre, R.; Griffin, J. L.; Hankemeier, T.; Hardy, N.; Harnly, J.; Higashi, R.; Kopka, J.; Lane, A. N.; Lindon, J. C.; Marriott, P.; Nicholls, A. W.; Reily, M. D.; Thaden, J. J.; Viant, M. R.; Metabolomics 2007, 3, 211. [Crossref]
Crossref...
These annotations were confirmed through individual analyzes, fragmentation (MS/MS), and comparison to literature spectra. To enhance metabolite annotation, the MolNetEnhancer approach, a computational tool for MS/MS based untargeted metabolomics, was employed. Most MFs were annotated for their specific chemical classes using the GNPS library matching and in silico annotation obtained from the NAP approach. Furthermore, computational class annotations were double-checked to prevent false annotations.6161 Nothias-Esposito, M.; Nothias, L. F.; Da Silva, R. R.; Retailleau, P.; Zhang, Z.; Leyssen, P.; Roussi, F.; Touboul, D.; Paolini, J.; Dorrestein, P. C.; Litaudon, M.; J. Nat. Prod. 2019, 82, 1459. [Crossref]
Crossref...
Based on the MS2LDA, Mass2Motifs 79, 80, 130, and 256 were extracted from MS/MS spectra and annotated as prenol lipids. Mass2Motifs 130 and 79 indicate the presence of a fragment ion m/z 95 [C7H11]+ and the neutral loss of 18 Da (H2O), respectively. Mass2Motifs 80 and 256 indicate the presence of fragment ion at m/z 109 [C8H13]+ and m/z 123 [C9H15]+, respectively. These Mass2Motifs were annotated to represent terpene and fatty acid scaffolds, which are different in their degrees of unsaturation and their functional groups.
Furthermore, Mass2Motifs 15, 97, 120, and 173 were annotated as benzenoid derivatives. Mass2Motif 15 was annotated to show a neutral loss of 59 Da (C2H5NO), indicating the presence of small generic losses such as C2H2O and NH3. Mass2Motif 173 represents the neutral loss of 46 Da (CH2O2), which is caused by the loss of H2O and CO, suggesting phenolic derivative substructures like aromatic amino acids and carboxylic acids. Metabolites annotated with Mass2Motif 120 exhibited fragment ions at m/z 95 [C6H7O]+, 107 [C7H7O]+, and 119 [C8H7O]+, indicating substructures derived from tyrosine.
The MNs associated with MolNetEnhancer facilitated the annotation of new compounds for this fungus, making the first documentation of these metabolites. The described metabolites were categorized into four main groups, underscoring the chemical diversity of this fungal species. These groups comprised a significant cluster of prenol lipids, a secondary group containing benzenoid derivatives, two smaller clusters consisting of nucleosides, and heterocyclic compounds. This delineation highlights the diverse array of chemical compounds produced by D. phaseolorum and underscores its potential significance in natural product discovery and drug development.
Prenol lipids annotation
The prenol lipid family comprises two distinct clusters designed as terpenoids and fatty acids. This categorization arises from the diverse ion adducts commonly detected, each exhibiting distinct fragmentation behaviors during collisional activation. Such variations frequently lead to the inadvertent segregation of MN into subnetworks and pose limitations on the propagation of library annotations throughout the networks.6262 Schmid, R.; Petras, D.; Nothias, L. F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.; Rainer, J.; Garcia-Aloy, M.; Dührkop, K.; Korf, A.; Pluskal, T.; Kameník, Z.; Jarmusch, A. K.; Caraballo-Rodríguez, A. M.; Weldon, K. C.; Nothias-Esposito, M.; Aksenov, A. A.; Bauermeister, A.; Albarracin Orio, A.; Grundmann, C. O.; Vargas, F.; Koester, I.; Gauglitz, J. M.; Gentry, E. C.; Hövelmann, Y.; Kalinina, S. A.; Pendergraft, M. A.; Panitchpakdi, M.; Tehan, R.; Le Gouellec, A.; Aleti, G.; Mannochio Russo, H.; Arndt, B.; Hübner, F.; Hayen, H.; Zhi, H.; Raffatellu, M.; Prather, K. A.; Aluwihare, L. I.; Böcker, S.; McPhail, K. L.; Humpf, H. U.; Karst, U.; Dorrestein, P. C.; Nat. Commun. 2021, 12, 3832. [Crossref]
Crossref...
This observation underscores the challenges encountered in accurately delineating and annotating metabolites within complex MNs, necessitating further refinement and optimization of analytical approaches.
The MF of prenol lipid exhibited ten nodes associated with terpenoid compounds (Figure 1), characterized by similar daughter ions observed at m/z 95.0858 [C7H10 + H]+ and a common neutral fragment loss of 42 Da (C3H6) and 56 Da (C4H8). The node with m/z 203.1800 [C15H24O - H2O + H]+ (calcd. 203.1794), alongside fragments indicating the loss of 28.0317 (C2H4), 42.0467 (C3H6), 54.0487 (C4H6), 56.0629 (C4H8), and 68.0634 (C5H8) Da, suggests a fragmentation pattern typical of terpenoid. The MS22 Chagas, F. O.; Dias, L. G.; Pupo, M. T.; J. Chem. Ecol. 2013, 39, 1335. [Crossref]
Crossref...
data of this node match those of the sesquiterpene alismol (1).6363 Tai, Y.; Zou, F.; Zhang, Q.; Wang, J.; Rao, R.; Xie, R.; Wu, S.; Chu, K.; Xu, W.; Li, X.; Huang, M.; J. Anal. Methods Chem. 2019, 2019, ID 8320171. [Crossref]
Crossref...
Another node at m/z 205.1958 [C15H26O - H2O + H]+ (calcd. 205.1951), exhibiting fragment ions observed at m/z 121.1018 [C9H12 + H]+ (calcd. 121.1012) and m/z 109.1017 [C8H12 + H]+ (calcd. 109.1012), corresponds to isolongifolol (2), another sesquiterpene, based on comparison with literature data.6464 Shieh, B.; Matsubara, Y.; J. Mass Spectrom. Soc. Jpn. 1981, 29, 97. [Crossref]
Crossref...
The fragment at m/z 149.1331 [C11H16 + H]+ (calcd. 149.1325) detected in the MS spectra emerged as a base peak ion, derived from the precursor m/z 223.2058 [C15H26O + H]+ (calcd. 223.2056), as observed in the node mass spectrum. Additionally, the fragment resulting from the loss of H2O (18 Da) appeared at m/z 205.1956 [C15H24 + H]+ (calcd. 205.1951), and the fragmentation pattern indicated the loss of 14 Da (CH2) units, suggesting an aliphatic compound. Based on this data, along with literature evidence the structure of farnesol (3), a structural isomer of isolongifolol, is proposed.6565 Navare, A. T.; Mayoral, J. G.; Nouzova, M.; Noriega, F. G.; Fernández, F. M.; Anal. Bioanal. Chem. 2010, 398, 3005. [Crossref]
Crossref...
Another terpenoid identified from D. phaseolorum metabolism was ferutinol (4), represented by the node at m/z 221.1902 [C15H26O2 - H2O + H]+ (calcd. 221.1900), with a daughter ion observed at m/z 203.1807 [C15H22 + H]+ (calcd. 203.1794), corresponding to the loss of additional H2O molecule.6666 Saidkhodzhaev, A. I.; Nikonov, G. K.; Chem. Nat. Compd. 1974, 10, 178. [Crossref]
Crossref...
The node at m/z 219.1734 [C15H24O2 - H2O + H]+ (calcd. 219.1743), identified as the base peak ion in the LC-MS spectra, represents the fragment derived from the loss of H2O (18 Da). Additionally, fragments resulting from the loss of H2O (18 Da) and C4H8 (56 Da) were observed at m/z 201.1643 [C15H20 + H]+ (calcd. 201.1638) and m/z 145.1022 [C11H12 + H]+ (calcd. 145.1012), respectively. These data indicate the presence of 3,6-epidioxybisa-bola-1,10-diene (5).6767 Rücker, G.; Schenkel, E.; Manns, D.; Mayer, R.; Heiden, K.; Heinzmann, B.; Planta Med. 1996, 62, 565. [Crossref]
Crossref...
Another terpenoid node at m/z 237.1846 [C15H26O3 - H2O + H]+ (calcd. 237.1849) led to the fragment ions m/z 219.1732 [C15H22O + H]+ (calcd. 219.1743) and m/z 201.1632 [C15H20 + H]+ (calcd. 201.1638) attributed to the loss of one (18 Da) and two (36 Da) water molecules, respectively. These MS/MS data align with those of the sesquiterpene 5-hydroxyculmorin (6).6868 Kasitu, G. C.; ApSimon, J. W.; Blackwell, B. A.; Fielder, D. A.; Greenhalgh, R.; Miller, J. D.; Can. J. Chem. 1992, 70, 1308. [Crossref]
Crossref...
The node at m/z 263.1993 [C17H28O3 - H2O + H]+ afforded the fragment ion at m/z 203.1800 [C15H22 + H]+ (calcd. 203.1794) after losing the acetate ester (60 Da). Additionally, a fragment resulting from the loss of C4H8 (56 Da) was observed at m/z 147.1172 [C11H14 + H]+ (calcd. 201.1178), followed by the loss of C3H2 (38 Da), providing m/z 109.1017 [C8H12 + H]+ (calcd. 109.1012). This fragment pattern is similar to that observed for chrysanthemol terpene,6969 Chen, Y.; Xiong, Z.; Zhou, G.; Yang, J.; Li, Y.; Chem. Lett. 1997, 26, 1289. [Crossref]
Crossref...
with a difference of 42 Da, suggesting an acetylated derivative (7). Another terpenoid node at m/z 201.1647 [C15H22O - H2O + H]+ (calcd. 201.1038) produced fragment ions at m/z 173.1328 [C13H16 + H]+ (calcd. 173.1325) and m/z 159.1173 [C12H14 + H]+ (calcd. 159.1168) after losing C2H4 (28 Da) and C3H6 (42 Da), respectively. Based on these results, along with the literature data, the structure of the sesquiterpenoid nootkatone (8) is proposed.7070 Wriessnegger, T.; Augustin, P.; Engleder, M.; Leitner, E.; Müller, M.; Kaluzna, I.; Schürmann, M.; Mink, D.; Zellnig, G.; Schwab, H.; Pichler, H.; Metab. Eng. 2014, 24, 18. [Crossref]
Crossref...
Furthermore, the nodes at m/z 409.2966 [C24H40O5 + H]+ (calcd. 409.2949) and m/z 345.2406 [C20H34O3 + Na]+ (calcd. 345.2400) were annotated as hyocholic acid (9) and a labdane derivative (10), respectively. Hyocholic acid was identified based on its MS/MS data, considering the fragment ion resulting from the loss of H2O (18 Da) and CO2 (44 Da), providing m/z 347.2938 [C20H22O2 + H]+ (calcd. 347.2945).7171 Zhao, Q.; Shan, G.; Xu, D.; Gao, H.; Shi, J.; Ju, C.; Lin, G.; Zhang, F.; Jia, T.; J. Anal. Methods Chem. 2019, 2019, ID 2980596. [Crossref]
Crossref...
In the mass spectrum of compound 10, fragment ions at m/z 149.1330 [C11H16 + H]+ (calcd. 149.1325) and 135.1171 [C10H14 + H]+ (calcd. 135.1178) were observed, which align the labdane fragmentation pattern.
Within the prenol lipid group, 13 nodes were identified as fatty acid derivatives (Figure 1), exhibiting similar fragment ions at m/z 95 [C7H10 + H]+, m/z 109 [C8H12 + H]+, and m/z 123 [C9H14 + H]+. This similarity arises from their structural characteristics, featuring a long unsaturated hydrocarbon chain terminated with a carboxyl group. Additionally, common neutral fragment losses of 18 Da (H2O) and units of 14 Da (CH2) were observed in the mass spectra.
Through tandem MS comparison utilizing mass spectra libraries, the fatty acid derivatives were annotated as follows: one saturated fatty acid, dodecanedioic acid (11) at m/z 213.1497 [C12H22O4 - H2O + H]+ (calcd. 213.1485),7272 Beach, D. G.; Gabryelski, W.; Anal. Bioanal. Chem. 2018, 410, 15. [Crossref]
Crossref...
and four unsaturated fatty acids: elaidic acid (12) at m/z 283.2645 [C18H34O2 + H]+ (calcd. 283.2632),7373 Jiménez, J. J.; Bernal, J. L.; Aumente, S.; Toribio, L.; Bernal, J.; J. Chromatogr. A 2003, 1007, 101. [Crossref]
Crossref...
(9Z)-12,13-dihydroxy-9-octadecenoic acid (13) at m/z 332.2800 [C18H34O4 + NH4]+ (calcd. 332.2795),7474 Püssa, T.; Raudsepp, P.; Toomik, P.; Pällin, R.; Mäeorg, U.; Kuusik, S.; Soidla, R.; Rei, M.; J. Food Compos. Anal. 2009, 22, 307. [Crossref]
Crossref...
and the constitutional isomers 12,13-epoxyoctadecenoic acid (14) and 9,10-epoxyoctadecenoic acid (15) at m/z 297.2409 [C18H32O3 + H]+ (calcd. 297.2424)7575 Zhao, Y.; Zhao, H.; Zhao, X.; Jia, J.; Ma, Q.; Zhang, S.; Zhang, X.; Chiba, H.; Hui, S.-P.; Ma, X.; Anal. Chem. 2017, 89, 10270. [Crossref]
Crossref...
and m/z 279.2326 [C18H32O3 -H2O + H]+ (calcd. 279.2319),7676 Gouveia-Figueira, S.; Späth, J.; Zivkovic, A. M.; Nording, M. L.; PLoS One 2015, 10, e0132042. [Crossref]
Crossref...
respectively.
GNPS further annotated several polyunsaturated fatty acids within the prenol lipid group, including: (9Z,11E)-13-oxo-9,11-octadecadienoic acid (16) at m/z 295.2271 [C18H30O3 + H]+ (calcd. 295.2268),7777 Li, X.; Gao, P.; Gjetvaj, B.; Westcott, N.; Gruber, M. Y.; Plant Sci. 2009, 177, 68. [Crossref]
Crossref...
(10E,12Z)-10,12-octadecadienoic acid (17) at m/z 263.2379 [C18H32O2 - H2O + H]+ (calcd. 263.2369), and stearidonic acid (18) at m/z 277.2168 [C18H28O2 + H]+ (calcd. 277.2162).7878 Jalali-Heravi, M.; Vosough, M.; J. Chromatogr. A 2004, 1024, 165. [Crossref]
Crossref...
Additionally, three fatty acid derivatives were annotated as esters: ethyl linoleate (19) at m/z 309.2786 [C20H36O2 + H]+ (calcd. 309.2788),7979 Takashima, S.; Toyoshi, K.; Yamamoto, T.; Shimozawa, N.; Sci. Rep. 2020, 10, 12988. [Crossref]
Crossref...
ethyl (6Z,9Z,12Z,15Z) 6,9,12,15 octadecatetraenoate (20) at m/z 307.2639 [C20H34O2 + H]+ (calcd. 307.2632),8080 Dayhuff, L.-E.; Wells, M. J. M.; J. Chromatogr. A 2005, 1098, 144. [Crossref]
Crossref...
and 2,3-dihydroxypropyl (6Z,9Z,12Z,15Z) 6,9,12,15 octadecatetraenoate (21) at m/z 353.2693 [C21H36O4 + H]+ (calcd. 353.2686).8181 Zhao, S.-Y.; Liu, Z.-L.; Shu, Y.-S.; Wang, M.-L.; He, D.; Song, Z.-Q.; Zeng, H.-L.; Ning, Z.-C.; Lu, C.; Lu, A.-P.; Liu, Y.-Y.; Molecules 2017, 22, 1721. [Crossref]
Crossref...
Furthermore, two singletons were identified as fatty acid derivatives: (9Z,12Z)-N-(2-hydroxyethyl)-9,12 octadecadienamide (22) at m/z 324.2906 [C20H37NO2 + H]+ (calcd. 324.2897)8282 Kasai, H. F.; Tsubuki, M.; Takahashi, K.; Honda, T.; Ueda, H.; Anal. Sci. 2003, 19, 1593. [Crossref]
Crossref...
and ceratodictyol derivative (23) at m/z 299.2583 [C19H38O4 - CH3OH + H]+ (calcd. 299.2581).8383 Akiyama, T.; Ueoka, R.; van Soest, R. W. M.; Matsunaga, S.; J. Nat. Prod. 2009, 72, 1552. [Crossref]
Crossref...
The fragmentation pattern observed in prenol lipids displayed consistent neutral losses, including CH2 (14 Da), C2H4 (28 Da), and C4H8 (56 Da), alongside characteristics fragment ions such as m/z 95.0861 [C7H10 + H]+, 109.1017 [C8H12 + H]+, and 123.1173 [C9H14 + H]+. Identified terpenes in this study, including seven sesquiterpenes like alismol and isolongifolol, suggest the involvement of the mevalonate pathway in their biosynthesis.8484 Keller, N. P.; Nat. Rev. Microbiol. 2019, 17, 167. [Crossref]
Crossref...
These metabolites have been associated with various biological activities such as hormone regulation, pigment production, electron transport in photosynthesis, ecological interaction mediation such as pollinator attraction, and roles as allelopathic and antimicrobial agents, among others.8585 Kalish, B. T.; Fallon, E. M.; Puder, M.; J. Parenter. Enteral Nutr. 2012, 36, 380. [Crossref]
Crossref...
,8686 Webb, H.; Foley, W. J.; Külheim, C.; Plant Biotechnol. 2015, 31, 363. [Crossref]
Crossref...
Benzenoid derivatives annotation
The MF assigned to benzenoid derivatives revealed nine nodes, with six related to amino acid derivatives such as tyrosine, phenylalanine, and proline (Figure 2). The node with m/z 165.0550 [C9H11NO3 - NH3 + H]+ (calcd. 165.0546) and fragments at m/z 123.0440 [C7H6O2 + H]+ (calcd. 123.0441) and 121.0645 [C8H8O + H]+ (calcd. 121.0648), resulting from the loss of 42 Da (C2H2O) and 44 Da (CO2), respectively, signifies a fragmentation pattern characteristic of the amino acid tyrosine (24).8787 Zhang, P.; Chan, W.; Ang, I. L.; Wei, R.; Lam, M. M. T.; Lei, K. M. K.; Poon, T. C. W.; Sci. Rep. 2019, 9, 6453. [Crossref]
Crossref...
Additionally, two derivatives of tyrosine were identified: tyramine (25) at m/z 121.0654 [C8H11NO - NH3 + H]+ (calcd. 121.0648)8888 Asakawa, D.; Mizuno, H.; Sugiyama, E.; Todoroki, K.; Anal. Chem. 2020, 92, 12033. [Crossref]
Crossref...
and N-acetyl tyramine (26) at m/z 180.1019 [C10H13NO2 + H]+ (calcd. 180.1019).8989 Lech, K.; Fornal, E.; Molecules 2020, 25, 3223. [Crossref]
Crossref...
The mass spectra of these metabolites exhibited a similar fragmentation pattern with fragment ions at m/z 95, 103, and 121 Da, corresponding to [C6H6O + H]+, [C8H6 + H]+, and [C8H8O + H]+, respectively.
MFs and chemical structures of benzenoids, organoheterocyclic derivatives, and nucleosides.
The observed fragmentation patterns for benzenoids in the MS data are indicative of their structural features and functional groups, allowing for the annotation of specific compounds within the benzenoid family. These patterns include characteristic losses of various moieties such as H2O, NH3, CO2, CO, and CH2CO, corresponding to specific mass losses of 18, 17, 44, 28, and 42 Da, respectively. For instance, the MS22 Chagas, F. O.; Dias, L. G.; Pupo, M. T.; J. Chem. Ecol. 2013, 39, 1335. [Crossref]
Crossref...
fragmentation pattern of the node at m/z 208.0974 [C11H13NO3 + H]+ (calcd. 208.0968) suggests the presence of N-acetylphenylalanine (27),9090 Lapadatescu, C.; Giniès, C.; Le Quéré, J.-L.; Bonnarme, P.; Appl. Environ. Microbiol. 2000, 66, 1517. [Crossref]
Crossref...
as evidenced by the fragments at m/z 190.0871 [C11H11NO2 + H]+ (calcd. 190.0863) and m/z 166.0864 [C9H11NO2 + H]+ (calcd. 166.0863), resulting from the loss of water (18 Da) and acetyl group (42 Da), respectively. Similarly, N-acetyl-2 phenylethylalanine (28)9191 Nikolić, D.; Macias, C.; Lankin, D. C.; van Breemen, R. B.; Rapid Commun. Mass Spectrom. 2017, 31, 1385. [Crossref]
Crossref...
and N-prolylphenylalanine (29)9292 Lei, M.; Shi, L.; Li, G.; Chen, S.; Fang, W.; Ge, Z.; Cheng, T.; Li, R.; Tetrahedron 2007, 63, 7892. [Crossref]
Crossref...
were identified based on their characteristic fragmentation pattern and mass spectral data.
These phenylalanine derivatives exhibit fragment ions at m/z 95, 105, and 120 Da, corresponding to [C7H10 + H]+, [C8H8 + H]+, and [C8H9N + H]+, respectively. The biological activities attributed to D. phaseolorum, such as antibacterial and antifungal effects, may be attributed with the presence to these aromatic compounds identified in the extract.33 Silva, F. A.; Liotti, R. G.; Boleti, A. P. A.; Reis, É. M.; Passos, M. B. S.; dos Santos, E. L.; Sampaio, O. M.; Januário, A. H.; Branco, C. L. B.; da Silva, G. F.; de Mendonça, E. A. F.; Soares, M. A.; PLoS One 2018, 13, e0195874. [Crossref]
Crossref...
,4646 Wang, R. Y.; Fang, M. J.; Huang, Y. J.; Zheng, Z. H.; Shen, Y. M.; Acta Crystallogr., Sect. E: Struct. Rep. Online 2006, 62, 4172. [Crossref]
Crossref...
,9393 Qadri, M.; Deshidi, R.; Shah, B. A.; Bindu, K.; Vishwakarma, R. A.; Riyaz-Ul-Hassan, S.; World J. Microbiol. Biotechnol. 2015, 31, 1647. [Crossref]
Crossref...
Overall, the annotation of benzenoid derivatives in D. phaseolorum extract provides insights into the chemical composition and potential bioactive properties of this fungal endophyte.
The nodes corresponding to m/z 123.0440 [C7H6O2 + H]+ (calcd. 123.0441), m/z 139.0390 [C7H6O3 +H]+ (calcd. 139.0390), and m/z 107.0493 [C7H8O2 - H2O + H]+ (calcd. 107.0491) were identified as 4-hydroxybenzaldehyde (30),9090 Lapadatescu, C.; Giniès, C.; Le Quéré, J.-L.; Bonnarme, P.; Appl. Environ. Microbiol. 2000, 66, 1517. [Crossref]
Crossref...
4-hydroxybenzoic acid (31),9494 Hossain, M. B.; Rai, D. K.; Brunton, N. P.; Martin-Diana, A. B.; Barry-Ryan, C.; J. Agric. Food Chem. 2010, 58, 10576. [Crossref]
Crossref...
and 3-hydroxybenzyl alcohol (32),9595 Alfaro, C.; Urios, A.; González, M. C.; Moya, P.; Blanco, M.; Mutat. Res. 2003, 539, 187. [Crossref]
Crossref...
respectively. These phenol derivatives exhibit a common fragmentation pattern characterized by the presence of the ion at m/z 95 [C6H6O +H]+ resulting from the loss of CO (28 Da), CO2 (44 Da) and CH2O (30 Da) for metabolites 30, 31, and 32, respectively.
The identification of these phenolic compounds in the D. phaseolorum extract is significant, as these compounds have been previously associated with phytotoxic effects on grapevine leaf disks and leaf absorption bioassays employing Diaporthe eres fungus.9696 Reveglia, P.; Pacetti, A.; Masi, M.; Cimmino, A.; Carella, G.; Marchi, G.; Mugnai, L.; Evidente, A.; Nat. Prod. Res. 2021, 35, 2872. [Crossref]
Crossref...
This suggests that these phenolic derivatives may play a role in the ecological interactions of D. phaseolorum with its host plant, potentially serving as chemical defenses or signaling molecules. Furthermore, the presence of these compounds suggests potential bioactive properties associated with phenolic compounds, which are known for their antioxidant, antimicrobial, and anti-inflammatory activities.
Organoheterocyclic and nucleoside derivatives annotation
The MFs assigned to organoheterocyclic and nucleoside compounds in the D. phaseolorum extract are represented by two nodes each (Figure 2). In the organoheterocyclic group, one of the nodes corresponds to m/z 176.0710 [C10H9NO2 + H]+ (calcd. 176.0706), which upon fragmentation produced the fragment ion m/z 148.0757 [C9H9NO + H]+ (calcd. 148.0757) after losing CO (28 Da), followed by the loss of HCN (27 Da), resulting in m/z 121.0653 [C8H8O + H]+ (calcd. 121.0648). Based on these fragmentation patterns and literature data, this compound was identified as 5-methoxy-1H-indole-3-carbaldehyde (33).9797 Neta, P.; Simón-Manso, Y.; Liang, Y.; Stein, S. E.; Rapid Commun. Mass Spectrom. 2014, 28, 1871. [Crossref]
Crossref...
Another node at m/z 167.1071 [C10H14O2 + H]+ (calcd. 167.1067) showed fragmentation indicative of the presence of an alkyl chain and a pyranone scaffold. Fragment ions at m/z 125.0598 [C7H8O2 + H]+ (calcd. 125.0597), m/z 111.0444 [C6H6O2 + H]+ (calcd. 111.0441), and 97.0289 [C5H4O2 + H]+ (calcd. 97.0284), supported the identification of this compound as 6-pentyl-2-pyrone (34).9898 Garnica-Vergara, A.; Barrera-Ortiz, S.; Muñoz-Parra, E.; Raya-González, J.; Méndez-Bravo, A.; Macías-Rodríguez, L.; Ruiz-Herrera, L. F.; López-Bucio, J.; New Phytol. 2016, 209, 1496. [Crossref]
Crossref...
In the nucleoside cluster, two nodes were identified as adenosine (35)9999 Takeara, R.; Jimenez, P. C.; Costa-Lotufo, L. V.; Lopes, J. L. C.; Lopes, N. P.; J. Braz. Chem. Soc. 2007, 18, 1054. [Crossref]
Crossref...
at m/z 268.1048 [C10H13N5O4 + H]+ (calcd. 268.1040) and 5’-deoxyadenosine (36)9999 Takeara, R.; Jimenez, P. C.; Costa-Lotufo, L. V.; Lopes, J. L. C.; Lopes, N. P.; J. Braz. Chem. Soc. 2007, 18, 1054. [Crossref]
Crossref...
m/z 252.1080 [C10H13N5O3 + H]+ (calcd. 252.1091), based on their mass spectra showing similar MS/MS patterns with ions at m/z 136, which represent the purine scaffold of adenine.
The metabolites annotated in this study represent novel findings for the Diaporthe genus, with only a few exceptions. Elaidic acid and stearidonic acid have been previously described for Diaporthe cuppatea,100100 Carvalho, C. R.; Wedge, D. E.; Cantrell, C. L.; Silva-Hughes, A. F.; Pan, Z.; Moraes, R. M.; Madoxx, V. L.; Rosa, L. H.; Chem. Biodiversity 2016, 13, 918. [Crossref]
Crossref...
while ethyl linoleate has been identified from Diaporthe schini biomass using supercritical carbon dioxide extraction.101101 da Rosa, B. V.; Kuhn, K. R.; Ugalde, G. A.; Zabot, G. L.; Kuhn, R. C.; Bioprocess Biosyst. Eng. 2020, 43, 133. [Crossref]
Crossref...
Additionally, the amino acid derivative tyramine has been reported by various Diaporthe species, including Diaporthe cynaroidis, Diaporthe eres, Diaporthe helianthi, and D. phaseolorum.102102 von Maltzahn, G.; Flavell, R. B.; Toledo, G. V.; Leff, J. W.; Samayoa, P.; Marquez, L. M.; Johnston, D. M.; Djonovic, S.; Millet, Y. A.; Sadowski, C.; Lyford, J.; Ambrose, K. V.; Zhang, X.; US pat. 9408394-B2, 2016. Phenolic derivatives such as 4-hydroxybenzaldehyde and 4-hydroxybenzoic acid has been isolated from the fungi Diaporthe gulyae103103 Andolfi, A.; Boari, A.; Evidente, M.; Cimmino, A.; Vurro, M.; Ash, G.; Evidente, A.; J. Nat. Prod. 2015, 78, 623. [Crossref]
Crossref...
and D. eres.9696 Reveglia, P.; Pacetti, A.; Masi, M.; Cimmino, A.; Carella, G.; Marchi, G.; Mugnai, L.; Evidente, A.; Nat. Prod. Res. 2021, 35, 2872. [Crossref]
Crossref...
The analysis using MNs and MolNetEnhancer has elucidated secondary metabolites produced through two stablished metabolic pathways such as acetate and shikimate pathways. These discoveries not only enhance comprehension of the chemical variation within Diaporthe species but also are useful for future research on the chemistry of natural products and ecological interactions involving plants and fungi.
Conclusions
In summary, our study successfully annotated 36 metabolites present in the crude extract of the endophytic fungus D. phaseolorum using dereplication analysis with MN. Remarkably, 31 of these metabolites are reported here for the first time for both this particular endophytic fungus and the Diaporthe genus. Additionally, following the Metabolomics Standard Initiative reporting standards, MolNetEnhancer notably enhanced chemical annotations, elevating them from putative annotations to well-defined chemical classification at level 3 through GNPS library matching. These findings underscore the importance of investigating the chemical profiles of endophytic fungi, as they provide valuable insights into their metabolic potential and potential bioactivities. This knowledge not only contributes to expanding our understanding of fungal secondary metabolism but also holds promise for the discovery of novel bioactive compounds with potential applications in various fields, including pharmaceuticals, agriculture, and biotechnology.
Supplementary Information
Supplementary information, containing detailed data related to mass spectrometry and chromatographic analysis, including molecular formula, adduct, experimental and calculated ion mass, mass accuracy, CScore value, retention time, mirror plot GNPS, and fragmentation proposal of all identified metabolites, is available free of charge at http://jbcs.sbq.org.br as PDF file.PDF
Acknowledgments
We gratefully acknowledge INCT-INAU II (421733/2017-9), FAPEMAT (grant 0217830/2017 and 0250685/2017), CNPq (grant 430089/2016-3), and UFMT for financial support and fellowships. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
References
-
1Liu, S.-S.; Jiang, J.-X.; Huang, R.; Wang, Y.-T.; Jiang, B. G.; Zheng, K.-X.; Wu, S.-H.; Phytochem. Lett. 2019, 29, 75. [Crossref]
» Crossref -
2Chagas, F. O.; Dias, L. G.; Pupo, M. T.; J. Chem. Ecol. 2013, 39, 1335. [Crossref]
» Crossref -
3Silva, F. A.; Liotti, R. G.; Boleti, A. P. A.; Reis, É. M.; Passos, M. B. S.; dos Santos, E. L.; Sampaio, O. M.; Januário, A. H.; Branco, C. L. B.; da Silva, G. F.; de Mendonça, E. A. F.; Soares, M. A.; PLoS One 2018, 13, e0195874. [Crossref]
» Crossref -
4Sampaio, O. M.; Vieira, L. C. C.; Bellete, B. S.; King-Diaz, B.; Lotina-Hennsen, B.; da Silva, M. F. G. F.; Veiga, T. A. M.; Molecules 2018, 23, 2693. [Crossref]
» Crossref -
5de Medeiros, L. S.; Sampaio, O. M.; da Silva, M. F. G. F.; Rodrigues Filho, E.; Veiga, T. A. M.; J. Braz. Chem. Soc. 2012, 23, 1551. [Crossref]
» Crossref -
6Sampaio, O. M.; Lima, M. M. C.; Veiga, T. A. M.; King-Díaz, B.; da Silva, M. F. G. F.; Lotina-Hennsen, B.; Pestic. Biochem. Physiol. 2016, 134, 55. [Crossref]
» Crossref -
7Kharwar, R. N.; Mishra, A.; Gond, S. K.; Stierle, A.; Stierle, D.; Nat. Prod. Rep. 2011, 28, 1208. [Crossref]
» Crossref -
8Masi, M.; Cimmino, A.; Tabanca, N.; Becnel, J. J.; Bloomquist, J. R.; Evidente, A.; Open Chem. 2017, 15, 156. [Crossref]
» Crossref -
9Pires, C. T. A.; Scodro, R. B. L.; Cortez, D. A. G.; Brenzan, M. A.; Siqueira, V. L. D.; Caleffi-Ferracioli, K. R.; Vieira, L. C. C.; Monteiro, J. L.; Corrêa, A. G.; Cardoso, R. F.; Future Med. Chem. 2020, 12, 1533. [Crossref]
» Crossref -
10King-Díaz, B.; Soares, M. S.; da Silva, M. F. G. F.; Lotina-Hennsen, B.; Veiga, T. A. M.; Am. J. Plant Sci. 2014, 5, 2528. [Crossref]
» Crossref -
11Nebo, L.; Varela, R. M.; Molinillo, J. M. G.; Sampaio, O. M.; Severino, V. G. P.; Cazal, C. M.; Fernandes, M. F. G.; Fernandes, J. B.; Macías, F. A.; Phytochem. Lett. 2014, 8, 226. [Crossref]
» Crossref -
12Pinto, A. C.; Silva, D. H. S.; Bolzani, V. D. S.; Lopes, N. P.; Epifanio, R. D. A.; Quim. Nova 2002, 25, 45. [Crossref]
» Crossref -
13Li, Z.; Wang, Y.; Ouyang, H.; Lu, Y.; Qiu, Y.; Feng, Y.; Jiang, H.; Zhou, X.; Yang, S.; J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2015, 988, 45. [Crossref]
» Crossref -
14Newman, D. J.; Cragg, G. M.; J. Nat. Prod. 2016, 79, 629. [Crossref]
» Crossref -
15Atanasov, A. G.; Zotchev, S. B.; Dirsch, V. M.; Supuran, C. T.; Nat. Rev. Drug Discovery 2021, 20, 200. [Crossref]
» Crossref -
16Hubert, J.; Nuzillard, J.-M.; Renault, J.-H.; Phytochem. Rev. 2017, 16, 55. [Crossref]
» Crossref -
17Wolfender, J.-L.; Litaudon, M.; Touboul, D.; Queiroz, E. F.; Nat. Prod. Rep. 2019, 36, 855. [Crossref]
» Crossref -
18Sedio, B. E.; New Phytol. 2017, 214, 952. [Crossref]
» Crossref -
19Nothias, L. F.; Nothias-Esposito, M.; da Silva, R.; Wang, M.; Protsyuk, I.; Zhang, Z.; Sarvepalli, A.; Leyssen, P.; Touboul, D.; Costa, J.; Paolini, J.; Alexandrov, T.; Litaudon, M.; Dorrestein, P. C.; J. Nat. Prod. 2018, 81, 758. [Crossref]
» Crossref -
20Woo, S.; Kang, K. B.; Kim, J.; Sung, S. H.; J. Nat. Prod. 2019, 82, 1820. [Crossref]
» Crossref -
21Hoang, T. P. T.; Roullier, C.; Boumard, M. C.; Robiou Du Pont, T.; Nazih, H.; Gallard, J. F.; Pouchus, Y. F.; Beniddir, M. A.; Grovel, O.; J. Nat. Prod. 2018, 81, 2501. [Crossref]
» Crossref -
22Han, X.; Tang, X.; Luo, X.; Sun, C.; Liu, K.; Zhang, Y.; Li, P.; Li, G.; Chem. Biodiversity 2020, 17, e2000208. [Crossref]
» Crossref -
23Chen, F.; Ma, R.; Chen, X.-L.; Metabolites 2019, 9, 169. [Crossref]
» Crossref -
24Zhu, G.; Hou, C.; Yuan, W.; Wang, Z.; Zhang, J.; Jiang, L.; Karthik, L.; Li, B.; Ren, B.; Lv, K.; Lu, W.; Cong, Z.; Dai, H.; Hsiang, T.; Zhang, L.; Liu, X.; Chem. Commun. 2020, 56, 10171. [Crossref]
» Crossref -
25Barthélemy, M.; Guérineau, V.; Genta-Jouve, G.; Roy, M.; Chave, J.; Guillot, R.; Pellissier, L.; Wolfender, J. L.; Stien, D.; Eparvier, V.; Touboul, D.; Sci. Rep. 2020, 10, 19788. [Crossref]
» Crossref -
26Santos, A. L.; Ionta, M.; Horvath, R.; Soares, M. G.; de Medeiros, L. S.; Uemi, M.; Kawafune, E. S.; Tangerina, M. M. P.; Ferreira, M. J. P.; Sartorelli, P.; Phytochem. Lett. 2021, 42, 1. [Crossref]
» Crossref -
27Jiang, Y.; Wu, J.; Kawagishi, H.; Jiang, C.; Zhou, Q.; Tong, Z.; Tong, Y.; Wang, P.; Int. J. Anal. Chem. 2022, 2022, ID 7067665. [Crossref]
» Crossref -
28Triastuti, A.; Haddad, M.; Barakat, F.; Mejia, K.; Rabouille, G.; Fabre, N.; Amasifuen, C.; Jargeat, P.; Vansteelandt, M.; Chem. Biodiversity 2021, 18, e200067. [Crossref]
» Crossref -
29Xu, T.-C.; Lu, Y.-H.; Wang, J.-F.; Song, Z.-Q.; Hou, Y.-G.; Liu, S.-S.; Liu, C.-S.; Wu, S.-H.; Microorganisms 2021, 9, 217. [Crossref]
» Crossref -
30Chepkirui, C.; Stadler, M.; Mycol. Progress 2017, 16, 477. [Crossref]
» Crossref -
31Cui, H.; Yu, J.; Chen, S.; Ding, M.; Huang, X.; Yuan, J.; She, Z.; Bioorg. Med. Chem. Lett. 2017, 27, 803. [Crossref]
» Crossref -
32Cui, H.; Ding, M.; Huang, D.; Zhang, Z.; Liu, H.; Huang, H.; She, Z.; RSC Adv. 2017, 7, 20128. [Crossref]
» Crossref -
33Li, G.; Kusari, S.; Kusari, P.; Kayser, O.; Spiteller, M.; J. Nat. Prod. 2015, 78, 2128. [Crossref]
» Crossref -
34Kongprapan, T.; Xu, X.; Rukachaisirikul, V.; Phongpaichit, S.; Sakayaroj, J.; Chen, J.; Shen, X.; Phytochem. Lett. 2017, 22, 219. [Crossref]
» Crossref -
35Liu, Z.; Zhao, J.; Liang, X.; Lv, X.; Li, Y.; Qu, J.; Liu, Y.; Fitoterapia 2018, 127, 7. [Crossref]
» Crossref -
36Tian, W.; Liao, Z.; Zhou, M.; Wang, G.; Wu, Y.; Gao, S.; Qiu, D.; Liu, X.; Lin, T.; Chen, H.; Fitoterapia 2018, 128, 253. [Crossref]
» Crossref -
37Luo, X.; Lin, X.; Tao, H.; Wang, J.; Li, J.; Yang, B.; Zhou, X.; Liu, Y.; J. Nat. Prod. 2018, 81, 934. [Crossref]
» Crossref -
38de Carvalho, C. R.; Ferreira-D’Silva, A.; Wedge, D. E.; Cantrell, C. L.; Rosa, L. H.; Can. J. Microbiol. 2018, 64, 835. [Crossref]
» Crossref -
39de Siqueira, K. A.; Brissow, E. R.; dos Santos, J. L.; White, J. F.; Santos, F. R.; de Almeida, E. G.; Soares, M. A.; Symbiosis 2017, 71, 211. [Crossref]
» Crossref -
40Brissow, E. R.; da Silva, I. P.; de Siqueira, K. A.; Senabio, J. A.; Pimenta, L. P.; Januário, A. H.; Magalhães, L. G.; Furtado, R. A.; Tavares, D. C.; Sales Jr., P. A.; Santos, J. L.; Soares, M. A.; Parasitol. Res. 2017, 116, 1823. [Crossref]
» Crossref -
41Kumala, S.; DwiYuliani, K.; Simanjuntak, P.; Khare, E.; Mishra, J.; Arora, N. K.; Balouiri, M.; Sadiki, M.; Ibnsouda, S. K.; Hanum, A. S.; Prihastanti, E.; Padhi, L.; Pansanit, A.; Pripdeevech, P.; Pavithra, G.; Bindal, S.; Rana, M.; Srivastava, S.; Sarsaiya, S.; Shi, J.; Chen, J.; Deepika, K.; Int. J. Pharm. Sci. Res. 2016, 6, 2349. [Crossref]
» Crossref -
42Tong, W. Y.; Leong, C. R.; Tan, W. N.; Khairuddean, M.; Zakaria, L.; Ibrahim, D.; J. Microbiol. Biotechnol. 2017, 27, 1065. [Crossref]
» Crossref -
43Niu, Z.; Chen, Y.; Guo, H.; Li, S. N.; Li, H. H.; Liu, H. X.; Liu, Z.; Zhang, W.; Molecules 2019, 24, 3062. [Crossref]
» Crossref -
44Moura, M. S.; Lacerda, J. W. F.; Siqueira, K. A.; Bellete, B. S.; Sousa, P. T.; Dall´Óglio, E. L.; Soares, M. A.; Vieira, L. C. C.; Sampaio, O. M.; J. Environ. Sci. Health, Part B 2020, 55, 470. [Crossref]
» Crossref -
45Agusta, A.; Ohashi, K.; Shibuya, H.; Chem. Pharm. Bull. 2006, 54, 579. [Crossref]
» Crossref -
46Wang, R. Y.; Fang, M. J.; Huang, Y. J.; Zheng, Z. H.; Shen, Y. M.; Acta Crystallogr., Sect. E: Struct. Rep. Online 2006, 62, 4172. [Crossref]
» Crossref -
47Guo, H.; Liu, Z.-M.; Chen, Y.-C.; Tan, H.-B.; Li, S.-N.; Li, H. H.; Gao, X.-X.; Liu, H.-X.; Zhang, W.-M.; Mar. Drugs 2019, 17, 182. [Crossref]
» Crossref -
48Sebastianes, F. L. S.; Cabedo, N.; El Aouad, N.; Valente, A. M. M. P.; Lacava, P. T.; Azevedo, J. L.; Pizzirani-Kleiner, A. A.; Cortes, D.; Curr. Microbiol. 2012, 65, 622. [Crossref]
» Crossref -
49Core FTP LE, version 2.2; CoreFTP; Shelton, WA, USA, 2020. [Link] accessed in March 2024
» Link -
50Global Natural Products Social (GNPS), https://gnps.ucsd.edu, accessed in March 2024.
» https://gnps.ucsd.edu -
51Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D.; Watrous, J.; Kapono, C. A.; Luzzatto Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A. V.; Meehan, M. J.; Liu, W. T.; Crüsemann, M.; Boudreau, P. D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R. D.; Pace, L. A.; Quinn, R. A.; Duncan, K. R.; Hsu, C. C.; Floros, D. J.; Gavilan, R. G.; Kleigrewe, K.; Northen, T.; Dutton, R. J.; Parrot, D.; Carlson, E. E.; Aigle, B.; Michelsen, C. F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B. T.; Gerwick, L.; Liaw, C. C.; Yang, Y. L.; Humpf, H. U.; Maansson, M.; Keyzers, R. A.; Sims, A. C.; Johnson, A. R.; Sidebottom, A. M.; Sedio, B. E.; Klitgaard, A.; Larson, C. B.; Boya, C. A. P.; Torres-Mendoza, D.; Gonzalez, D. J.; Silva, D. B.; Marques, L. M.; Demarque, D. P.; Pociute, E.; O’Neill, E. C.; Briand, E.; Helfrich, E. J. N.; Granatosky, E. A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J. J.; Zeng, Y.; Vorholt, J. A.; Kurita, K. L.; Charusanti, P.; McPhail, K. L.; Nielsen, K. F.; Vuong, L.; Elfeki, M.; Traxler, M. F.; Engene, N.; Koyama, N.; Vining, O. B.; Baric, R.; Silva, R. R.; Mascuch, S. J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P. G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A. M. C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B. M.; Almaliti, J.; Allard, P. M.; Phapale, P.; Nothias, L. F.; Alexandrov, T.; Litaudon, M.; Wolfender, J. L.; Kyle, J. E.; Metz, T. O.; Peryea, T.; Nguyen, D. T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K. M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P. R.; Palsson, B.; Pogliano, K.; Linington, R. G.; Gutiérrez, M.; Lopes, N. P.; Gerwick, W. H.; Moore, B. S.; Dorrestein, P. C.; Bandeira, N.; Nat. Biotechnol. 2016, 34, 828. [Crossref]
» Crossref -
52Cytoscape, https://cytoscape.org, accessed in March 2024.
» https://cytoscape.org -
53Human Metabolome Database (HMDB), https://hmdb.ca, accessed in March 2024.
» https://hmdb.ca -
54SuperNatural 3.0, https://bioinf-applied.charite.de/supernatural_3, accessed in March 2024.
» https://bioinf-applied.charite.de/supernatural_3 -
55Chemical Entities of Biological Interest, https://www.ebi.ac.uk/chebi, accessed in March 2024.
» https://www.ebi.ac.uk/chebi -
56DrugBank, https://go.drugbank.com, accessed in March 2024.
» https://go.drugbank.com -
57The Food Database, https://foodb.ca, accessed in March 2024.
» https://foodb.ca -
58MS2LDA - Unsupervised Substructure Discovery, https://ms2lda.org, accessed in March 2024.
» https://ms2lda.org -
59Kang, K. B.; Woo, S.; Ernst, M.; van der Hooft, J. J. J.; Nothias, L. F.; da Silva, R. R.; Dorrestein, P. C.; Sung, S. H.; Lee, M.; Phytochemistry 2020, 173, 112292. [Crossref]
» Crossref -
60Sumner, L. W.; Amberg, A.; Barrett, D.; Beale, M. H.; Beger, R.; Daykin, C. A.; Fan, T. W. M.; Fiehn, O.; Goodacre, R.; Griffin, J. L.; Hankemeier, T.; Hardy, N.; Harnly, J.; Higashi, R.; Kopka, J.; Lane, A. N.; Lindon, J. C.; Marriott, P.; Nicholls, A. W.; Reily, M. D.; Thaden, J. J.; Viant, M. R.; Metabolomics 2007, 3, 211. [Crossref]
» Crossref -
61Nothias-Esposito, M.; Nothias, L. F.; Da Silva, R. R.; Retailleau, P.; Zhang, Z.; Leyssen, P.; Roussi, F.; Touboul, D.; Paolini, J.; Dorrestein, P. C.; Litaudon, M.; J. Nat. Prod. 2019, 82, 1459. [Crossref]
» Crossref -
62Schmid, R.; Petras, D.; Nothias, L. F.; Wang, M.; Aron, A. T.; Jagels, A.; Tsugawa, H.; Rainer, J.; Garcia-Aloy, M.; Dührkop, K.; Korf, A.; Pluskal, T.; Kameník, Z.; Jarmusch, A. K.; Caraballo-Rodríguez, A. M.; Weldon, K. C.; Nothias-Esposito, M.; Aksenov, A. A.; Bauermeister, A.; Albarracin Orio, A.; Grundmann, C. O.; Vargas, F.; Koester, I.; Gauglitz, J. M.; Gentry, E. C.; Hövelmann, Y.; Kalinina, S. A.; Pendergraft, M. A.; Panitchpakdi, M.; Tehan, R.; Le Gouellec, A.; Aleti, G.; Mannochio Russo, H.; Arndt, B.; Hübner, F.; Hayen, H.; Zhi, H.; Raffatellu, M.; Prather, K. A.; Aluwihare, L. I.; Böcker, S.; McPhail, K. L.; Humpf, H. U.; Karst, U.; Dorrestein, P. C.; Nat. Commun. 2021, 12, 3832. [Crossref]
» Crossref -
63Tai, Y.; Zou, F.; Zhang, Q.; Wang, J.; Rao, R.; Xie, R.; Wu, S.; Chu, K.; Xu, W.; Li, X.; Huang, M.; J. Anal. Methods Chem. 2019, 2019, ID 8320171. [Crossref]
» Crossref -
64Shieh, B.; Matsubara, Y.; J. Mass Spectrom. Soc. Jpn. 1981, 29, 97. [Crossref]
» Crossref -
65Navare, A. T.; Mayoral, J. G.; Nouzova, M.; Noriega, F. G.; Fernández, F. M.; Anal. Bioanal. Chem 2010, 398, 3005. [Crossref]
» Crossref -
66Saidkhodzhaev, A. I.; Nikonov, G. K.; Chem. Nat. Compd. 1974, 10, 178. [Crossref]
» Crossref -
67Rücker, G.; Schenkel, E.; Manns, D.; Mayer, R.; Heiden, K.; Heinzmann, B.; Planta Med. 1996, 62, 565. [Crossref]
» Crossref -
68Kasitu, G. C.; ApSimon, J. W.; Blackwell, B. A.; Fielder, D. A.; Greenhalgh, R.; Miller, J. D.; Can. J. Chem. 1992, 70, 1308. [Crossref]
» Crossref -
69Chen, Y.; Xiong, Z.; Zhou, G.; Yang, J.; Li, Y.; Chem. Lett. 1997, 26, 1289. [Crossref]
» Crossref -
70Wriessnegger, T.; Augustin, P.; Engleder, M.; Leitner, E.; Müller, M.; Kaluzna, I.; Schürmann, M.; Mink, D.; Zellnig, G.; Schwab, H.; Pichler, H.; Metab. Eng. 2014, 24, 18. [Crossref]
» Crossref -
71Zhao, Q.; Shan, G.; Xu, D.; Gao, H.; Shi, J.; Ju, C.; Lin, G.; Zhang, F.; Jia, T.; J. Anal. Methods Chem. 2019, 2019, ID 2980596. [Crossref]
» Crossref -
72Beach, D. G.; Gabryelski, W.; Anal. Bioanal. Chem. 2018, 410, 15. [Crossref]
» Crossref -
73Jiménez, J. J.; Bernal, J. L.; Aumente, S.; Toribio, L.; Bernal, J.; J. Chromatogr. A 2003, 1007, 101. [Crossref]
» Crossref -
74Püssa, T.; Raudsepp, P.; Toomik, P.; Pällin, R.; Mäeorg, U.; Kuusik, S.; Soidla, R.; Rei, M.; J. Food Compos. Anal. 2009, 22, 307. [Crossref]
» Crossref -
75Zhao, Y.; Zhao, H.; Zhao, X.; Jia, J.; Ma, Q.; Zhang, S.; Zhang, X.; Chiba, H.; Hui, S.-P.; Ma, X.; Anal. Chem. 2017, 89, 10270. [Crossref]
» Crossref -
76Gouveia-Figueira, S.; Späth, J.; Zivkovic, A. M.; Nording, M. L.; PLoS One 2015, 10, e0132042. [Crossref]
» Crossref -
77Li, X.; Gao, P.; Gjetvaj, B.; Westcott, N.; Gruber, M. Y.; Plant Sci. 2009, 177, 68. [Crossref]
» Crossref -
78Jalali-Heravi, M.; Vosough, M.; J. Chromatogr. A 2004, 1024, 165. [Crossref]
» Crossref -
79Takashima, S.; Toyoshi, K.; Yamamoto, T.; Shimozawa, N.; Sci. Rep. 2020, 10, 12988. [Crossref]
» Crossref -
80Dayhuff, L.-E.; Wells, M. J. M.; J. Chromatogr. A 2005, 1098, 144. [Crossref]
» Crossref -
81Zhao, S.-Y.; Liu, Z.-L.; Shu, Y.-S.; Wang, M.-L.; He, D.; Song, Z.-Q.; Zeng, H.-L.; Ning, Z.-C.; Lu, C.; Lu, A.-P.; Liu, Y.-Y.; Molecules 2017, 22, 1721. [Crossref]
» Crossref -
82Kasai, H. F.; Tsubuki, M.; Takahashi, K.; Honda, T.; Ueda, H.; Anal. Sci. 2003, 19, 1593. [Crossref]
» Crossref -
83Akiyama, T.; Ueoka, R.; van Soest, R. W. M.; Matsunaga, S.; J. Nat. Prod. 2009, 72, 1552. [Crossref]
» Crossref -
84Keller, N. P.; Nat. Rev. Microbiol. 2019, 17, 167. [Crossref]
» Crossref -
85Kalish, B. T.; Fallon, E. M.; Puder, M.; J. Parenter. Enteral Nutr. 2012, 36, 380. [Crossref]
» Crossref -
86Webb, H.; Foley, W. J.; Külheim, C.; Plant Biotechnol. 2015, 31, 363. [Crossref]
» Crossref -
87Zhang, P.; Chan, W.; Ang, I. L.; Wei, R.; Lam, M. M. T.; Lei, K. M. K.; Poon, T. C. W.; Sci. Rep. 2019, 9, 6453. [Crossref]
» Crossref -
88Asakawa, D.; Mizuno, H.; Sugiyama, E.; Todoroki, K.; Anal. Chem. 2020, 92, 12033. [Crossref]
» Crossref -
89Lech, K.; Fornal, E.; Molecules 2020, 25, 3223. [Crossref]
» Crossref -
90Lapadatescu, C.; Giniès, C.; Le Quéré, J.-L.; Bonnarme, P.; Appl. Environ. Microbiol. 2000, 66, 1517. [Crossref]
» Crossref -
91Nikolić, D.; Macias, C.; Lankin, D. C.; van Breemen, R. B.; Rapid Commun. Mass Spectrom. 2017, 31, 1385. [Crossref]
» Crossref -
92Lei, M.; Shi, L.; Li, G.; Chen, S.; Fang, W.; Ge, Z.; Cheng, T.; Li, R.; Tetrahedron 2007, 63, 7892. [Crossref]
» Crossref -
93Qadri, M.; Deshidi, R.; Shah, B. A.; Bindu, K.; Vishwakarma, R. A.; Riyaz-Ul-Hassan, S.; World J. Microbiol. Biotechnol. 2015, 31, 1647. [Crossref]
» Crossref -
94Hossain, M. B.; Rai, D. K.; Brunton, N. P.; Martin-Diana, A. B.; Barry-Ryan, C.; J. Agric. Food Chem. 2010, 58, 10576. [Crossref]
» Crossref -
95Alfaro, C.; Urios, A.; González, M. C.; Moya, P.; Blanco, M.; Mutat. Res. 2003, 539, 187. [Crossref]
» Crossref -
96Reveglia, P.; Pacetti, A.; Masi, M.; Cimmino, A.; Carella, G.; Marchi, G.; Mugnai, L.; Evidente, A.; Nat. Prod. Res. 2021, 35, 2872. [Crossref]
» Crossref -
97Neta, P.; Simón-Manso, Y.; Liang, Y.; Stein, S. E.; Rapid Commun. Mass Spectrom. 2014, 28, 1871. [Crossref]
» Crossref -
98Garnica-Vergara, A.; Barrera-Ortiz, S.; Muñoz-Parra, E.; Raya-González, J.; Méndez-Bravo, A.; Macías-Rodríguez, L.; Ruiz-Herrera, L. F.; López-Bucio, J.; New Phytol. 2016, 209, 1496. [Crossref]
» Crossref -
99Takeara, R.; Jimenez, P. C.; Costa-Lotufo, L. V.; Lopes, J. L. C.; Lopes, N. P.; J. Braz. Chem. Soc. 2007, 18, 1054. [Crossref]
» Crossref -
100Carvalho, C. R.; Wedge, D. E.; Cantrell, C. L.; Silva-Hughes, A. F.; Pan, Z.; Moraes, R. M.; Madoxx, V. L.; Rosa, L. H.; Chem. Biodiversity 2016, 13, 918. [Crossref]
» Crossref -
101da Rosa, B. V.; Kuhn, K. R.; Ugalde, G. A.; Zabot, G. L.; Kuhn, R. C.; Bioprocess Biosyst. Eng. 2020, 43, 133. [Crossref]
» Crossref -
102von Maltzahn, G.; Flavell, R. B.; Toledo, G. V.; Leff, J. W.; Samayoa, P.; Marquez, L. M.; Johnston, D. M.; Djonovic, S.; Millet, Y. A.; Sadowski, C.; Lyford, J.; Ambrose, K. V.; Zhang, X.; US pat. 9408394-B2, 2016
-
103Andolfi, A.; Boari, A.; Evidente, M.; Cimmino, A.; Vurro, M.; Ash, G.; Evidente, A.; J. Nat. Prod. 2015, 78, 623. [Crossref]
» Crossref
Edited by
Publication Dates
-
Publication in this collection
31 May 2024 -
Date of issue
2025
History
-
Received
20 Dec 2023 -
Accepted
30 Apr 2024