Acessibilidade / Reportar erro

Monogeneans of Colossoma macropomum (Cuvier, 1818) (Characiformes: Serrasalmidae) farmed in the state of Acre, Amazon (Brazil)

Monogeneas de Colossoma macropomum (Cuvier, 1818) (Characiformes: Serrasalmidae) cultivados no estado do Acre, Amazônia (Brasil)

Abstract

Parasitism of Colossoma macropomum is of particular concern because it is the most commonly farmed native fish species in Brazil. Nevertheless, the parasitic fauna of this species in the state of Acre has been little studied. For this reason, an evaluation was made of the parasitic fauna of farmed C. macropomum in the municipality of Rio Branco in southwestern Amazon. Four monogenean species were found in the 122 fish examined: Anacanthorus spathulatus, Linguadactyloides brinkmanni, Notozothecium janauachensis and Mymarothecium boegeri. The most prevalent species was A. spathulatus (50%), followed by N. janauachensis (44.3%), M. boegeri (20.5%) and L. brinkmanni (9.0%). These results are the first data on the ecological indices of monogeneans in tambaqui in the state of Acre and will be useful for future comparisons of the influence of environmental factors on the parasite-host relationship.

Keywords:
Fish farming; Monogenea; tambaqui

Resumo

O parasitismo em Colossoma macropomum é particularmente preocupante porque é a espécie de peixe nativa mais cultivada no Brasil, no entanto a fauna parasitária dessa espécie no estado do Acre é pouco estudada. Assim, foi avaliada a fauna parasitária de C. macropomum cultivado no município de Rio Branco, no sudoeste da Amazônia. Foram encontradas quatro espécies de monogeneas nos 122 peixes examinados: Anacanthorus spathulatus, Linguadactyloides brinkmanni, Notozothecium janauachensis e Mymarothecium boegeri. As espécies mais prevalentes foram A. spathulatus (50%), seguido de N. janauachensis (44,3%), M. boegeri (20,5%) e L. brinkmanni (9,0%). Esses resultados são os primeiros dados sobre os índices ecológicos dos parasitos monogenéticos em tambaqui no estado do Acre e serão úteis para futuras comparações da influência dos fatores ambientais na relação parasito-hospedeiro.

Palavras-chave:
Piscicultura; Monogenea; tambaqui

Introduction

Current knowledge about the biodiversity of parasites in Colossoma macropomum (Cuvier, 1818), a Serrasalmidae popularly known as tambaqui, shows that monogeneans represent the majority of helminth species that reported parasitizing this fish species in different localities (Kritsky et al., 1979Kritsky DL, Thatcher VE, Kayton RJ. Neotropical Monogenoidea. 2. The Anacanthorinae Price, 1967, with the proposal of four new species of Anacanthorus Mizelle & Price, 1965, from Amazonian fishes. Acta Amaz 1979; 9(2): 355-361. http://dx.doi.org/10.1590/1809-43921979092355.
http://dx.doi.org/10.1590/1809-439219790...
; Pamplona-Basilio et al., 2001Pamplona-Basilio MC, Kohn A, Feitosa VA. New host records and description of the egg of Anacanthorus penilabiatus (Monogenea, Dactylogyridae). Mem Inst Oswaldo Cruz 2001; 96(5): 667-668. http://dx.doi.org/10.1590/S0074-02762001000500014. PMid:11500767.
http://dx.doi.org/10.1590/S0074-02762001...
; Fischer et al., 2003Fischer C, Malta JCO, Varella AMB. A fauna de parasitas do tambaqui, Colossoma macropomum (Cuvier, 1818) (Characiformes: Characidae) do médio rio Solimões, Estado do Amazonas (AM) e do baixo rio Amazonas, Estado do Pará (PA), e seu potencial como indicadores biológicos. Acta Amaz 2003; 33(4): 651-662. http://dx.doi.org/10.1590/S0044-59672003000400012.
http://dx.doi.org/10.1590/S0044-59672003...
; Cohen & Kohn, 2005Cohen SC, Kohn A. A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitol (Praha) 2005; 52(4): 307-310. http://dx.doi.org/10.14411/fp.2005.042. PMid:16405294.
http://dx.doi.org/10.14411/fp.2005.042...
, 2009Cohen SC, Kohn A. On Dactylogyridae (Monogenea) of four species of characid fishes from Brazil. Check List 2009; 5(2): 351-356. http://dx.doi.org/10.15560/5.2.351.
http://dx.doi.org/10.15560/5.2.351...
; Morais et al., 2009Morais AM, Varella AMB, Villacorta-Correa MA, Malta JCO. A fauna de parasitos em juvenis de tambaqui Colossoma macropomum (Cuvier, 1818) (Characidae: Serrasalminae) criados em tanques-rede em Lago de várzea da Amazônia Central. Biol Geral Exper 2009; 9(1): 14-23.; Godoi et al., 2012Godoi MMIM, Engracia V, Lizama MLAP, Takemoto RM. Parasite-host relationship between the tambaqui (Colossoma macropomum Cuvier 1818) and ectoparasites, collected from fish farms in the City of Rolim de Moura, State of Rondônia, Western Amaz, Brazil. Acta Amaz 2012; 42(4): 515-524. http://dx.doi.org/10.1590/S0044-59672012000400009.
http://dx.doi.org/10.1590/S0044-59672012...
; Soberon et al., 2014Soberon L, Mathews P, Malherios A. Hematological parameters of Colossoma macropomum naturally parasitized by Anacanthorus spathulatus (Monogenea: Dactylogiridae) in fish farm in the Peruvian Amaz. Int Aquat Res 2014; 6(4): 251-255. http://dx.doi.org/10.1007/s40071-014-0087-1.
http://dx.doi.org/10.1007/s40071-014-008...
; Dias et al., 2015Dias MKR, Neves LR, Marinho RGB, Tavares-Dias M. Parasitic infections in tambaqui from eight fish farms in Northern Brazil. Arq Bras Med Vet Zootec 2015; 67(4): 1070-1076. http://dx.doi.org/10.1590/1678-4162-7592.
http://dx.doi.org/10.1590/1678-4162-7592...
; Chagas et al., 2016Chagas EC, Araújo LD, Martins ML, Gomes LC, Malta JCO, Varella AB, et al. Mebendazole dietary supplementation controls Monogenoidea (Platyhelminthes: Dactylogyridae) and does not alter the physiology of the freshwater fish Colossoma macropomum (Cuvier, 1818). Aquaculture 2016; 464: 185-189. http://dx.doi.org/10.1016/j.aquaculture.2016.06.022.
http://dx.doi.org/10.1016/j.aquaculture....
; Baia et al., 2019Baia RRJ, Santos GG, Silva AS, Sousa BO, Tavares-Dias M. Parasite fauna of tambaqui reared in net-cages at two stocking densities. Bol Inst Pesca 2019; 45(3): e492. http://dx.doi.org/10.20950/1678-2305.2019.45.3.492.
http://dx.doi.org/10.20950/1678-2305.201...
; Fujimoto et al., 2019Fujimoto RY, Hide DMV, Paixão PEG, Abe HA, Dias JAR, Sousa NC, et al. Fauna parasitária e relação parasito-hospedeiro de tambaquis criados na região do Baixo São Francisco, nordeste do Brasil. Arq Bras Med Vet Zootec 2019; 71(2): 563-570. http://dx.doi.org/10.1590/1678-4162-10306.
http://dx.doi.org/10.1590/1678-4162-1030...
; Mangas et al., 2020Mangas TP, Silva FNL, Oliveira LC, Oliveira LAA. Tambaqui death (Colossoma macropomum) by helminths in Marajó Island, Pará, Brazil. Ciênc Anim 2020; 30(2): 161-166.).

Parasitism in C. macropomum is of particular concern because this is the most commonly farmed native fish species in Brazil (IBGE, 2019Instituto Brasileiro de Geografia e Estatística ­– IBGE. Produção da Pecuária Municipal 2019 [online]. 2019 [cited 2021 May 20]. Available from: https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2019_v47_br_informativo.pdf
https://biblioteca.ibge.gov.br/visualiza...
). According to Valladão et al. (2018)Valladão GMR, Gallani SU, Pilarski F. South American fish for continental aquaculture. Rev Aquacult 2018; 10(2): 351-369. http://dx.doi.org/10.1111/raq.12164.
http://dx.doi.org/10.1111/raq.12164...
, the species is usually farmed in intensive and super-intensive systems, which may favor the occurrence and dissemination of parasitic diseases (Jerônimo et al., 2017Jerônimo GT, Pádua SB, Belo MAA, Chagas EC, Taboga SR, Maciel PO, et al. Neoechinorhynchus buttnerae (Acanthocephala) infection in farmed Colossoma macropomum: A pathological approach. Aquaculture 2017; 469: 124-127. http://dx.doi.org/10.1016/j.aquaculture.2016.11.027.
http://dx.doi.org/10.1016/j.aquaculture....
; Farias et al., 2021Farias CFS, Brandão FR, Sebastião FA, Souza DCD, Monteiro PC, Majolo C, et al. Albendazole and praziquantel for the control of Neoechinorhynchus buttnerae in tambaqui (Colossoma macropomum). Aquacult Int 2021; 29(4): 1495-1505. http://dx.doi.org/10.1007/s10499-021-00687-5.
http://dx.doi.org/10.1007/s10499-021-006...
).

Studies have reported damages caused by species of the class Monogenea in farmed C. macropomum (Santos et al., 2013Santos EF, Tavares-Dias M, Pinheiro DA, Neves LR, Marinho RGB, Dias MKR. Fauna parasitária de tambaqui Colossoma macropomum (Characidae) cultivado em tanque-rede no estado do Amapá, Amazônia oriental. Acta Amaz 2013; 43(1): 105-112. http://dx.doi.org/10.1590/S0044-59672013000100013.
http://dx.doi.org/10.1590/S0044-59672013...
; Soberon et al., 2014Soberon L, Mathews P, Malherios A. Hematological parameters of Colossoma macropomum naturally parasitized by Anacanthorus spathulatus (Monogenea: Dactylogiridae) in fish farm in the Peruvian Amaz. Int Aquat Res 2014; 6(4): 251-255. http://dx.doi.org/10.1007/s40071-014-0087-1.
http://dx.doi.org/10.1007/s40071-014-008...
; Dias et al., 2015Dias MKR, Neves LR, Marinho RGB, Tavares-Dias M. Parasitic infections in tambaqui from eight fish farms in Northern Brazil. Arq Bras Med Vet Zootec 2015; 67(4): 1070-1076. http://dx.doi.org/10.1590/1678-4162-7592.
http://dx.doi.org/10.1590/1678-4162-7592...
; Mangas et al., 2020Mangas TP, Silva FNL, Oliveira LC, Oliveira LAA. Tambaqui death (Colossoma macropomum) by helminths in Marajó Island, Pará, Brazil. Ciênc Anim 2020; 30(2): 161-166.). Among these damages are displacement of gill epithelium, focal hyperplasia of epithelial cells, lamellar fusion, congestion and shortening of the secondary lamellae of gills, as well as a complete fusion of the secondary lamellae (Tavares-Dias et al., 2021Tavares-Dias M, Ferreira GV, Videira MN. Histopathological alterations caused by monogenean parasites the gills of tambaqui Colossoma macropomum (Serrasalmidae). Semina: Ciênc Agrár 2021; 42(3): 2057-2064. http://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p2057.
http://dx.doi.org/10.5433/1679-0359.2021...
). However, information is lacking when it comes to the Amazon region, especially in the state of Acre. In this study, we provide new geographic distribution and ecological indexes of the parasitic monogeneans of C. macropomum in culture systems that can serve as a basis of comparison for future studies.

Materials and Methods

Ethics statement

This study was authorized by the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA, Permit No. 39106/2013), in accordance with the guidelines of the Brazilian College of Animal Experimentation (COBEA).

Study areas and collection of parasites

The fish were obtained from Colônia Santa Maria, a fish farm specializing in the production of fingerlings, in the municipality of Rio Branco (10°03'25.3”S 67°50'54.0”W), in the state of Acre, Southwestern Amazonia, Brazil. The gills and body surface the of 122 C. macropomum were examined in saline medium under a stereomicroscope. The parasites were fixed in 70% ethanol or 4% formalin. The monogeneans were cleared in Berlese or Hoyer medium, and some of them were stained with Gomori trichrome and examined as permanent mounts in Canada balsam. Drawings were made with the aid of a drawing tube and redrawn using Adobe Illustrator CS6. Measurements are presented in micrometers as the range, followed by the mean in parentheses, unless otherwise stated.

Parasites were identified as proposed by Kritsky et al. (1979Kritsky DL, Thatcher VE, Kayton RJ. Neotropical Monogenoidea. 2. The Anacanthorinae Price, 1967, with the proposal of four new species of Anacanthorus Mizelle & Price, 1965, from Amazonian fishes. Acta Amaz 1979; 9(2): 355-361. http://dx.doi.org/10.1590/1809-43921979092355.
http://dx.doi.org/10.1590/1809-439219790...
, 1996Kritsky DL, Boeger WA, Jégu M. Neotropical Monogenoidea. 28. Ancyrocephalinae (Dactylogyridae) of Piranha and Their relatives (Teleostei, Serrasalmidae) from Brazil and French Guiana; Species of Notozothecium Boeger and Kritsky, 1988, and Mymarothecium gen. J Helminthol Soc Wash 1996; 63(2): 153-175.), Thatcher & Kritsky (1983)Thatcher VE, Kritsky DC. Neotropical monogenoidea. 4. Linguadactyloides brinkmanni gen. et sp. n. (Dactylogyridae: Linguadactyloidinae subfam. n.) with observations on its pathology in a Brazilian freshwater fish, Colossoma macropomum (Cuvier). Proc Helminthol Soc Wash 1983; 50(2): 305-311., Belmont-Jégu et al. (2004)Belmont-Jégu E, Domingues MV, Martins ML. Notozothecium janauachensis n. sp. (Monogenoidea: Dactylogyridae) from wild and cultured tambaqui, Colossoma macropomum (Teleostei: Characidae: Serrasalminae) in Brazil. Zootaxa 2004; 736(1): 1-8., Cohen & Kohn (2005)Cohen SC, Kohn A. A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitol (Praha) 2005; 52(4): 307-310. http://dx.doi.org/10.14411/fp.2005.042. PMid:16405294.
http://dx.doi.org/10.14411/fp.2005.042...
, Boeger et al. (2006)Boeger WA, Vianna RT, Thatcher VE. Monogenoidea. In: Adis J, Arias JR, Rueda-Delgado G, Wantzen KM, editors. Aquatic biodiversity in Latin America: Amazon fish parasite. 2nd ed. Sofia: Pensoft Publishers; 2006. p. 42-116. and Cohen et al. (2013)Cohen SC, Justo MC, Kohn A. South American monogenoidea parasites of fishes, amphibians and reptiles. Rio de Janeiro: Oficina de livros; 2013..

The prevalence, mean intensity and mean abundance were calculated for each helminth species, according to Bush et al. (1997)Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al.: revisited. J Parasitol 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227. PMid:9267395.
http://dx.doi.org/10.2307/3284227...
. The prevalence was the ratio between the number of infected animals and the total number of animals analyzed. The mean intensity was the total number of helminths of a certain species divided by the number of animals infected by this species. The dominance frequency, i.e. the percentage of the infracommunities in which a given parasite species is numerically dominant was calculated according to Rohde et al. (1995)Rohde K, Hayward C, Heap M. Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol 1995; 25(8): 945-970. http://dx.doi.org/10.1016/0020-7519(95)00015-T. PMid:8550295.
http://dx.doi.org/10.1016/0020-7519(95)0...
.

The dispersion index (ID) and Poulin discrepancy index (D) were employed to detect distribution patterns of the parasite infracommunity (Rózsa et al., 2000Rózsa L, Reiczigel J, Majoros G. Quantifying parasites in samples of hosts. J Parasitol 2000; 86(2): 228-232. http://dx.doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2. PMid:10780537.
http://dx.doi.org/10.1645/0022-3395(2000...
) in species with prevalence ≥10%. The dispersion index (ID) significance was tested using the d-statistic according to Ludwig & Reynolds (1988)Ludwig JA, Reynolds JF. Statistical ecology. New York: John Wiley; 1988..

Specimens were deposited at the Helminthological Collection of the Oswaldo Cruz Institute (CHIOC), Brazil.

Results

One hundred and twenty-two specimens of C. macropomum, measuring 4–42 (17 ± 6.2) cm in length and weighed 1–1340 (110 ± 176.1) g, were examined for the presence of monogeneans and 73 (59.8%) were found to be parasitized by at least one species. A total of 3,624 monogeneans were collected in the gills and none was found on the body surface. The parasites comprised four species of Monogenea in the new geographical location: 10°03'25.3”S 67°50'54.0”W, Rio Branco, state of Acre, Brazil. The measurements corresponding of these species are presented in Table 1. Data on prevalence, mean intensity, mean abundance and number/range of parasites are displayed in Table 2. The following species were found:

Table 1
Measurements of monogeneans found parasitizing Colossoma macropomum farmed in the state of Acre, Amazon, Brazil.
Table 2
Prevalence, mean abundance, mean intensity, total number of parasites, range of variation and dominance frequency of monogeneans of Colossoma macropomum farmed in the state of Acre, Amazon, Brazil.

Anacanthorus spathulatus Kritsky, Thatcher & Kayton, 1979 (Figure 1ABC) (Specimens deposited: CHIOC no. 38658).

Figure 1
Anacanthorus spathulatus.1A. Total, ventral view (cc – copulatory complex; ut – uterus; vd – vas deferens; mg – Mehlis gland; ov – ovary; t – testis). 1B. Copulatory complex, ventral view. 1C. Copulatory complex, dorsal view. Scale bars: A = 100 μm; B-C = 50 μm.

Linguadactyloides brinkmanni Thatcher & Kritsky, 1983 (Figures 2A to 2G) (Specimens deposited: CHIOC no. 38663).

Figure 2
Linguadactyloides brinkmanni.2A. Total view (cc – copulatory complex; pr – prostatic reservoirs; va – vagina; sv – seminal vesicle; ut – uterus; sr – seminal receptacle; vd – vas deferens; mg – Mehlis gland; t – testis; ov – ovary). 2B. Copulatory complex. 2C. Vagina. 2D. Hook. 2E. Ventral bar. 2F. Ventral anchor. 2G. Dorsal anchor. Scale bars: A = 200 μm; B and C = 100 μm; D–G = 25 μm.

Notozothecium janauachensis Belmont-Jégu, Domingues & Martins, 2004 (Figures 3A to 3H) (Specimens deposited: CHIOC no. 38662).

Figure 3
Notozothecium janauachensis.3A. Total, dorsal view (cc – copulatory complex; pr – prostatic reservoirs; sv – seminal vesicle; vd – vas deferens; va – vagina; sr – seminal receptacle; ov – ovary; t – testis). 3B. Copulatory complex, ventral view. 3C. Copulatory complex, dorsal view. 3D. Ventral anchor. 3E. Dorsal anchor. 3F. Dorsal bar. 3G. Ventral bar. 3H. Hook. Scale bars: A, D–H = 50 μm; B and C = 25 μm.

Mymarothecium boegeri Cohen & Kohn, 2005 (Figures 4A to 4G) (Specimens deposited: CHIOC no. 38664).

Figure 4
Mymarothecium boegeri.4A. Copulatory complex, ventral view. 4B. Copulatory complex, dorsal view. 4C. Ventral anchor. 4D. Ventral bar. 4E. Ventral anchor. 4F. Dorsal bar. 4G. Hook. Scale bars: A and B = 50 μm; C–F = 25 μm.

Anacanthorus spathulatus was the species with higher rates of prevalence (50%), mean abundance (17.1), mean intensity (34.1) and dominance frequency (36.9%), representing 57.4% of monogeneans collected total, followed by N. janauachensis (Table 2).

Forty-nine fish were not parasitized (40.1%). Twenty-three fish (18.9%) were infected by only one parasitic species, with A. spathulatus (52.2%) being the most frequent species, followed by N. janauachensis (43.4%) and L. brinkmanni (4.3%).

Twenty-seven hosts (22.1%) harbored two parasitic species, with A. spathulatus and N. janauachensis accounting for 77.7% of double infections, followed by A. spathulatus and M. boegeri (11.1%), A. spathulatus and L. brinkmanni (7.4%), and N. janauachensis and M. boegeri (3.7%). Eighteen fish (14.8%) were parasitized by three monogenean species as follow: A. spathulatus, N. janauachensis and M. boegeri (83.3%), A. spathulatus, N. janauachensis and L. brinkmanni (11.1%) and A. spathulatus, M. boegeri and L. brinkmanni (5.5%). Five fish (4.1%) were concurrently parasitized by four monogenean species (A. spathulatus, N. janauachensis M. boegeri and L. brinkmanni).

The dispersion index (DI), statistical-d and discrepancy index (D) of the monogeneans of farmed C. macropomum showed a typical pattern of aggregated distribution (Table 3).

Table 3
The dispersion index (DI), statistical-d and discrepancy index (D) of the monogeneans of Colossoma macropomum farmed in the state of Acre, Amazon, Brazil* * DI and D were employed in species with prevalence ≥10%. .

Discussion

Parasitism by monogeneans is the main cause of diseases and financial losses in aquaculture (Boijink et al., 2015Boijink CL, Miranda WSC, Chagas EC, Dairiki JK, Inoue LAKA. Anthelmintic activity of eugenol in tambaquis with monogenean gill infection. Aquaculture 2015; 438: 138-140. http://dx.doi.org/10.1016/j.aquaculture.2015.01.014.
http://dx.doi.org/10.1016/j.aquaculture....
; Soares et al., 2016Soares BV, Neves LR, Oliveira MSB, Chaves FCM, Dias MKR, Chagas EC, et al. Antiparasitic activity of the essential oil of Lippia alba on ectoparasites of Colossoma macropomum (tambaqui) and its physiological and histopathological effects. Aquaculture 2016; 452: 107-114. http://dx.doi.org/10.1016/j.aquaculture.2015.10.029.
http://dx.doi.org/10.1016/j.aquaculture....
). Seven species of monogeneans are known to parasitize C. macropomum in fish farms in Brazil: Anacanthorus spathulatus, A. penilabiatus, Linguadactyloides brinkmanni, Mymarothecium boegeri, M. viatorum, Notozothecium euzeti and N. janauachensis (Cohen & Kohn, 2005Cohen SC, Kohn A. A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitol (Praha) 2005; 52(4): 307-310. http://dx.doi.org/10.14411/fp.2005.042. PMid:16405294.
http://dx.doi.org/10.14411/fp.2005.042...
, 2009Cohen SC, Kohn A. On Dactylogyridae (Monogenea) of four species of characid fishes from Brazil. Check List 2009; 5(2): 351-356. http://dx.doi.org/10.15560/5.2.351.
http://dx.doi.org/10.15560/5.2.351...
; Dias et al., 2015Dias MKR, Neves LR, Marinho RGB, Tavares-Dias M. Parasitic infections in tambaqui from eight fish farms in Northern Brazil. Arq Bras Med Vet Zootec 2015; 67(4): 1070-1076. http://dx.doi.org/10.1590/1678-4162-7592.
http://dx.doi.org/10.1590/1678-4162-7592...
; Chagas et al., 2016Chagas EC, Araújo LD, Martins ML, Gomes LC, Malta JCO, Varella AB, et al. Mebendazole dietary supplementation controls Monogenoidea (Platyhelminthes: Dactylogyridae) and does not alter the physiology of the freshwater fish Colossoma macropomum (Cuvier, 1818). Aquaculture 2016; 464: 185-189. http://dx.doi.org/10.1016/j.aquaculture.2016.06.022.
http://dx.doi.org/10.1016/j.aquaculture....
; Pamplona-Basilio et al., 2001Pamplona-Basilio MC, Kohn A, Feitosa VA. New host records and description of the egg of Anacanthorus penilabiatus (Monogenea, Dactylogyridae). Mem Inst Oswaldo Cruz 2001; 96(5): 667-668. http://dx.doi.org/10.1590/S0074-02762001000500014. PMid:11500767.
http://dx.doi.org/10.1590/S0074-02762001...
; Silva, 2017Silva MT. Biodiversidade de helmintos de Arapaima gigas (Schinz) e Colossoma macropomum (Cuvier) em sistemas de cultivo no estado do Acre, sudoeste da Amazônia [tese]. Rio de Janeiro: Instituto Oswaldo Cruz; 2017.). Four of these species (A. spathulatus, L. brinkmanni, N. janauachensis and M. boegeri) were found in this study, with morphology and measurements corresponding to those reported by Kritsky et al. (1979)Kritsky DL, Thatcher VE, Kayton RJ. Neotropical Monogenoidea. 2. The Anacanthorinae Price, 1967, with the proposal of four new species of Anacanthorus Mizelle & Price, 1965, from Amazonian fishes. Acta Amaz 1979; 9(2): 355-361. http://dx.doi.org/10.1590/1809-43921979092355.
http://dx.doi.org/10.1590/1809-439219790...
, Thatcher & Kritsky (1983)Thatcher VE, Kritsky DC. Neotropical monogenoidea. 4. Linguadactyloides brinkmanni gen. et sp. n. (Dactylogyridae: Linguadactyloidinae subfam. n.) with observations on its pathology in a Brazilian freshwater fish, Colossoma macropomum (Cuvier). Proc Helminthol Soc Wash 1983; 50(2): 305-311., Belmont-Jégu et al. (2004)Belmont-Jégu E, Domingues MV, Martins ML. Notozothecium janauachensis n. sp. (Monogenoidea: Dactylogyridae) from wild and cultured tambaqui, Colossoma macropomum (Teleostei: Characidae: Serrasalminae) in Brazil. Zootaxa 2004; 736(1): 1-8. and Cohen & Kohn (2005)Cohen SC, Kohn A. A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitol (Praha) 2005; 52(4): 307-310. http://dx.doi.org/10.14411/fp.2005.042. PMid:16405294.
http://dx.doi.org/10.14411/fp.2005.042...
, respectively.

Dias et al. (2015)Dias MKR, Neves LR, Marinho RGB, Tavares-Dias M. Parasitic infections in tambaqui from eight fish farms in Northern Brazil. Arq Bras Med Vet Zootec 2015; 67(4): 1070-1076. http://dx.doi.org/10.1590/1678-4162-7592.
http://dx.doi.org/10.1590/1678-4162-7592...
and Morais et al. (2009)Morais AM, Varella AMB, Villacorta-Correa MA, Malta JCO. A fauna de parasitos em juvenis de tambaqui Colossoma macropomum (Cuvier, 1818) (Characidae: Serrasalminae) criados em tanques-rede em Lago de várzea da Amazônia Central. Biol Geral Exper 2009; 9(1): 14-23. reported the occurrence of these same species parasitizing C. macropomum in fish farms in the states of Amapá and Amazonas. Chagas et al. (2016)Chagas EC, Araújo LD, Martins ML, Gomes LC, Malta JCO, Varella AB, et al. Mebendazole dietary supplementation controls Monogenoidea (Platyhelminthes: Dactylogyridae) and does not alter the physiology of the freshwater fish Colossoma macropomum (Cuvier, 1818). Aquaculture 2016; 464: 185-189. http://dx.doi.org/10.1016/j.aquaculture.2016.06.022.
http://dx.doi.org/10.1016/j.aquaculture....
, found A. spathulatus, N. janauachensis and M. boegeri in C. macropomum farmed in the state of Amazonas. In the state of Rondônia, parasitism of C. macropomum at two fish farms included A. spathulatus (93 and 96%), L. brinkmanni (76 and 13.5%), M. viatorum, Mymarothecium sp. 1, Mymarothecium sp. 2 and Notozothecium spp. (79% and 94%) (Godoi et al., 2012Godoi MMIM, Engracia V, Lizama MLAP, Takemoto RM. Parasite-host relationship between the tambaqui (Colossoma macropomum Cuvier 1818) and ectoparasites, collected from fish farms in the City of Rolim de Moura, State of Rondônia, Western Amaz, Brazil. Acta Amaz 2012; 42(4): 515-524. http://dx.doi.org/10.1590/S0044-59672012000400009.
http://dx.doi.org/10.1590/S0044-59672012...
). These data indicate a higher species diversity and higher prevalence rate of A. spathulatus and Notozothecium sp. than those found in our study. In Peruvian Amazonia, only A. spathulatus was reported parasitizing farmed C. macropomum apresented low prevalence (27.8%).

Based on the studies mentioned above, the composition of the species found in the state of Acre is similar to the species described in the neighboring states of the Brazilian Amazon (Amapá, Amazonas, Pará and Rondonia) and the Peruvian Amazon. Thus, we can infer that the component communities of the monogeneans are not isolated, but communicate through the natural evolutionary process of parasitic colonization or free movement of fry and adults between the fish farms of these states, promoting the dispersion of the monogeneans.

The presence of the same species in the different states, as well as the similar prevalence and abundance values among them, indicate that the dispersal of the monogeneans among the different localities is consistent, although further studies involving deeper analyses on the ecology and biology of this community are needed.

Furthermore, the high temperatures that remain constant throughout the year in the Amazon Region may favor the life cycle of monogenetic species, as suggested by Dias et al. (2015)Dias MKR, Neves LR, Marinho RGB, Tavares-Dias M. Parasitic infections in tambaqui from eight fish farms in Northern Brazil. Arq Bras Med Vet Zootec 2015; 67(4): 1070-1076. http://dx.doi.org/10.1590/1678-4162-7592.
http://dx.doi.org/10.1590/1678-4162-7592...
, Dias & Tavares-Dias (2015)Dias MKR, Tavares-Dias M. Seasonality affects the parasitism levels in two fish species in the eastern Amazon region. J Appl Ichthyology 2015; 31(6): 1049-1055. http://dx.doi.org/10.1111/jai.12865.
http://dx.doi.org/10.1111/jai.12865...
and Baia et al. (2019)Baia RRJ, Santos GG, Silva AS, Sousa BO, Tavares-Dias M. Parasite fauna of tambaqui reared in net-cages at two stocking densities. Bol Inst Pesca 2019; 45(3): e492. http://dx.doi.org/10.20950/1678-2305.2019.45.3.492.
http://dx.doi.org/10.20950/1678-2305.201...
.

Acre is among the five states with the largest deforested areas in the Brazilian Amazon, and in the coming years may suffer from long periods of drought and large forest fires (Acre, 2013Acre. Epi Info [online]. 2013 [cited 2022 Jan 30]. Available from: https://imc.ac.gov.br/wp-content/uploads/2016/09/O-SISA-Acre.pdf
https://imc.ac.gov.br/wp-content/uploads...
; Silva et al., 2021Silva SS, Oliveira I, Morello TF, Anderson LO, Karlokoski A, Brando PM, et al. Burning in southwestern Brazilian Amazonia, 2016–2019. J Environ Manage 2021; 286: 112189. http://dx.doi.org/10.1016/j.jenvman.2021.112189. PMid:33677342.
http://dx.doi.org/10.1016/j.jenvman.2021...
). These environmental changes are the main causes of global warming, which among other impacts, raise the planet's temperature and affect aquatic ecosystems, especially fish, altering aspects of their physiology and increasing susceptibility to disease (Brander et al., 2018Brander K, Cochrane K, Barange M, Soto D. Climate change implications for fisheries and aquaculture. In: Phillips BF, Pérez-Ramírez M, editors. Climate change impacts on fisheries and aquaculture: a global analysis. 1st ed. Hoboken: John Wiley & Sons; 2018. p. 45-63.; Costa et al., 2021Costa JC, Souza SS, Castro JS, Amanajás RD, Val AL. Climate change affects the parasitism rate and impairs the regulation of genes related to oxidative stress and ionoregulation of Colossoma macropomum. Sci Rep 2021; 11(1): 22350. http://dx.doi.org/10.1038/s41598-021-01830-1. PMid:34785749.
http://dx.doi.org/10.1038/s41598-021-018...
).

Costa et al. (2021)Costa JC, Souza SS, Castro JS, Amanajás RD, Val AL. Climate change affects the parasitism rate and impairs the regulation of genes related to oxidative stress and ionoregulation of Colossoma macropomum. Sci Rep 2021; 11(1): 22350. http://dx.doi.org/10.1038/s41598-021-01830-1. PMid:34785749.
http://dx.doi.org/10.1038/s41598-021-018...
studied the effects of climate change on the degree of monogenetic parasitism in tambaqui. The authors concluded that increasing temperature and CO2 causes a rapid increase in this parasitism in seven days, which decreases in thirty days, but is still higher than in the control group. These data, indicate that special attention should be given to the culture of C. macropomum, especially in the state of Acre, where future forecasts indicate an increase in local average temperature (Silva et al., 2021Silva SS, Oliveira I, Morello TF, Anderson LO, Karlokoski A, Brando PM, et al. Burning in southwestern Brazilian Amazonia, 2016–2019. J Environ Manage 2021; 286: 112189. http://dx.doi.org/10.1016/j.jenvman.2021.112189. PMid:33677342.
http://dx.doi.org/10.1016/j.jenvman.2021...
), which may cause high rates of monogenetic parasitism, yield loss and consequent economic losses in farmed tambaqui (Costa et al., 2021Costa JC, Souza SS, Castro JS, Amanajás RD, Val AL. Climate change affects the parasitism rate and impairs the regulation of genes related to oxidative stress and ionoregulation of Colossoma macropomum. Sci Rep 2021; 11(1): 22350. http://dx.doi.org/10.1038/s41598-021-01830-1. PMid:34785749.
http://dx.doi.org/10.1038/s41598-021-018...
).

In the present study, coexistence between monogenean species was common in 41% of hosts, which was explained by Salgado-Maldonado et al. (2019)Salgado-Maldonado G, Mendoza-Franco EF, Caspeta-Mandujano JM, Ramírez-Martínez C. Aggregation and negative interactions in low-diversity and unsaturated monogenean (Platyhelminthes) communities in Astyanax aeneus (Teleostei) populations in a neotropical river of Mexico. Int J Parasitol Parasites Wildl 2019; 8: 203-215. http://dx.doi.org/10.1016/j.ijppaw.2019.02.005. PMid:30891400.
http://dx.doi.org/10.1016/j.ijppaw.2019....
. These authors demonstrate that parasitic species can coexist in the same host population when their distributions among individual hosts are aggregated, as it occurs in aquaculture systems where high density rates are common, inevitably causing host aggregation and favoring the coexistence of parasitic species.

The aggregate distribution pattern of monogeneans of C. macropomum is in agreement with that reported by Gonçalves et al. (2018)Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371.
http://dx.doi.org/10.1590/1809-439220170...
in Pará state and Baia et al. (2019)Baia RRJ, Santos GG, Silva AS, Sousa BO, Tavares-Dias M. Parasite fauna of tambaqui reared in net-cages at two stocking densities. Bol Inst Pesca 2019; 45(3): e492. http://dx.doi.org/10.20950/1678-2305.2019.45.3.492.
http://dx.doi.org/10.20950/1678-2305.201...
in Amapá state. Poulin (2013)Poulin R. Explaining variability in parasite aggregation levels among host samples. Parasitology 2013; 140(4): 541-546. http://dx.doi.org/10.1017/S0031182012002053. PMid:23343821.
http://dx.doi.org/10.1017/S0031182012002...
predicts that aggregate distributions are a common pattern in freshwater fishes and attributed the susceptibility to infection as one of the factors generating aggregation. We then conclude that as C. macropomum in fish farm are subject to high densities, poor management and changes in water quality, these factors make the animals more susceptible to disease occurrence and hence aggregation of parasites per host. Salgado-Maldonado et al. (2019)Salgado-Maldonado G, Mendoza-Franco EF, Caspeta-Mandujano JM, Ramírez-Martínez C. Aggregation and negative interactions in low-diversity and unsaturated monogenean (Platyhelminthes) communities in Astyanax aeneus (Teleostei) populations in a neotropical river of Mexico. Int J Parasitol Parasites Wildl 2019; 8: 203-215. http://dx.doi.org/10.1016/j.ijppaw.2019.02.005. PMid:30891400.
http://dx.doi.org/10.1016/j.ijppaw.2019....
suggest that the greater the degree of species aggregation, the greater the intensity of infection. This positive correlation was observed in the present study, as A. spathulatus showed high aggregation values and high infection intensity.

Lastly, the results presented here are the first data on the ecological indices of monogenetic parasites of tambaqui in the state of Acre and will be useful for future comparisons of the influence of environmental factors on the parasite-host relationship.

Acknowledgements

This study received financial support from the Brazilian research funding agencies CNPq – Universal (National Council for Scientific and Technological Development), CAPES-Parasitologia Básica (Federal Agency for the Support and Improvement of Higher Education), Fundação Oswaldo Cruz Foundation (Fiocruz/ IOC/ PAEF), Federal Institute of Acre (IFAC), and FAPAC (Acre Research Foundation). M.T. Silva and C.P. Santos thank CNPq for the fellowships they were awarded. The research funding agencies played no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

  • How to cite: Silva MT, Cavalcante PHO, Santos CP. Monogeneans of Colossoma macropomum (Cuvier, 1818) (Characiformes: Serrasalmidae) farmed in the state of Acre, Amazon (Brazil). Braz J Vet Parasitol 2022; 31(3): e006522. https://doi.org/10.1590/S1984-29612022042

References

  • Acre. Epi Info [online]. 2013 [cited 2022 Jan 30]. Available from: https://imc.ac.gov.br/wp-content/uploads/2016/09/O-SISA-Acre.pdf
    » https://imc.ac.gov.br/wp-content/uploads/2016/09/O-SISA-Acre.pdf
  • Baia RRJ, Santos GG, Silva AS, Sousa BO, Tavares-Dias M. Parasite fauna of tambaqui reared in net-cages at two stocking densities. Bol Inst Pesca 2019; 45(3): e492. http://dx.doi.org/10.20950/1678-2305.2019.45.3.492
    » http://dx.doi.org/10.20950/1678-2305.2019.45.3.492
  • Belmont-Jégu E, Domingues MV, Martins ML. Notozothecium janauachensis n. sp. (Monogenoidea: Dactylogyridae) from wild and cultured tambaqui, Colossoma macropomum (Teleostei: Characidae: Serrasalminae) in Brazil. Zootaxa 2004; 736(1): 1-8.
  • Boeger WA, Vianna RT, Thatcher VE. Monogenoidea. In: Adis J, Arias JR, Rueda-Delgado G, Wantzen KM, editors. Aquatic biodiversity in Latin America: Amazon fish parasite. 2nd ed. Sofia: Pensoft Publishers; 2006. p. 42-116.
  • Boijink CL, Miranda WSC, Chagas EC, Dairiki JK, Inoue LAKA. Anthelmintic activity of eugenol in tambaquis with monogenean gill infection. Aquaculture 2015; 438: 138-140. http://dx.doi.org/10.1016/j.aquaculture.2015.01.014
    » http://dx.doi.org/10.1016/j.aquaculture.2015.01.014
  • Brander K, Cochrane K, Barange M, Soto D. Climate change implications for fisheries and aquaculture. In: Phillips BF, Pérez-Ramírez M, editors. Climate change impacts on fisheries and aquaculture: a global analysis. 1st ed. Hoboken: John Wiley & Sons; 2018. p. 45-63.
  • Bush AO, Lafferty KD, Lotz JM, Shostak AW. Parasitology meets ecology on its own terms: Margolis et al.: revisited. J Parasitol 1997; 83(4): 575-583. http://dx.doi.org/10.2307/3284227 PMid:9267395.
    » http://dx.doi.org/10.2307/3284227
  • Chagas EC, Araújo LD, Martins ML, Gomes LC, Malta JCO, Varella AB, et al. Mebendazole dietary supplementation controls Monogenoidea (Platyhelminthes: Dactylogyridae) and does not alter the physiology of the freshwater fish Colossoma macropomum (Cuvier, 1818). Aquaculture 2016; 464: 185-189. http://dx.doi.org/10.1016/j.aquaculture.2016.06.022
    » http://dx.doi.org/10.1016/j.aquaculture.2016.06.022
  • Cohen SC, Justo MC, Kohn A. South American monogenoidea parasites of fishes, amphibians and reptiles Rio de Janeiro: Oficina de livros; 2013.
  • Cohen SC, Kohn A. A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitol (Praha) 2005; 52(4): 307-310. http://dx.doi.org/10.14411/fp.2005.042 PMid:16405294.
    » http://dx.doi.org/10.14411/fp.2005.042
  • Cohen SC, Kohn A. On Dactylogyridae (Monogenea) of four species of characid fishes from Brazil. Check List 2009; 5(2): 351-356. http://dx.doi.org/10.15560/5.2.351
    » http://dx.doi.org/10.15560/5.2.351
  • Costa JC, Souza SS, Castro JS, Amanajás RD, Val AL. Climate change affects the parasitism rate and impairs the regulation of genes related to oxidative stress and ionoregulation of Colossoma macropomum. Sci Rep 2021; 11(1): 22350. http://dx.doi.org/10.1038/s41598-021-01830-1 PMid:34785749.
    » http://dx.doi.org/10.1038/s41598-021-01830-1
  • Dias MKR, Neves LR, Marinho RGB, Tavares-Dias M. Parasitic infections in tambaqui from eight fish farms in Northern Brazil. Arq Bras Med Vet Zootec 2015; 67(4): 1070-1076. http://dx.doi.org/10.1590/1678-4162-7592
    » http://dx.doi.org/10.1590/1678-4162-7592
  • Dias MKR, Tavares-Dias M. Seasonality affects the parasitism levels in two fish species in the eastern Amazon region. J Appl Ichthyology 2015; 31(6): 1049-1055. http://dx.doi.org/10.1111/jai.12865
    » http://dx.doi.org/10.1111/jai.12865
  • Farias CFS, Brandão FR, Sebastião FA, Souza DCD, Monteiro PC, Majolo C, et al. Albendazole and praziquantel for the control of Neoechinorhynchus buttnerae in tambaqui (Colossoma macropomum). Aquacult Int 2021; 29(4): 1495-1505. http://dx.doi.org/10.1007/s10499-021-00687-5
    » http://dx.doi.org/10.1007/s10499-021-00687-5
  • Fischer C, Malta JCO, Varella AMB. A fauna de parasitas do tambaqui, Colossoma macropomum (Cuvier, 1818) (Characiformes: Characidae) do médio rio Solimões, Estado do Amazonas (AM) e do baixo rio Amazonas, Estado do Pará (PA), e seu potencial como indicadores biológicos. Acta Amaz 2003; 33(4): 651-662. http://dx.doi.org/10.1590/S0044-59672003000400012
    » http://dx.doi.org/10.1590/S0044-59672003000400012
  • Fujimoto RY, Hide DMV, Paixão PEG, Abe HA, Dias JAR, Sousa NC, et al. Fauna parasitária e relação parasito-hospedeiro de tambaquis criados na região do Baixo São Francisco, nordeste do Brasil. Arq Bras Med Vet Zootec 2019; 71(2): 563-570. http://dx.doi.org/10.1590/1678-4162-10306
    » http://dx.doi.org/10.1590/1678-4162-10306
  • Godoi MMIM, Engracia V, Lizama MLAP, Takemoto RM. Parasite-host relationship between the tambaqui (Colossoma macropomum Cuvier 1818) and ectoparasites, collected from fish farms in the City of Rolim de Moura, State of Rondônia, Western Amaz, Brazil. Acta Amaz 2012; 42(4): 515-524. http://dx.doi.org/10.1590/S0044-59672012000400009
    » http://dx.doi.org/10.1590/S0044-59672012000400009
  • Gonçalves BB, Oliveira MSB, Borges WF, Santos GG, Tavares-Dias M. Diversity of metazoan parasites in Colossoma macropomum (Serrasalmidae) from the lower Jari River, a tributary of the Amazas River in Brazil. Acta Amaz 2018; 48(3): 211-216. http://dx.doi.org/10.1590/1809-4392201704371
    » http://dx.doi.org/10.1590/1809-4392201704371
  • Instituto Brasileiro de Geografia e Estatística ­– IBGE. Produção da Pecuária Municipal 2019 [online]. 2019 [cited 2021 May 20]. Available from: https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2019_v47_br_informativo.pdf
    » https://biblioteca.ibge.gov.br/visualizacao/periodicos/84/ppm_2019_v47_br_informativo.pdf
  • Jerônimo GT, Pádua SB, Belo MAA, Chagas EC, Taboga SR, Maciel PO, et al. Neoechinorhynchus buttnerae (Acanthocephala) infection in farmed Colossoma macropomum: A pathological approach. Aquaculture 2017; 469: 124-127. http://dx.doi.org/10.1016/j.aquaculture.2016.11.027
    » http://dx.doi.org/10.1016/j.aquaculture.2016.11.027
  • Kritsky DL, Boeger WA, Jégu M. Neotropical Monogenoidea. 28. Ancyrocephalinae (Dactylogyridae) of Piranha and Their relatives (Teleostei, Serrasalmidae) from Brazil and French Guiana; Species of Notozothecium Boeger and Kritsky, 1988, and Mymarothecium gen. J Helminthol Soc Wash 1996; 63(2): 153-175.
  • Kritsky DL, Thatcher VE, Kayton RJ. Neotropical Monogenoidea. 2. The Anacanthorinae Price, 1967, with the proposal of four new species of Anacanthorus Mizelle & Price, 1965, from Amazonian fishes. Acta Amaz 1979; 9(2): 355-361. http://dx.doi.org/10.1590/1809-43921979092355
    » http://dx.doi.org/10.1590/1809-43921979092355
  • Ludwig JA, Reynolds JF. Statistical ecology. New York: John Wiley; 1988.
  • Mangas TP, Silva FNL, Oliveira LC, Oliveira LAA. Tambaqui death (Colossoma macropomum) by helminths in Marajó Island, Pará, Brazil. Ciênc Anim 2020; 30(2): 161-166.
  • Morais AM, Varella AMB, Villacorta-Correa MA, Malta JCO. A fauna de parasitos em juvenis de tambaqui Colossoma macropomum (Cuvier, 1818) (Characidae: Serrasalminae) criados em tanques-rede em Lago de várzea da Amazônia Central. Biol Geral Exper 2009; 9(1): 14-23.
  • Pamplona-Basilio MC, Kohn A, Feitosa VA. New host records and description of the egg of Anacanthorus penilabiatus (Monogenea, Dactylogyridae). Mem Inst Oswaldo Cruz 2001; 96(5): 667-668. http://dx.doi.org/10.1590/S0074-02762001000500014 PMid:11500767.
    » http://dx.doi.org/10.1590/S0074-02762001000500014
  • Poulin R. Explaining variability in parasite aggregation levels among host samples. Parasitology 2013; 140(4): 541-546. http://dx.doi.org/10.1017/S0031182012002053 PMid:23343821.
    » http://dx.doi.org/10.1017/S0031182012002053
  • Rohde K, Hayward C, Heap M. Aspects of the ecology of metazoan ectoparasites of marine fishes. Int J Parasitol 1995; 25(8): 945-970. http://dx.doi.org/10.1016/0020-7519(95)00015-T PMid:8550295.
    » http://dx.doi.org/10.1016/0020-7519(95)00015-T
  • Rózsa L, Reiczigel J, Majoros G. Quantifying parasites in samples of hosts. J Parasitol 2000; 86(2): 228-232. http://dx.doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2 PMid:10780537.
    » http://dx.doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2
  • Salgado-Maldonado G, Mendoza-Franco EF, Caspeta-Mandujano JM, Ramírez-Martínez C. Aggregation and negative interactions in low-diversity and unsaturated monogenean (Platyhelminthes) communities in Astyanax aeneus (Teleostei) populations in a neotropical river of Mexico. Int J Parasitol Parasites Wildl 2019; 8: 203-215. http://dx.doi.org/10.1016/j.ijppaw.2019.02.005 PMid:30891400.
    » http://dx.doi.org/10.1016/j.ijppaw.2019.02.005
  • Santos EF, Tavares-Dias M, Pinheiro DA, Neves LR, Marinho RGB, Dias MKR. Fauna parasitária de tambaqui Colossoma macropomum (Characidae) cultivado em tanque-rede no estado do Amapá, Amazônia oriental. Acta Amaz 2013; 43(1): 105-112. http://dx.doi.org/10.1590/S0044-59672013000100013
    » http://dx.doi.org/10.1590/S0044-59672013000100013
  • Silva MT. Biodiversidade de helmintos de Arapaima gigas (Schinz) e Colossoma macropomum (Cuvier) em sistemas de cultivo no estado do Acre, sudoeste da Amazônia [tese]. Rio de Janeiro: Instituto Oswaldo Cruz; 2017.
  • Silva SS, Oliveira I, Morello TF, Anderson LO, Karlokoski A, Brando PM, et al. Burning in southwestern Brazilian Amazonia, 2016–2019. J Environ Manage 2021; 286: 112189. http://dx.doi.org/10.1016/j.jenvman.2021.112189 PMid:33677342.
    » http://dx.doi.org/10.1016/j.jenvman.2021.112189
  • Soares BV, Neves LR, Oliveira MSB, Chaves FCM, Dias MKR, Chagas EC, et al. Antiparasitic activity of the essential oil of Lippia alba on ectoparasites of Colossoma macropomum (tambaqui) and its physiological and histopathological effects. Aquaculture 2016; 452: 107-114. http://dx.doi.org/10.1016/j.aquaculture.2015.10.029
    » http://dx.doi.org/10.1016/j.aquaculture.2015.10.029
  • Soberon L, Mathews P, Malherios A. Hematological parameters of Colossoma macropomum naturally parasitized by Anacanthorus spathulatus (Monogenea: Dactylogiridae) in fish farm in the Peruvian Amaz. Int Aquat Res 2014; 6(4): 251-255. http://dx.doi.org/10.1007/s40071-014-0087-1
    » http://dx.doi.org/10.1007/s40071-014-0087-1
  • Tavares-Dias M, Ferreira GV, Videira MN. Histopathological alterations caused by monogenean parasites the gills of tambaqui Colossoma macropomum (Serrasalmidae). Semina: Ciênc Agrár 2021; 42(3): 2057-2064. http://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p2057
    » http://dx.doi.org/10.5433/1679-0359.2021v42n3Supl1p2057
  • Thatcher VE, Kritsky DC. Neotropical monogenoidea. 4. Linguadactyloides brinkmanni gen. et sp. n. (Dactylogyridae: Linguadactyloidinae subfam. n.) with observations on its pathology in a Brazilian freshwater fish, Colossoma macropomum (Cuvier). Proc Helminthol Soc Wash 1983; 50(2): 305-311.
  • Valladão GMR, Gallani SU, Pilarski F. South American fish for continental aquaculture. Rev Aquacult 2018; 10(2): 351-369. http://dx.doi.org/10.1111/raq.12164
    » http://dx.doi.org/10.1111/raq.12164

Publication Dates

  • Publication in this collection
    01 Aug 2022
  • Date of issue
    2022

History

  • Received
    02 May 2022
  • Accepted
    05 July 2022
Colégio Brasileiro de Parasitologia Veterinária FCAV/UNESP - Departamento de Patologia Veterinária, Via de acesso Prof. Paulo Donato Castellane s/n, Zona Rural, , 14884-900 Jaboticabal - SP, Brasil, Fone: (16) 3209-7100 RAMAL 7934 - Jaboticabal - SP - Brazil
E-mail: cbpv_rbpv.fcav@unesp.br