Acessibilidade / Reportar erro

Do river basins influence the composition of functional traits of fish assemblages in Neotropical reservoirs?

As bacias hidrográficas influenciam a composição funcional da assembleia de peixes em reservatórios da região Neotropical?

Abstract

In aquatic environments, dams are considered one of the main threats to fish species, acting as an environmental filter for certain functional traits. Although there is some predictability in the composition of the functional traits in reservoirs, it is hypothesized that the environmental filters imposed by evolutionary processes, linked to the characteristics of the basins, are determinant for the functional composition of the traits in reservoirs. For this we performed a PCoA using the functional traits composition matrix of the reservoirs. We used PERMANOVA to test the difference in functional composition between basins. We performed the same process for the species composition matrix to compare the patterns. In this study, there were taxonomic and functional differences among reservoirs inserted in different basins. It was observed that the basin is a determining factor for the functional structure of fish assemblage in reservoirs. When compared, functional and taxonomic structures follow the same pattern, although functionally the reservoir tends to be more similar. These results reinforce the idea that reservoirs act as filters for functional traits (e.g., related with reproduction, feeding and habitat use), although there is a great influence of evolutionary processes related to the basin’s characteristics and origin of the ichthyofaunistic province.

Keywords:
fish assemblage; ecoregions; environmental filter; functional structure; taxonomic structure

Resumo

Em ambientes aquáticos, a construção de barragens é considerada uma das principais ameaças para as espécies de peixes, atuando como filtro ambiental para determinados traços funcionais. Assim, embora exista certa previsibilidade na composição dos traços funcionais em reservatórios, é hipotetizado que os filtros ambientais impostos pelos processos evolutivos, ligados as características das bacias, são determinantes para a composição funcional dos traços nos reservatórios. Para isso realizamos uma PCoA utilizando a matriz de composição de traços funcionais dos reservatórios. Utilizamos a PERMANOVA para testar a diferença da composição funcional entre as bacias. Realizamos o mesmo processo para a matriz de composição de espécies para comparar os padrões. Foi possível observar que a bacia hidrográfica é um fator determinante para a estruturação funcional da assembleia de peixe em reservatórios. Quando comparadas, a estrutura funcional e taxonômica, ambas seguem o mesmo padrão, embora funcionalmente os ambientes tendem a ser mais semelhantes. Esses resultados reforçam a ideia de que reservatórios atuam como filtros para determinados traços funcionais (e.g., relacionados à reprodução, alimentação e uso de habitat), embora exista uma grande influência dos processos evolutivos ligados a característica da bacia e da origem da província ictiofaunística.

Palavras-chave:
assembleia de peixe; ecorregiões; filtros ambientais; estrutura funcional; estrutura taxonômica

1. Introduction

The ecological patterns of distribution and abundance of fish species are the result of thousands of years of evolution (Lowe-McConnell, 1999LOWE-MCCONNELL, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais. São Paulo: EDUSP.; Harris, 1999HARRIS, G., 1999. This is not the end of limnology (or of science): the world may well be a lot simpler than we think. Freshwater Biology, vol. 42, no. 4, pp. 689-706. http://dx.doi.org/10.1046/j.1365-2427.1999.00486.x.
http://dx.doi.org/10.1046/j.1365-2427.19...
). Throughout the evolution, species were pressured and had their dispersion and establishment limited by several environmental filters that acted hierarchically from continental to habitat scales (Tonn, 1990TONN, W.M., 1990. Climate change and fish communities: a conceptual framework. Transactions of the American Fisheries Society, vol. 119, no. 2, pp. 337-352. http://dx.doi.org/10.1577/1548-8659(1990)119<0337:CCAFCA>2.3.CO;2.
http://dx.doi.org/10.1577/1548-8659(1990...
; Matthews, 1998MATTHEWS, W.J., 1998. Patterns in freshwater fish ecology. Massachusetts: Chapman and Hall. http://dx.doi.org/10.1007/978-1-4615-4066-3.
http://dx.doi.org/10.1007/978-1-4615-406...
). In this context, the delimitation of freshwater ecoregions captures the patterns produced by continental-and regional-scale filters and reflects the hydrological patterns, the distribution of fish species, and evolutionary processes (Tonn, 1990TONN, W.M., 1990. Climate change and fish communities: a conceptual framework. Transactions of the American Fisheries Society, vol. 119, no. 2, pp. 337-352. http://dx.doi.org/10.1577/1548-8659(1990)119<0337:CCAFCA>2.3.CO;2.
http://dx.doi.org/10.1577/1548-8659(1990...
; Abell et al., 2008ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507.
http://dx.doi.org/10.1641/B580507...
). Among the main broad-scale filters are the barriers to the dispersion of fish species, which form the basis that influence broad freshwater biogeographic patterns (i.e., obligatorily aquatic species are confined in these regions and are unable to disperse between distinct basins) (Abell et al., 2008ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507.
http://dx.doi.org/10.1641/B580507...
).

In addition to physical barriers, there are also physiological/adaptive-species barriers linked to environmental characteristics. In the case of river systems, the dynamics of the environment related to variability, predictability, and seasonality of floods are the key factors that structure fish assemblages (Southwood, 1977SOUTHWOOD, T.R.E., 1977. Habitat, the template for ecological strategies? Journal of Animal Ecology, vol. 46, no. 2, pp. 337-365. http://dx.doi.org/10.2307/3817.
http://dx.doi.org/10.2307/3817...
; Junk et al., 1989JUNK, W.L., BAYLAY, P.B. and SPARKS, R.E., 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, vol. 106, pp. 110-127.; Pool et al., 2010POOL, T.K., OLDEN, J.D., WHITTIER, J.B. and PAUKERT, C.P., 2010. Environmental drivers of fish functional diversity and composition in the lower Colorado river Basin. Canadian Journal of Fisheries and Aquatic Sciences, vol. 67, no. 11, pp. 1791-1807. http://dx.doi.org/10.1139/F10-095.
http://dx.doi.org/10.1139/F10-095...
; Mims and Olden, 2012MIMS, M.C. and OLDEN, J.D., 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, vol. 93, no. 1, pp. 35-45. http://dx.doi.org/10.1890/11-0370.1. PMid:22486085.
http://dx.doi.org/10.1890/11-0370.1...
). Therefore, the primary selection driver of fish life strategies is the river dynamics, related to hydrological cycles of drought and flood and continuous water flow (Winemiller and Rose, 1992WINEMILLER, K.O. and ROSE, K.A., 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences, vol. 49, no. 10, pp. 2196-2218. http://dx.doi.org/10.1139/f92-242.
http://dx.doi.org/10.1139/f92-242...
; Bunn and Arthington, 2002BUNN, S. and ARTHINGTON, A.H., 2002. Basic principles and consequences of altered hydrological regimes for aquatic biodiversity. Environmental Management, vol. 30, no. 4, pp. 492-507. http://dx.doi.org/10.1007/s00267-002-2737-0. PMid:12481916.
http://dx.doi.org/10.1007/s00267-002-273...
; Röpke et al., 2017RÖPKE, C.P., AMADIO, S., ZUANON, J., FERREIRA, E.J.G., DEUS, C.P., PIRES, T.H.S. and WINEMILLER, K.O., 2017. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Scientific Reports, vol. 7, no. 1, pp. 40170. http://dx.doi.org/10.1038/srep40170. PMid:28071701.
http://dx.doi.org/10.1038/srep40170...
). The structure of fish assemblages may be affected due to changes in the natural flow regime, usually promoted by human activities such as dams, leading to changes in species composition, selecting those that are pre-adapted to the new environmental conditions (Gomes and Miranda, 2001GOMES, L.C. and MIRANDA, L.E., 2001. Riverine characteristics dictate composition of fish assemblages and limit fisheries in reservoirs of the upper Paraná river basin. Regulated Rivers: Research and Management, vol. 17, no. 1, pp. 67-76. http://dx.doi.org/10.1002/1099-1646(200101/02)17:1<67::AID-RRR615>3.0.CO;2-P.
http://dx.doi.org/10.1002/1099-1646(2001...
; Agostinho et al., 2016AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C.L., ORTEGA, J.C.G. and PELICICE, F.M., 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research, vol. 173, no. 1, pp. 26-36. http://dx.doi.org/10.1016/j.fishres.2015.04.006.
http://dx.doi.org/10.1016/j.fishres.2015...
; Sanches et al., 2016SANCHES, B.O., HUGHES, R.M., MACEDO, D.R., CALLISTO, M. and SANTOS, G.B., 2016. Spatial variations in fish assemblage structure in a southeastern Brazilian reservoir. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 1, pp. 185-193. http://dx.doi.org/10.1590/1519-6984.16614. PMid:26909635.
http://dx.doi.org/10.1590/1519-6984.1661...
).

The construction of dams alters river hydrology, causing changes in natural flow regime, changes in limnological conditions and spatial heterogeneity, affecting fish assemblage composition and ecosystem functioning (Webb et al., 2013WEBB, C.T., MILLER, K.A., KING, E.L., LITTLE, S.C., STEWARDSON, M.J., ZIMMERMAN, J.K.H. and POFF, N.L., 2013. Squeezing the most out of existing literature: a systematic re-analysis of published evidence on ecological responses to altered flows. Freshwater Biology, vol. 58, no. 12, pp. 2439-2451. http://dx.doi.org/10.1111/fwb.12234.
http://dx.doi.org/10.1111/fwb.12234...
; Agostinho et al., 2016AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C.L., ORTEGA, J.C.G. and PELICICE, F.M., 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research, vol. 173, no. 1, pp. 26-36. http://dx.doi.org/10.1016/j.fishres.2015.04.006.
http://dx.doi.org/10.1016/j.fishres.2015...
). For instance, dams cause habitat fragmentation and blockage of fish movements (e.g., mainly for migratory fish species, that use the route for reproduction), promote changes in water quality and reduce habitat heterogeneity (Agostinho et al., 2007AGOSTINHO, A.A., GOMES, L.C. and PELICICE, F.M., 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil. Maringá: Eduem.; Poff et al., 2007POFF, N.L., OLDEN, J.D., MERRITT, D.M. and PEPIN, D.M., 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5732-5737. http://dx.doi.org/10.1073/pnas.0609812104. PMid:17360379.
http://dx.doi.org/10.1073/pnas.060981210...
; Zarfl et al., 2014ZARFL, C., LUMSDON, A.E., BERLEKAMP, J., TYDECKS, L. and TOCKNER, K., 2014. A global boom in hydropower dam construction. Aquatic Sciences, vol. 77, no. 1, pp. 161-170. http://dx.doi.org/10.1007/s00027-014-0377-0.
http://dx.doi.org/10.1007/s00027-014-037...
; Pelicice et al., 2018PELICICE, F.M., AZEVEDO-SANTOS, V.M., ESGUÍCERO, A.L.H., AGOSTINHO, A.A. and ARCIFA, M.S., 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology, vol. 16, no. 2, pp. e170150. http://dx.doi.org/10.1590/1982-0224-20170150.
http://dx.doi.org/10.1590/1982-0224-2017...
). The success of species depends on their functional traits (e.g., reproductive strategies, trophic specialization, habitat use, defense tactics, and physiology/metabolic; see Winemiller et al., 2015WINEMILLER, K.O., FITZGERALD, D.B., BOWER, L.M. and PIANKA, E.R., 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, vol. 18, no. 8, pp. 737-751. http://dx.doi.org/10.1111/ele.12462. PMid:26096695.
http://dx.doi.org/10.1111/ele.12462...
). It also depends on the characteristics of the reservoir, such as the presence of other reservoirs in the basin, type of dam operation, the surrounding land use, geomorphology and reservoir zone (Agostinho et al., 1999AGOSTINHO, A.A., MIRANDA, L.E., BINI, L.M., GOMES, L.C., THOMAZ, S.M. and SUZUKI, H.I., 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In: J.G. TUNDISI and M. STRASKRABA, eds. Theoretical reservoir ecology and its applications. Rio de Janeiro: Backhuys Publishers, pp. 227-265.; Oliveira et al., 2004OLIVEIRA, E.D., GOULART, E. and MINTE-VERA, C.V., 2004. Fish diversity along spatial gradients in the Itaipu Reservoir, Paraná, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 64, no. 3A, pp. 447-458. http://dx.doi.org/10.1590/S1519-69842004000300008. PMid:15622842.
http://dx.doi.org/10.1590/S1519-69842004...
; Miranda and Krogman, 2015MIRANDA, L.E. and KROGMAN, R.M., 2015. Functional age as an indicator of reservoir senescence. Fisheries, vol. 40, no. 4, pp. 170-176. http://dx.doi.org/10.1080/03632415.2015.1007207.
http://dx.doi.org/10.1080/03632415.2015....
). Besides, the functional composition of the ichthyofauna of reservoirs may differ between basins because they have different origins and or are in distinct geographic regions, each with its own limnological and geomorphological characteristics (Luiz et al., 2003LUIZ, E.A., GOMES, L.C., AGOSTINHO, A.A. and BULLA, C.K., 2003. Influência de processos locais e regionais nas assembleias de peixes em reservatórios do Paraná, Brasil. Acta Scientiarum. Biological Sciences, vol. 25, no. 1, pp. 107-114. http://dx.doi.org/10.4025/actascibiolsci.v25i1.2087.
http://dx.doi.org/10.4025/actascibiolsci...
; Pool et al., 2010POOL, T.K., OLDEN, J.D., WHITTIER, J.B. and PAUKERT, C.P., 2010. Environmental drivers of fish functional diversity and composition in the lower Colorado river Basin. Canadian Journal of Fisheries and Aquatic Sciences, vol. 67, no. 11, pp. 1791-1807. http://dx.doi.org/10.1139/F10-095.
http://dx.doi.org/10.1139/F10-095...
).

Although reservoirs act as environmental filters for some functional traits of fish species (e.g., decline of migratory species, characterized by seasonal spawning with small eggs, but in high numbers), it is hypothesized that the environmental filters imposed by evolutionary processes linked to basin characteristics (i.e., ecoregion; Abell et al., 2008ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507.
http://dx.doi.org/10.1641/B580507...
) are determinants for the functional trait composition of fish in reservoirs. We predict that there is a grouping of functional traits of the reservoirs studied concerning the basin in which it is located and that the assemblage's functional structure follows the same pattern as the taxonomic structure.

2. Material and Methods

2.1. Study area

We studied 29 reservoirs located in rivers of the Paraná State and neighboring states (Figure 1), south Brazil. Their ages ranged from 1-70 years when fish were sampled. Seven reservoirs are on the Paranapanema River; two on the Tibagi River, a tributary of the Paranapanema; two on the Ivaí River; two on the Piquiri River; 12 on the Iguaçu River; and four in the Coastal (or Litorânea) drainage basin (Table 1). Therefore, 25 reservoirs belonged to the Paraná River basin (Paranapanema, Tibagi, Ivaí, Piquiri, and Iguaçu rivers), and four to the Coastal basin. However, the Iguaçu basin is separated from the Paraná River by the Iguaçu Falls. The river basins where reservoirs are located belong to three ecoregions: Paranapanema, Tibagi, Ivaí and Piquiri rivers belong to the Upper Parana Ecoregion; the Iguaçu River belongs to the Iguassu Ecoregion; and the Litorânea basin rivers belong to the Ribeira de Iguape Ecoregion or Southeastern Mata Atlantica Ecoregion (for details, see Abell et al., 2008ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507.
http://dx.doi.org/10.1641/B580507...
).

Figure 1
Map of the Paraná State showing the locations of the study reservoirs. 1 = Rosana; 2 = Taquaruçu; 3 = Capivara; 4 = Canoas I; 5 = Canoas II; 6 = Salto Grande; 7 = Chavantes; 8 = Harmonia; 9 = Alagados; 10 = Capivari; 11 = Guaricana; 12 = Vossoroca; 13 = Salto do Meio; 14 = Piraquara; 15 = Passauna; 16 = Salto do Vau; 17 = Curucaca; 18 = Jordão; 19 = Cavernoso; 20 = Foz do Areia; 21 = Segredo; 22 = Salto Santiago; 23 = Salto Osório; 24 = Salto Caxias; 25 = Foz do Chopim; 26 = Santa Maria; 27 = Melissa; 28 = Patos; 29 = Mourão.
Table 1
Characteristics of the 29 study reservoirs located in the Paraná State, Brazil.

2.2. Data collection

All sampling surveys were conducted in the lacustrine zone (according to Thornton et al., 1990THORNTON, K.W., KIMMEL, B.L. and PAYNE, F.E., 1990. Reservoir Limnology: ecological perspectives. New York: John Wiley & Sons.) of each reservoir in July and November of 2001. Fish assemblages were sampled in a standardized way at different depths (littoral, pelagic, and bathypelagic) using gillnets of different mesh sizes (2.4 to 14.0 cm between opposing knots), set for 24 hours, and checked in the morning, afternoon and night.

2.3. Fish assemblages and functional traits

The abundance of the species, by each sample, were indexed by the catch per unit of effort (CPUE; the number of individuals in 1000 m2 of gillnets in 24 h). Species identification was based on Ota et al. (2018)OTA, R.R., DEPRÁ, G.C., GRAÇA, W.J. and PAVANELLI, C.S., 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology, vol. 16, no. 2, pp. e170094. http://dx.doi.org/10.1590/1982-0224-20170094.
http://dx.doi.org/10.1590/1982-0224-2017...
for reservoirs of the Upper Paraná River, Baumgartner et al. (2012)BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. and FRANA, V.A., 2012. Peixes do Baixo Rio Iguaçu. Maringá: Eduem. http://dx.doi.org/10.7476/9788576285861.
http://dx.doi.org/10.7476/9788576285861...
for reservoirs of the Iguaçu basin, and Oyakawa et al. (2006)OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. and NOLASCO, J.C., 2006. Peixes de riachos da Mata Atlântica. São Paulo: Neotrópica. for reservoir of the Coastal basin, except for the families Clariidae and Ictaluridae (Burgess, 1989BURGESS, W.E., 1989. An atlas of freshwater and marine catfishes: a preliminar survey of the Siluriformes. Neptune City, NJ: T.F.H. Publications.), Centrarchidae (Sigler and Sigler, 1987SIGLER, W.E. and SIGLER, J.W., 1987. Fishes of the great basin: a natural history. Reno: University of Nevada Press.), and Cyprinidae (Cavender and Coburn, 1992CAVENDER, T.M. and COBURN, M.M., 1992. Phylogenetic relationships of North American Cyprinidae. In: R.L. MAYDEN, ed. Systematics, historical ecology and North American freshwater fishes. Stanford: Stanford University Press.) (see supplementary file https://minio.scielo.br/documentstore/1678-4375/xFhfcRQQFRzn4tNMsHNPz8d/8f703e037758799e9ee34c971d87d0e8ac25be0e.pdfS1, available only in the online version).

Data on traits were obtained from the literature (see supplementary file https://minio.scielo.br/documentstore/1678-4375/xFhfcRQQFRzn4tNMsHNPz8d/f491ad89b393a4827c6fbd90d82032d3725ae1a2.pdfS2, available only in the online version). In cases where there was no data for the species we used data for the nearest related species (see supplementary file https://minio.scielo.br/documentstore/1678-4375/xFhfcRQQFRzn4tNMsHNPz8d/82b3f8aeac1881fd8cf97c2df10e32ac163f5410.pdfS3, available only in the online version). Functional traits selected to characterize fish species are related to trophic ecology (trophic category), life strategy (parental care, type of fecundation, spawning, migration and body size), use of habitats (body shape and position in the water column), and defense (cryptic behavior and presence of spine) (Table 2). In this study, functional traits were defined as biological characteristics that influence organism performance (Petchey and Gaston, 2006PETCHEY, O.L. and GASTON, K.J., 2006. Functional diversity: back to basics and looking forward. Ecology Letters, vol. 9, no. 6, pp. 741-758. http://dx.doi.org/10.1111/j.1461-0248.2006.00924.x. PMid:16706917.
http://dx.doi.org/10.1111/j.1461-0248.20...
; Díaz et al., 2013DÍAZ, S., PURVIS, A., CORNELISSEN, J.H.C., MACE, G.M., DONOGHUE, M.J., EWERS, R.M., JORDANO, P. and PEARSE, W.D., 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, vol. 3, no. 9, pp. 2958-2975. http://dx.doi.org/10.1002/ece3.601. PMid:24101986.
http://dx.doi.org/10.1002/ece3.601...
) and that correlate with ecological processes and ecosystem stability through resistance and resilience (Villéger et al., 2010VILLÉGER, S., MIRANDA, J.R., FLORES HERNÁNDEZ, D. and MOUILLOT, D., 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, vol. 20, no. 6, pp. 1512-1522. http://dx.doi.org/10.1890/09-1310.1. PMid:20945756.
http://dx.doi.org/10.1890/09-1310.1...
). The selection criterion used to survey the traits was to cover the largest number of functional traits related to the four niche dimensions proposed by Winemiller et al. (2015)WINEMILLER, K.O., FITZGERALD, D.B., BOWER, L.M. and PIANKA, E.R., 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, vol. 18, no. 8, pp. 737-751. http://dx.doi.org/10.1111/ele.12462. PMid:26096695.
http://dx.doi.org/10.1111/ele.12462...
, e.g., habitat use, life strategy, trophic ecology and defense.

Table 2
Classes of traits, trait categories, functional traits, and abbreviations used in the analyses of fish species. The sources of these data are in Supplementary Files S2 and S3, available only in the online version. Fish species were classified as small (Ls < 150 mm), medium (150 < Ls < 400 mm) and large (Ls > 400 mm), respectively.

2.4. Data analysis

In order to test our prediction that there is a grouping of functional traits of the reservoirs studied concerning the basin in which it is located, we performed an ordination (see Functional structure of the fish assemblage session). After performing the ordering for the functional structure, we performed an ordering for the taxonomic structure of fish assemblages (see Taxonomic structure of the fish assemblage). This step was necessary to compare the results to make sure they followed the same pattern.

2.5. Functional structure of the fish assemblages

The objective of this analysis was to verify if the traits composition depends on the hydrographic basin in which the reservoir is inserted. The functional composition of the ichthyofauna of the reservoirs may differ between the basins because they have different origins and/or are inserted in different geographic regions, which may differ in limnological and geomorphological characteristics. It was necessary to cross the n (local) vs. s (species) and s (species) vs. p (functional traits) to obtain the matrix n (local) vs. p (functional traits), which contains the mean of traits at the community level (Pillar et al., 2009PILLAR, V.D., DUARTE, L.D.S., SOSINSKI, E.E. and JONER, F., 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, vol. 20, no. 2, pp. 334-348. http://dx.doi.org/10.1111/j.1654-1103.2009.05666.x.
http://dx.doi.org/10.1111/j.1654-1103.20...
). For this, the “matrix.t” function of the SYNCSA package was used in R (R Core Team, 2013R CORE TEAM, 2013. R: a language and environment for statistical computing. Viena: R Foudation for Statistical Computing.). From the matrix n (local) vs. p (functional traits) it was generated a resemblance matrix using the Gower index, in which a Principal Coordinate Analysis was performed. (PCoA; Anderson et al., 2006ANDERSON, M.J., ELLINGSEN, K.E. and MCARDLE, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters, vol. 9, no. 6, pp. 683-693. http://dx.doi.org/10.1111/j.1461-0248.2006.00926.x. PMid:16706913.
http://dx.doi.org/10.1111/j.1461-0248.20...
). After the PCoA, a PERMANOVA was applied to verify if the basins (factor: Paranapanema, Tibagi, Piquiri, Ivaí, Iguaçu, and Litorânea basins) differed.

2.6. Taxonomic structure of the fish assemblage

The objective of this analysis was to verify the distribution pattern of the species, from different river basins, in the multidimensional space. For this, we used the matrix n(local) vs. s(species). The Bray-Curtis index was used to construct a similarity matrix and later applied a Principal Coordinate Analysis (PCoA; Anderson et al., 2006ANDERSON, M.J., ELLINGSEN, K.E. and MCARDLE, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters, vol. 9, no. 6, pp. 683-693. http://dx.doi.org/10.1111/j.1461-0248.2006.00926.x. PMid:16706913.
http://dx.doi.org/10.1111/j.1461-0248.20...
). To verify if there were significant differences among basins, a PERMANOVA was applied, using basin as a factor. We consider this stage of the work important because although it is not part of our predictions, its results can provide insights regarding the processes related to the functional composition of the reservoirs. It is expected that the reservoirs inserted in different basins have different species, due to the evolutionary processes related to each region. However, when comparing these results with the results of the functional composition, we can verify if these two metrics follow the same trend (e.g., variability and similarity/proximity between nearby basins) and thus verify how “strong” is the influence of the hydrographic basin on the taxonomic and functional composition of fish in reservoirs.

3. Results

3.1. Functional structure of the fish assemblages

The first two axes of the principal coordinate analysis (PCoA) represented 60.3% of the total data variation. The first axis represented 37.9% of the total variation, and the second axis represented 22.4% of the total variation (Figure 2). The PERMANOVA was significant for the factor basin (4,970 permutations; Pseudo-F = 10.13; P (perm) = 0.0002). The pair-wise test identified there were no significant differences only between Tibagi and Piquiri river basins (pair-wise test; p = 0.63) and between reservoirs Tibagi and Ivaí river basins (pair-wise test; p = 0.06). Some functional traits showed significant correlations with the first two axes of the PCoA (see supplementary file https://minio.scielo.br/documentstore/1678-4375/xFhfcRQQFRzn4tNMsHNPz8d/68183cc0e4fd60c844f305a0b93ec4a3d8147982.pdfS4, available only in the online version), indicating large variability in the abundance of traits among basins. Functional traits such as omnivorous, depressed body, and multiple spawning were correlated with the Paranapanema, Tibagi, Ivaí, and Piquiri basin reservoir (inserted in the Upper Parana ecoregion). While traits such as fusiform body, deep and total spawning were related to the Iguaçu (Iguassu ecoregion) and Litorânea (Ribeira de Iguape and Southeastern Mata Atlantica ecoregions) river basins (both considered isolated basins).

Figure 2
Result of PCoA analysis with Funcional structure of fish assemblages. Each point represents a reservoir at a given collection. Black Triangle: Tibagi; light grey triangle: Paranapanema; black square: Litorânea; dark grey quadrilateral: Iguaçu; light gray cross: Ivaí; dark grey circle: Piquiri. The arrow represents the direction of the effect (sign of the correlation) of the functional traits with significant correlation with the two first axis. TOT = Total spawning; DEPP = Deep body; FUSI = Fusiform body; FI = Internal Fertilization; FE = External Fertilization; MULT = Multiple spawning; DEPR: Depressed body; OMNI = Omnivore.

3.2. Taxonomic structure of the fish assemblage

The first two axes of the principal coordinate analysis (PCoA) represented 42.2% of the total data variation (Figure 3). The first axis represented 27.8%, whereas the second represented 14.4% of the total variation in the structure (weighted by abundances) of the fish assemblages found in the study reservoirs. PERMANOVA test was significant for the factor basin (4,970 permutations; Pseudo-F = 10.904; P (perm) = 0.0001). There was no significant difference only between the reservoirs of Tibagi and Piquiri river basins (pair-wise test; p = 0.63) and between reservoirs of Tibagi and Ivaí river basins (pair-wise test; p = 0.06).

Figure 3
Result of PCoA analysis with Taxonomic structure of fish assemblages. Each point represents a reservoir at a given collection. Black Triangle: Tibagi; light grey triangle: Paranapanema; black square: Litorânea; dark grey quadrilateral: Iguaçu; light gray cross: Ivaí; dark grey circle: Piquiri.

4. Discussion

In general, our findings shows that environmental filters imposed by evolutionary processes linked to basins’ characteristics are determinant for the composition of functional traits in reservoirs. It was observed that the reservoirs inserted in the same basin/ecoregion were closer in multidimensional space (forming groups). Still, the patterns found by the functional structure were very similar to those found for the taxonomic structure: the reservoirs inserted in the Upper Parana ecoregion were closer to each other, while the reservoirs inserted in isolated basins (Iguassu ecoregion and Litorânea basin) were more closely related. Despite the similarities, the functional structure presented more considerable variability, and the reservoirs of different basins were closer in space, compared to the taxonomic structure. This result reinforces the idea that reservoirs act as environmental filters for functional traits that are related with fish niches (Agostinho et al., 1999AGOSTINHO, A.A., MIRANDA, L.E., BINI, L.M., GOMES, L.C., THOMAZ, S.M. and SUZUKI, H.I., 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In: J.G. TUNDISI and M. STRASKRABA, eds. Theoretical reservoir ecology and its applications. Rio de Janeiro: Backhuys Publishers, pp. 227-265.; Santos et al., 2017SANTOS, N.C.L., SANTANA, H.S., ORTEGA, J.C., DIAS, R.M., STEGMANN, L.F., ARAÚJO, I.M.S., SEVERI, W., BINI, L.M., GOMES, L.C. and AGOSTINHO, A.A., 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, vol. 802, no. 1, pp. 245-253. http://dx.doi.org/10.1007/s10750-017-3274-4.
http://dx.doi.org/10.1007/s10750-017-327...
; Arantes et al., 2019ARANTES, C.C., FITZGERALD, D.B., HOEINGHAUS, D.J. and WINEMILLER, K.O., 2019. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability, vol. 37, pp. 28-40. http://dx.doi.org/10.1016/j.cosust.2019.04.009.
http://dx.doi.org/10.1016/j.cosust.2019....
). For the reservoirs inserted in the Upper Parana Ecoregion (Paranapanema, Tibagi, Ivaí and Piquiri river basins) the functional traits that influenced the similarity between them were multiple spawning, omnivorous feeding habits and depressed body. The reservoirs of the Iguaçu and Litorânea basins were more similar in relation to functional traits related to fusiform and deep body and total spawning.

From these results we can verify the presence of distinct ichthyofaunas in the reservoirs of the main basins of the Paraná State, especially the set of rivers that flow to the upper Paraná River system (Langeani et al., 2007LANGEANI, F., CASTRO, R.M.C., OYAKAWA, O.T., SHIBATTA, O.A., PAVANELLI, C.S. and CASATTI, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica, vol. 7, no. 3, pp. 181-197. http://dx.doi.org/10.1590/S1676-06032007000300020.
http://dx.doi.org/10.1590/S1676-06032007...
), such as Paranapanema River (Pelicice et al., 2018PELICICE, F.M., AZEVEDO-SANTOS, V.M., ESGUÍCERO, A.L.H., AGOSTINHO, A.A. and ARCIFA, M.S., 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology, vol. 16, no. 2, pp. e170150. http://dx.doi.org/10.1590/1982-0224-20170150.
http://dx.doi.org/10.1590/1982-0224-2017...
), Ivaí River (Frota et al., 2016aFROTA, A., DEPRÁ, G.C., PETENUCCI, L.M. and GRAÇA, W.J., 2016a. Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, e20150151. http://dx.doi.org/10.1590/1676-0611-BN-2015-0151.
http://dx.doi.org/10.1590/1676-0611-BN-2...
), Piquiri River (Cavalli et al., 2018CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. and GRAÇA, W.J., 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotropica, vol. 18, no. 2, pp. 1-14. http://dx.doi.org/10.1590/1676-0611-bn-2017-0350.
http://dx.doi.org/10.1590/1676-0611-bn-2...
) and Tibagi River (Shibatta et al., 2002SHIBATTA, O.A., ORSI, M.L., BENNEMANN, S.T. and SILVA-SOUZA, A.T., 2002. Diversidade e distribuição de peixes na bacia do rio Tibagi. In: M.E. MEDRI, E. BIANCHI, O.A. SHIBATTA and J.A. PIMENTA, eds. A bacia do Rio Tibagi. Londrina: M.E. Medri, pp. 403-424., 2007SHIBATTA, O.A., GEALH, A.M. and BENNEMANN, S.T., 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropica, vol. 7, no. 2, pp. 125-134. http://dx.doi.org/10.1590/S1676-06032007000200014.
http://dx.doi.org/10.1590/S1676-06032007...
). The same is true for those that drain to the Iguaçu River basin (Baumgartner et al., 2012BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. and FRANA, V.A., 2012. Peixes do Baixo Rio Iguaçu. Maringá: Eduem. http://dx.doi.org/10.7476/9788576285861.
http://dx.doi.org/10.7476/9788576285861...
; Frota et al., 2016bFROTA, A., GONÇALVES, E.V.R., DEPRÁ, G. and GRAÇA, W.J., 2016b. Inventory of the ichthyofauna from the Jordão and Areia river basins (Iguaçu drainage, Brazil) reveals greater sharing of species than thought. Check List, vol. 12, no. 6, pp. 1995. http://dx.doi.org/10.15560/12.6.1995.
http://dx.doi.org/10.15560/12.6.1995...
) and the Litorânea basin (Oyakawa et al., 2006OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. and NOLASCO, J.C., 2006. Peixes de riachos da Mata Atlântica. São Paulo: Neotrópica.; Frota et al., 2019FROTA, A., MESSAGE, H.J., OLIVEIRA, R.C., BENEDITO, E. and GRAÇA, W.J., 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica, vol. 19, no. 1, pp. e20180666. http://dx.doi.org/10.1590/1676-0611-bn-2018-0666.
http://dx.doi.org/10.1590/1676-0611-bn-2...
). This difference in taxonomic and functional structure between basins is expected since the sampled reservoirs are inserted in different ecoregions. The ecoregions present several ecological and evolutionary processes, which result in different patterns of distribution and compositions of freshwater fish species (Abell et al., 2008ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507.
http://dx.doi.org/10.1641/B580507...
).

From the point of view of the fish fauna, the upper Paraná River system comprises a complex area with its own geological history due to the tectonic activities undergone since the beginning of the Tertiary (Ab’Saber, 1998AB’SABER, A.N., 1998. Megageomorfologia do território brasileiro. In: S.B. CUNHA and A.J.T. GUERRA, eds. Geomorfologia do Brasil. Rio de Janeiro: Bertand Brasil, pp. 71-106.), and which in part is also shared with neighboring basins such as the coastal drainages and the Iguaçu River basin (Ribeiro, 2006RIBEIRO, A.C., 2006. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology, vol. 4, no. 2, pp. 225-246. http://dx.doi.org/10.1590/S1679-62252006000200009.
http://dx.doi.org/10.1590/S1679-62252006...
). Besides that, the upper Paraná River system presents clear endemism (Langeani et al., 2007LANGEANI, F., CASTRO, R.M.C., OYAKAWA, O.T., SHIBATTA, O.A., PAVANELLI, C.S. and CASATTI, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica, vol. 7, no. 3, pp. 181-197. http://dx.doi.org/10.1590/S1676-06032007000300020.
http://dx.doi.org/10.1590/S1676-06032007...
) and unique distribution patterns for its fish, which classify it as a natural ichthyofaunistic province (Géry, 1969GÉRY, J., 1969. The freshwater fishes of South America. In: E.J. FITTKAU, J. ILLIES and H. KLINGE, eds. Biogeography and ecology in South America. The Hague: Junk, pp. 828-848.; Abell et al., 2008ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507.
http://dx.doi.org/10.1641/B580507...
). Therefore, the functional and taxonomic structure proximity evidenced for the drainage of the upper Paraná River system (i.e., the Paranapanema, Piquiri, Ivaí, and Tibagi rivers) are expected within this biogeographic province. Still, this results reveal that even in the presence of a cascade of reservoirs, there is a close association of taxonomic composition with the last stretch of the upper Paraná River floodplain (see species in Ota et al., 2018OTA, R.R., DEPRÁ, G.C., GRAÇA, W.J. and PAVANELLI, C.S., 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology, vol. 16, no. 2, pp. e170094. http://dx.doi.org/10.1590/1982-0224-20170094.
http://dx.doi.org/10.1590/1982-0224-2017...
), once they share most of their species (compare with Shibatta et al., 2002SHIBATTA, O.A., ORSI, M.L., BENNEMANN, S.T. and SILVA-SOUZA, A.T., 2002. Diversidade e distribuição de peixes na bacia do rio Tibagi. In: M.E. MEDRI, E. BIANCHI, O.A. SHIBATTA and J.A. PIMENTA, eds. A bacia do Rio Tibagi. Londrina: M.E. Medri, pp. 403-424., 2007SHIBATTA, O.A., GEALH, A.M. and BENNEMANN, S.T., 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropica, vol. 7, no. 2, pp. 125-134. http://dx.doi.org/10.1590/S1676-06032007000200014.
http://dx.doi.org/10.1590/S1676-06032007...
; Frota et al., 2016aFROTA, A., DEPRÁ, G.C., PETENUCCI, L.M. and GRAÇA, W.J., 2016a. Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, e20150151. http://dx.doi.org/10.1590/1676-0611-BN-2015-0151.
http://dx.doi.org/10.1590/1676-0611-BN-2...
; Cavalli et al., 2018CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. and GRAÇA, W.J., 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotropica, vol. 18, no. 2, pp. 1-14. http://dx.doi.org/10.1590/1676-0611-bn-2017-0350.
http://dx.doi.org/10.1590/1676-0611-bn-2...
; Pelicice et al., 2018PELICICE, F.M., AZEVEDO-SANTOS, V.M., ESGUÍCERO, A.L.H., AGOSTINHO, A.A. and ARCIFA, M.S., 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology, vol. 16, no. 2, pp. e170150. http://dx.doi.org/10.1590/1982-0224-20170150.
http://dx.doi.org/10.1590/1982-0224-2017...
).

The basins of the Tibagi, Ivaí and Piquiri rivers, despite the already installed dams, do not present reservoir cascades, which intensify the abiotic and biotic changes with pronounced consequences in the fish community and the composition of the traits (Miranda et al., 2008MIRANDA, L.E., HABRAT, M. and MIYAZONO, S., 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society, vol. 137, no. 6, pp. 1851-1865. http://dx.doi.org/10.1577/T07-262.1.
http://dx.doi.org/10.1577/T07-262.1...
; Santos et al., 2017SANTOS, N.C.L., SANTANA, H.S., ORTEGA, J.C., DIAS, R.M., STEGMANN, L.F., ARAÚJO, I.M.S., SEVERI, W., BINI, L.M., GOMES, L.C. and AGOSTINHO, A.A., 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, vol. 802, no. 1, pp. 245-253. http://dx.doi.org/10.1007/s10750-017-3274-4.
http://dx.doi.org/10.1007/s10750-017-327...
). This fact may explain the greater functional proximity of their analyzed reservoirs. Thus, the basins of these rivers still present certain integrity in their physical, chemical, and biological parameters. Thus, even the Paraná basin, with large number of reservoirs already installed (Agostinho et al., 2004AGOSTINHO, A.A., GOMES, L.C., VERÍSSIMO, S. and OKADA, E.K., 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries, vol. 14, no. 1, pp. 11-19. http://dx.doi.org/10.1007/s11160-004-3551-y.
http://dx.doi.org/10.1007/s11160-004-355...
), it is appropriate to emphasize the importance of basins free of reservoir cascades. They play a key role in maintaining the integrity of fish population in the basin (Affonso et al., 2015AFFONSO, I.P., AZEVEDO, R.F., SANTOS, N.C.L., DIAS, R.M., AGOSTINHO, A.A. and GOMES, L.C., 2015. Pulling the plug: strategies to preclude expansion of dams in Brazilian rivers with high-priority for conservation. Natureza & Conservação, vol. 13, no. 2, pp. 199-203. http://dx.doi.org/10.1016/j.ncon.2015.11.008.
http://dx.doi.org/10.1016/j.ncon.2015.11...
; Marques et al., 2018MARQUES, H., DIAS, J.H.P., PERBICHE-NEVES, G., KASHIWAQUI, E.A.L. and RAMOS, I.P., 2018. Importance of dam-free tributaries for conserving fish biodiversity in Neotropical reservoirs. Biological Conservation, vol. 224, pp. 347-354. http://dx.doi.org/10.1016/j.biocon.2018.05.027.
http://dx.doi.org/10.1016/j.biocon.2018....
), especially the Ivaí (Affonso et al., 2015AFFONSO, I.P., AZEVEDO, R.F., SANTOS, N.C.L., DIAS, R.M., AGOSTINHO, A.A. and GOMES, L.C., 2015. Pulling the plug: strategies to preclude expansion of dams in Brazilian rivers with high-priority for conservation. Natureza & Conservação, vol. 13, no. 2, pp. 199-203. http://dx.doi.org/10.1016/j.ncon.2015.11.008.
http://dx.doi.org/10.1016/j.ncon.2015.11...
; Frota et al., 2016aFROTA, A., DEPRÁ, G.C., PETENUCCI, L.M. and GRAÇA, W.J., 2016a. Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, e20150151. http://dx.doi.org/10.1590/1676-0611-BN-2015-0151.
http://dx.doi.org/10.1590/1676-0611-BN-2...
), Tibagi (Shibatta et al., 2007SHIBATTA, O.A., GEALH, A.M. and BENNEMANN, S.T., 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropica, vol. 7, no. 2, pp. 125-134. http://dx.doi.org/10.1590/S1676-06032007000200014.
http://dx.doi.org/10.1590/S1676-06032007...
; Pelicice et al., 2018PELICICE, F.M., AZEVEDO-SANTOS, V.M., ESGUÍCERO, A.L.H., AGOSTINHO, A.A. and ARCIFA, M.S., 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology, vol. 16, no. 2, pp. e170150. http://dx.doi.org/10.1590/1982-0224-20170150.
http://dx.doi.org/10.1590/1982-0224-2017...
), and Piquiri (Affonso et al., 2015AFFONSO, I.P., AZEVEDO, R.F., SANTOS, N.C.L., DIAS, R.M., AGOSTINHO, A.A. and GOMES, L.C., 2015. Pulling the plug: strategies to preclude expansion of dams in Brazilian rivers with high-priority for conservation. Natureza & Conservação, vol. 13, no. 2, pp. 199-203. http://dx.doi.org/10.1016/j.ncon.2015.11.008.
http://dx.doi.org/10.1016/j.ncon.2015.11...
; Cavalli et al., 2018CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. and GRAÇA, W.J., 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotropica, vol. 18, no. 2, pp. 1-14. http://dx.doi.org/10.1590/1676-0611-bn-2017-0350.
http://dx.doi.org/10.1590/1676-0611-bn-2...
) rivers.

Iguaçu and Litorânea basins harbor distinct fish assemblages (i.e., the reservoirs of these basins were separated in the multidimensional space; Figure 3), but presented similar functional structure (i.e., they overlapped in the multidimensional functional space; Figure 2). Distribution and phylogenetic patterns of their fish species suggest a close relationship among the rivers that flows directly into the Atlantic Ocean (Coastal drainage) and the adjacent upland crystalline shield that flow into the interior of the continent (Ribeiro, 2006RIBEIRO, A.C., 2006. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology, vol. 4, no. 2, pp. 225-246. http://dx.doi.org/10.1590/S1679-62252006000200009.
http://dx.doi.org/10.1590/S1679-62252006...
). Recent surveys have revealed a composition of families and genera of similar fishes between the Iguaçu River (Baumgartner et al., 2012BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. and FRANA, V.A., 2012. Peixes do Baixo Rio Iguaçu. Maringá: Eduem. http://dx.doi.org/10.7476/9788576285861.
http://dx.doi.org/10.7476/9788576285861...
; Frota et al., 2016bFROTA, A., GONÇALVES, E.V.R., DEPRÁ, G. and GRAÇA, W.J., 2016b. Inventory of the ichthyofauna from the Jordão and Areia river basins (Iguaçu drainage, Brazil) reveals greater sharing of species than thought. Check List, vol. 12, no. 6, pp. 1995. http://dx.doi.org/10.15560/12.6.1995.
http://dx.doi.org/10.15560/12.6.1995...
; Larentis et al., 2016LARENTIS, C., DELARIVA, R.L., GOMES, L.C., BAUMGARTNER, D., RAMOS, I.P. and SEREIA, D.A.O., 2016. Ichthyofauna of streams from the lower Iguaçu River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, pp. e20150117. http://dx.doi.org/10.1590/1676-0611-BN-2015-0117.
http://dx.doi.org/10.1590/1676-0611-BN-2...
; Delariva et al., 2018DELARIVA, R.L., NEVES, M.P., LARENTIS, C., KLIEMANN, B.C.K., BALDASSO, M.C. and WOLFF, L.L., 2018. Fish fauna in forested and rural streams from an ecoregion of high endemism, lower Iguaçu River basin, Brazil. Biota Neotropica, vol. 18, no. 3, pp. e20170459. http://dx.doi.org/10.1590/1676-0611-bn-2017-0459.
http://dx.doi.org/10.1590/1676-0611-bn-2...
) and the Litorânea basin (Oyakawa et al., 2006OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. and NOLASCO, J.C., 2006. Peixes de riachos da Mata Atlântica. São Paulo: Neotrópica.; Frota et al., 2019FROTA, A., MESSAGE, H.J., OLIVEIRA, R.C., BENEDITO, E. and GRAÇA, W.J., 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica, vol. 19, no. 1, pp. e20180666. http://dx.doi.org/10.1590/1676-0611-bn-2018-0666.
http://dx.doi.org/10.1590/1676-0611-bn-2...
), with predominance of Characidae, Loricariidae, Heptapteridae, Trichomycteridae, and Crenuchidae. This similarity appears in our study once there was some functional structure equality between these distinct drainage systems, but not necessarily for the same taxonomic composition. The basins of the Iguaçu and Litorânea rivers present similar hydrological characteristics. Many of their headwater regions run from high altitudes of some important geological structures, such as the Ponta Grossa Arch and the Serra da Esperança (Maack, 1981MAACK, R., 1981. Geografia física do Estado do Paraná. 2. ed. Rio de Janeiro: José Olympio.; Morais-Silva et al., 2018MORAIS-SILVA, J.P., OLIVEIRA, A.V., FABRIN, T.M.C., DIAMANTE, N.A., PRIOLI, S.M.A.P., FROTA, A., GRAÇA, W.J. and PRIOLI, A.J., 2018. Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins. Zebrafish, vol. 15, no. 4, pp. 389-397. http://dx.doi.org/10.1089/zeb.2017.1551. PMid:29653071.
http://dx.doi.org/10.1089/zeb.2017.1551...
). Still, their mouths (Iguaçu and Litorânea) flowing into lowland or directly into the Atlantic Ocean (zero slopes). These hydrographic systems have large rapids and waterfalls (Oyakawa et al., 2006OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. and NOLASCO, J.C., 2006. Peixes de riachos da Mata Atlântica. São Paulo: Neotrópica.; Baumgartner et al., 2012BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. and FRANA, V.A., 2012. Peixes do Baixo Rio Iguaçu. Maringá: Eduem. http://dx.doi.org/10.7476/9788576285861.
http://dx.doi.org/10.7476/9788576285861...
). Therefore, due to their geomorphological and morphodynamic characteristics and their hydrographical relationships, the predominance of species with morphological structures capable of thriving in the high velocity functionally approximates these basins.

Although there is an intimate association with several ichthyofaunastic interchanges mainly between the upper Iguaçu River and the Litorânea basin (see Ribeiro, 2006RIBEIRO, A.C., 2006. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology, vol. 4, no. 2, pp. 225-246. http://dx.doi.org/10.1590/S1679-62252006000200009.
http://dx.doi.org/10.1590/S1679-62252006...
), both basins behave as distinct riverine habitats with fast and rocky flows, which are local incubators of the diversification and biological specialization (Garavello and Sampaio, 2010GARAVELLO, J.C. and SAMPAIO, F.A.A., 2010. Five new species of genus Astyanax Baird & Girard, 1854 from Rio Iguaçu, Paraná, Brazil (Ostariophysi, Characiformes, Characidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 70, no. 3, suppl., pp. 847-865. http://dx.doi.org/10.1590/S1519-69842010000400016. PMid:21085790.
http://dx.doi.org/10.1590/S1519-69842010...
; Roxo et al., 2017ROXO, F.F., LUJAN, N.K., TAGLIACOLLO, V.A., WALTZ, B.T., SILVA, G.S.C., OLIVEIRA, C. and ALBERT, J.S., 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: hypoptopomatinae). PLoS One, vol. 12, no. 6, pp. e0178240. http://dx.doi.org/10.1371/journal.pone.0178240. PMid:28591189.
http://dx.doi.org/10.1371/journal.pone.0...
). Therefore, due the great geographic isolation of its distinct rapids and waterfalls (Oyakawa et al., 2006OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. and NOLASCO, J.C., 2006. Peixes de riachos da Mata Atlântica. São Paulo: Neotrópica.; Baumgartner et al., 2012BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. and FRANA, V.A., 2012. Peixes do Baixo Rio Iguaçu. Maringá: Eduem. http://dx.doi.org/10.7476/9788576285861.
http://dx.doi.org/10.7476/9788576285861...
), there is a high endemism of the fish species in both the Iguaçu River basin (Baumgartner et al., 2012BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. and FRANA, V.A., 2012. Peixes do Baixo Rio Iguaçu. Maringá: Eduem. http://dx.doi.org/10.7476/9788576285861.
http://dx.doi.org/10.7476/9788576285861...
; Frota et al., 2016bFROTA, A., GONÇALVES, E.V.R., DEPRÁ, G. and GRAÇA, W.J., 2016b. Inventory of the ichthyofauna from the Jordão and Areia river basins (Iguaçu drainage, Brazil) reveals greater sharing of species than thought. Check List, vol. 12, no. 6, pp. 1995. http://dx.doi.org/10.15560/12.6.1995.
http://dx.doi.org/10.15560/12.6.1995...
; Larentis et al., 2016LARENTIS, C., DELARIVA, R.L., GOMES, L.C., BAUMGARTNER, D., RAMOS, I.P. and SEREIA, D.A.O., 2016. Ichthyofauna of streams from the lower Iguaçu River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, pp. e20150117. http://dx.doi.org/10.1590/1676-0611-BN-2015-0117.
http://dx.doi.org/10.1590/1676-0611-BN-2...
; Delariva et al., 2018DELARIVA, R.L., NEVES, M.P., LARENTIS, C., KLIEMANN, B.C.K., BALDASSO, M.C. and WOLFF, L.L., 2018. Fish fauna in forested and rural streams from an ecoregion of high endemism, lower Iguaçu River basin, Brazil. Biota Neotropica, vol. 18, no. 3, pp. e20170459. http://dx.doi.org/10.1590/1676-0611-bn-2017-0459.
http://dx.doi.org/10.1590/1676-0611-bn-2...
) and Coastal drainages (Oyakawa et al., 2006OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. and NOLASCO, J.C., 2006. Peixes de riachos da Mata Atlântica. São Paulo: Neotrópica.; Frota et al., 2019FROTA, A., MESSAGE, H.J., OLIVEIRA, R.C., BENEDITO, E. and GRAÇA, W.J., 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica, vol. 19, no. 1, pp. e20180666. http://dx.doi.org/10.1590/1676-0611-bn-2018-0666.
http://dx.doi.org/10.1590/1676-0611-bn-2...
).

Regarding the functional structure, despite the identification of some differences between the sampled basins, they were closer in the multidimensional space. This result points to the fact that there is, independently of the species composition, a functional simplification of the fish communities in rivers where reservoirs are present (Oliveira et al., 2018OLIVEIRA, A.G., BAUMGARTNER, M.T., GOMES, L.C., DIAS, R.M. and AGOSTINHO, A.A., 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, vol. 63, no. 3, pp. 293-305. http://dx.doi.org/10.1111/fwb.13064.
http://dx.doi.org/10.1111/fwb.13064...
). Because of the environmental changes imposed by dams, the remaining fish community presents functional traits that allow tolerance to the new environmental conditions (Ward and Stanford, 1995WARD, J.V. and STANFORD, J.A., 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management, vol. 11, no. 1, pp. 105-119. http://dx.doi.org/10.1002/rrr.3450110109.
http://dx.doi.org/10.1002/rrr.3450110109...
; Agostinho et al., 2008AGOSTINHO, A.A., PELICICE, F.M. and GOMES, L.C., 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 68, no. 4, suppl., pp. 1119-1132. http://dx.doi.org/10.1590/S1519-69842008000500019. PMid:19197482.
http://dx.doi.org/10.1590/S1519-69842008...
; Oliveira et al., 2018OLIVEIRA, A.G., BAUMGARTNER, M.T., GOMES, L.C., DIAS, R.M. and AGOSTINHO, A.A., 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, vol. 63, no. 3, pp. 293-305. http://dx.doi.org/10.1111/fwb.13064.
http://dx.doi.org/10.1111/fwb.13064...
). Several studies have reported that after the formation of reservoirs, the fish fauna of these environments is dominated by species with generalist feeding habits, sedentary life strategy with parental care and small body size (Hoeinghaus et al., 2009HOEINGHAUS, D.J., AGOSTINHO, A.A., GOMES, L.C., PELICICE, F.M., OKADA, E.K., LATINI, J.D., KASHIWAQUI, E.A.L. and WINEMILLER, K.O., 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology, vol. 23, no. 5, pp. 1222-1231. http://dx.doi.org/10.1111/j.1523-1739.2009.01248.x. PMid:19459891.
http://dx.doi.org/10.1111/j.1523-1739.20...
; Agostinho et al., 2016AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C.L., ORTEGA, J.C.G. and PELICICE, F.M., 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research, vol. 173, no. 1, pp. 26-36. http://dx.doi.org/10.1016/j.fishres.2015.04.006.
http://dx.doi.org/10.1016/j.fishres.2015...
; Santos et al., 2017SANTOS, N.C.L., SANTANA, H.S., ORTEGA, J.C., DIAS, R.M., STEGMANN, L.F., ARAÚJO, I.M.S., SEVERI, W., BINI, L.M., GOMES, L.C. and AGOSTINHO, A.A., 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, vol. 802, no. 1, pp. 245-253. http://dx.doi.org/10.1007/s10750-017-3274-4.
http://dx.doi.org/10.1007/s10750-017-327...
; Oliveira et al., 2018OLIVEIRA, A.G., BAUMGARTNER, M.T., GOMES, L.C., DIAS, R.M. and AGOSTINHO, A.A., 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, vol. 63, no. 3, pp. 293-305. http://dx.doi.org/10.1111/fwb.13064.
http://dx.doi.org/10.1111/fwb.13064...
). Consequently, even though species diversity remains high in reservoirs, there is a drastic change in dominance, with migratory fish becoming rare, while non-native species are common and dominant (Hoeinghaus et al., 2009HOEINGHAUS, D.J., AGOSTINHO, A.A., GOMES, L.C., PELICICE, F.M., OKADA, E.K., LATINI, J.D., KASHIWAQUI, E.A.L. and WINEMILLER, K.O., 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology, vol. 23, no. 5, pp. 1222-1231. http://dx.doi.org/10.1111/j.1523-1739.2009.01248.x. PMid:19459891.
http://dx.doi.org/10.1111/j.1523-1739.20...
; Daga et al., 2015DAGA, V.S., SKÓRA, F., PADIAL, A.A., ABILHOA, V., GUBIANI, E.A. and VITULE, J.R.S., 2015. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia, vol. 746, no. 1, pp. 327-347. http://dx.doi.org/10.1007/s10750-014-2032-0.
http://dx.doi.org/10.1007/s10750-014-203...
; Santos et al., 2017SANTOS, N.C.L., SANTANA, H.S., ORTEGA, J.C., DIAS, R.M., STEGMANN, L.F., ARAÚJO, I.M.S., SEVERI, W., BINI, L.M., GOMES, L.C. and AGOSTINHO, A.A., 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, vol. 802, no. 1, pp. 245-253. http://dx.doi.org/10.1007/s10750-017-3274-4.
http://dx.doi.org/10.1007/s10750-017-327...
; Pelicice et al., 2018PELICICE, F.M., AZEVEDO-SANTOS, V.M., ESGUÍCERO, A.L.H., AGOSTINHO, A.A. and ARCIFA, M.S., 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology, vol. 16, no. 2, pp. e170150. http://dx.doi.org/10.1590/1982-0224-20170150.
http://dx.doi.org/10.1590/1982-0224-2017...
). Thus, for all analyzed reservoirs, regardless of the ecoregion or drainage system, there was functional homogenization of the fish community (Daga et al., 2015DAGA, V.S., SKÓRA, F., PADIAL, A.A., ABILHOA, V., GUBIANI, E.A. and VITULE, J.R.S., 2015. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia, vol. 746, no. 1, pp. 327-347. http://dx.doi.org/10.1007/s10750-014-2032-0.
http://dx.doi.org/10.1007/s10750-014-203...
; Oliveira et al., 2018OLIVEIRA, A.G., BAUMGARTNER, M.T., GOMES, L.C., DIAS, R.M. and AGOSTINHO, A.A., 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, vol. 63, no. 3, pp. 293-305. http://dx.doi.org/10.1111/fwb.13064.
http://dx.doi.org/10.1111/fwb.13064...
), possibly imposed by the environmental filters generated by the lentic waters of reservoirs (Santos et al., 2017SANTOS, N.C.L., SANTANA, H.S., ORTEGA, J.C., DIAS, R.M., STEGMANN, L.F., ARAÚJO, I.M.S., SEVERI, W., BINI, L.M., GOMES, L.C. and AGOSTINHO, A.A., 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, vol. 802, no. 1, pp. 245-253. http://dx.doi.org/10.1007/s10750-017-3274-4.
http://dx.doi.org/10.1007/s10750-017-327...
).

A unique functional and taxonomic similarity was attributed among the reservoirs of the Tibagi River basin and the reservoirs of the Ivaí and Piquiri river basins. The functional similarity of these reservoirs was related to multiple spawning, omnivorous feeding habits and depressed body functional traits. Still the absence of species with internal fertilization in these reservoirs was responsible for their separation in the multidimensional space. For these basins, the taxonomic grouping evidenced has two plausible causes, which may be complementary. First, this similarity in composition is expected as both basins are inserted in the same Upper Parana Ecoregion, so their fish assemblages are part of the same ichthyofaunistic province (Langeani et al., 2007LANGEANI, F., CASTRO, R.M.C., OYAKAWA, O.T., SHIBATTA, O.A., PAVANELLI, C.S. and CASATTI, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica, vol. 7, no. 3, pp. 181-197. http://dx.doi.org/10.1590/S1676-06032007000300020.
http://dx.doi.org/10.1590/S1676-06032007...
; Abell et al., 2008ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507.
http://dx.doi.org/10.1641/B580507...
). Second, there is a huge spatial congruence of their fish faunas, mainly in the headwaters located in the interior of the Paraná State, which may characterize the upper stretches of the Tibagi, Ivaí and Piquiri rivers as endemic areas (Cavalli et al., 2018CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. and GRAÇA, W.J., 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotropica, vol. 18, no. 2, pp. 1-14. http://dx.doi.org/10.1590/1676-0611-bn-2017-0350.
http://dx.doi.org/10.1590/1676-0611-bn-2...
; Morais-Silva et al., 2018MORAIS-SILVA, J.P., OLIVEIRA, A.V., FABRIN, T.M.C., DIAMANTE, N.A., PRIOLI, S.M.A.P., FROTA, A., GRAÇA, W.J. and PRIOLI, A.J., 2018. Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins. Zebrafish, vol. 15, no. 4, pp. 389-397. http://dx.doi.org/10.1089/zeb.2017.1551. PMid:29653071.
http://dx.doi.org/10.1089/zeb.2017.1551...
). These upper stretches presents interesting phylogeographic patterns of the resident fish fauna (Morais-Silva et al., 2018MORAIS-SILVA, J.P., OLIVEIRA, A.V., FABRIN, T.M.C., DIAMANTE, N.A., PRIOLI, S.M.A.P., FROTA, A., GRAÇA, W.J. and PRIOLI, A.J., 2018. Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins. Zebrafish, vol. 15, no. 4, pp. 389-397. http://dx.doi.org/10.1089/zeb.2017.1551. PMid:29653071.
http://dx.doi.org/10.1089/zeb.2017.1551...
), with notable influence of geological formations of the Serra Geral, or Serra da Boa Esperança, as well as the Ponta Grossa Arch, which by virtue of their ancient origin (Creer, 1962CREER, K.M., 1962. Palaeomagnetism of the Serra Geral formation. Geophysical Journal International, vol. 7, no. 1, pp. 1-22. http://dx.doi.org/10.1111/j.1365-246X.1962.tb02249.x.
http://dx.doi.org/10.1111/j.1365-246X.19...
; Karl et al., 2013KARL, M., GLASMACHER, U.A., KOLLENZ, S., FRANCO-MAGALHAES, A.O.B., STOCKLI, D.F. and HACKSPACHER, P.C., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, vol. 604, pp. 224-244. http://dx.doi.org/10.1016/j.tecto.2013.06.017.
http://dx.doi.org/10.1016/j.tecto.2013.0...
) enabled vicariant patterns between the various sub-basins of the state (Frota et al., 2016aFROTA, A., DEPRÁ, G.C., PETENUCCI, L.M. and GRAÇA, W.J., 2016a. Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, e20150151. http://dx.doi.org/10.1590/1676-0611-BN-2015-0151.
http://dx.doi.org/10.1590/1676-0611-BN-2...
; Cavalli et al., 2018CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. and GRAÇA, W.J., 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotropica, vol. 18, no. 2, pp. 1-14. http://dx.doi.org/10.1590/1676-0611-bn-2017-0350.
http://dx.doi.org/10.1590/1676-0611-bn-2...
; Morais-Silva et al., 2018MORAIS-SILVA, J.P., OLIVEIRA, A.V., FABRIN, T.M.C., DIAMANTE, N.A., PRIOLI, S.M.A.P., FROTA, A., GRAÇA, W.J. and PRIOLI, A.J., 2018. Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins. Zebrafish, vol. 15, no. 4, pp. 389-397. http://dx.doi.org/10.1089/zeb.2017.1551. PMid:29653071.
http://dx.doi.org/10.1089/zeb.2017.1551...
) and, through recent reactivations (Franco-Magalhaes et al., 2010FRANCO-MAGALHAES, A.O.B., HACKSPACHER, P.C., GLASMACHER, U.A. and SAAD, A.R., 2010. Rift to post-rift evolution of a “passive” continental margin: the Ponta Grossa Arch, SE Brazil. International Journal of Earth Sciences, vol. 99, no. 7, pp. 1599-1613. http://dx.doi.org/10.1007/s00531-010-0556-8.
http://dx.doi.org/10.1007/s00531-010-055...
) allowed faunistic exchanges (Cavalli et al., 2018CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. and GRAÇA, W.J., 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotropica, vol. 18, no. 2, pp. 1-14. http://dx.doi.org/10.1590/1676-0611-bn-2017-0350.
http://dx.doi.org/10.1590/1676-0611-bn-2...
; Morais-Silva et al., 2018MORAIS-SILVA, J.P., OLIVEIRA, A.V., FABRIN, T.M.C., DIAMANTE, N.A., PRIOLI, S.M.A.P., FROTA, A., GRAÇA, W.J. and PRIOLI, A.J., 2018. Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins. Zebrafish, vol. 15, no. 4, pp. 389-397. http://dx.doi.org/10.1089/zeb.2017.1551. PMid:29653071.
http://dx.doi.org/10.1089/zeb.2017.1551...
; Frota et al., 2019FROTA, A., MESSAGE, H.J., OLIVEIRA, R.C., BENEDITO, E. and GRAÇA, W.J., 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica, vol. 19, no. 1, pp. e20180666. http://dx.doi.org/10.1590/1676-0611-bn-2018-0666.
http://dx.doi.org/10.1590/1676-0611-bn-2...
).

Here, we investigate if the environmental filters imposed by evolutionary processes linked to basin characteristics are determinants for the functional trait composition of fish in reservoirs. Our results show that although reservoirs act as environmental filters for functional traits, the basin in which the reservoir is inserted has a great influence on the functional structure of a dammed environment. Furthermore, the functional structure follows the same patterns found for the taxonomic structure (i.e., reservoirs inserted in different basins have high similarity if situated in the same ecoregion). These results reinforce the idea that environmental filters influence the local (i.e., reservoir) functional structure in a hierarchical manner. Thus, although there is some predictability about the functional traits found in reservoirs, the ecoregion' ichthyofaunistic composition has a great influence on the final functional structure of the dammed environment. Finally, we highlight the necessity to integrate studies on the ichthyofaunistic structure and composition of the ecoregion in reservoir management and conservation projects.

Supplementary Material

Supplementary material accompanies this paper.

SUPPLEMENTARY FILE S1. The updated list of the species collected in the sampled reservoirs. The ‘X’ indicates presence of the species collected in each river basin.

SUPPLEMENTARY FILE S2. References used to review the functional traits of the fish species present in reservoirs of the Paranapanema, Tibagi, Ivaí, Piquiri, Iguaçu, and Litorânea River Basins.

SUPPLEMENTARY FILE S3. A. Fish species’ functional traits of the Paranapanema, Tibagi, Ivaí, Piquiri, Iguaçu and Litorânea River Basins. The traits were classified according to their classes: T.C. = Trophic category; P.C. = Parental care; Fert. = Fertilization; Spaw = Spawning; Mig. = Migration; B. Size = Body size; Trait categories: Pis = piscivore; Det = detritivore; Ins = insectivore; Omn = omnivore; Inv = invertivore; Her = herbivore; PC = with parental care; EF = external fertilization; IF = internal fertilization; STot = total spawning; SMul = multiple spawning; SCon = continuous spawning; Mig = migration; Sma = small size; Med = medium size; Lar = large size. Asterisk (*) means updated species name. See references in S2. S3. B. Fish species’ functional traits of the Paranapanema, Tibagi, Ivaí, Pirquiri, Iguaçu and Litorânea River Basins. The traits were classified according to their classes: Spi = Presence of spine; B. shape = Body shape; P.W.C. = Position in the water column; Cryp = Cryptic.Trait categories: WSp = with spine; Fus = fusiform; Dee = deep; Cyl = cylindrical; Sho = short; Dep = depressed; com = Compressed; BPel = benthopelagic; Pel = pelagic; Dem = demersal; Low = low; Mod = moderate; MExt = moderate / extreme; Ext = extreme. Asterisk (*) means updated species name. See references in S2

SUPPLEMENTARY FILE S4. Spearman correlation values between the functional traits of the fish species and the axes of the Principal Coordinate Analysis (PCoA). The values in bold correspond to significant correlations (p <0.05)

This material is available as part of the online article from http://www.scielo.br/bjb

Acknowledgements

We immensely thank the Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), of the Universidade Estadual de Marinhá (UEM) for collecting and making available the data set. We thank all the members of the laboratory of “Ictiologia e Ecoestatística” of Nupélia for the scientific contributions and the compilation of the data of functional traits. We express our appreciation to the Programa de Apoio a Núcleos de Excelência (PRONEX-MCT/CNPq) for financial support and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for the fellowships to graduate students.

  • (With 3 figures)

References

  • AB’SABER, A.N., 1998. Megageomorfologia do território brasileiro. In: S.B. CUNHA and A.J.T. GUERRA, eds. Geomorfologia do Brasil Rio de Janeiro: Bertand Brasil, pp. 71-106.
  • ABELL, R., THIEME, M.L., REVENGA, C., BRYER, M., KOTTELAT, M., BOGUTSKAYA, N., COAD, B., MANDRAK, N., BALDERAS, S.C., BUSSING, W., STIASSNY, M.L.J., SKELTON, P., ALLEN, G.R., UNMACK, P., NASEKA, A., NG, R., SINDORF, N., ROBERTSON, J., ARMIJO, E., HIGGINS, J.V., HEIBEL, T.J., WIKRAMANAYAKE, E., OLSON, D., LÓPEZ, H.L., REIS, R.E., LUNDBERG, J.G., SABAJ PÉREZ, M.H. and PETRY, P., 2008. Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, vol. 58, no. 5, pp. 403-414. http://dx.doi.org/10.1641/B580507
    » http://dx.doi.org/10.1641/B580507
  • AFFONSO, I.P., AZEVEDO, R.F., SANTOS, N.C.L., DIAS, R.M., AGOSTINHO, A.A. and GOMES, L.C., 2015. Pulling the plug: strategies to preclude expansion of dams in Brazilian rivers with high-priority for conservation. Natureza & Conservação, vol. 13, no. 2, pp. 199-203. http://dx.doi.org/10.1016/j.ncon.2015.11.008
    » http://dx.doi.org/10.1016/j.ncon.2015.11.008
  • AGOSTINHO, A.A., GOMES, L.C. and PELICICE, F.M., 2007. Ecologia e manejo de recursos pesqueiros em reservatórios do Brasil Maringá: Eduem.
  • AGOSTINHO, A.A., GOMES, L.C., SANTOS, N.C.L., ORTEGA, J.C.G. and PELICICE, F.M., 2016. Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fisheries Research, vol. 173, no. 1, pp. 26-36. http://dx.doi.org/10.1016/j.fishres.2015.04.006
    » http://dx.doi.org/10.1016/j.fishres.2015.04.006
  • AGOSTINHO, A.A., GOMES, L.C., VERÍSSIMO, S. and OKADA, E.K., 2004. Flood regime, dam regulation and fish in the Upper Paraná River: effects on assemblage attributes, reproduction and recruitment. Reviews in Fish Biology and Fisheries, vol. 14, no. 1, pp. 11-19. http://dx.doi.org/10.1007/s11160-004-3551-y
    » http://dx.doi.org/10.1007/s11160-004-3551-y
  • AGOSTINHO, A.A., MIRANDA, L.E., BINI, L.M., GOMES, L.C., THOMAZ, S.M. and SUZUKI, H.I., 1999. Patterns of colonization in neotropical reservoirs, and prognoses on aging. In: J.G. TUNDISI and M. STRASKRABA, eds. Theoretical reservoir ecology and its applications Rio de Janeiro: Backhuys Publishers, pp. 227-265.
  • AGOSTINHO, A.A., PELICICE, F.M. and GOMES, L.C., 2008. Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 68, no. 4, suppl., pp. 1119-1132. http://dx.doi.org/10.1590/S1519-69842008000500019 PMid:19197482.
    » http://dx.doi.org/10.1590/S1519-69842008000500019
  • ANDERSON, M.J., ELLINGSEN, K.E. and MCARDLE, B.H., 2006. Multivariate dispersion as a measure of beta diversity. Ecology Letters, vol. 9, no. 6, pp. 683-693. http://dx.doi.org/10.1111/j.1461-0248.2006.00926.x PMid:16706913.
    » http://dx.doi.org/10.1111/j.1461-0248.2006.00926.x
  • ARANTES, C.C., FITZGERALD, D.B., HOEINGHAUS, D.J. and WINEMILLER, K.O., 2019. Impacts of hydroelectric dams on fishes and fisheries in tropical rivers through the lens of functional traits. Current Opinion in Environmental Sustainability, vol. 37, pp. 28-40. http://dx.doi.org/10.1016/j.cosust.2019.04.009
    » http://dx.doi.org/10.1016/j.cosust.2019.04.009
  • BAUMGARTNER, G., PAVANELLI, C.S., BAUMGARTNER, D., BIFI, A.G., DEBONA, T. and FRANA, V.A., 2012. Peixes do Baixo Rio Iguaçu Maringá: Eduem. http://dx.doi.org/10.7476/9788576285861
    » http://dx.doi.org/10.7476/9788576285861
  • BUNN, S. and ARTHINGTON, A.H., 2002. Basic principles and consequences of altered hydrological regimes for aquatic biodiversity. Environmental Management, vol. 30, no. 4, pp. 492-507. http://dx.doi.org/10.1007/s00267-002-2737-0 PMid:12481916.
    » http://dx.doi.org/10.1007/s00267-002-2737-0
  • BURGESS, W.E., 1989. An atlas of freshwater and marine catfishes: a preliminar survey of the Siluriformes Neptune City, NJ: T.F.H. Publications.
  • CAVALLI, D., FROTA, A., LIRA, A.D., GUBIANI, E.A., MARGARIDO, V.P. and GRAÇA, W.J., 2018. Update on the ichthyofauna of the Piquiri River basin, Paraná, Brazil: a conservation priority area. Biota Neotropica, vol. 18, no. 2, pp. 1-14. http://dx.doi.org/10.1590/1676-0611-bn-2017-0350
    » http://dx.doi.org/10.1590/1676-0611-bn-2017-0350
  • CAVENDER, T.M. and COBURN, M.M., 1992. Phylogenetic relationships of North American Cyprinidae. In: R.L. MAYDEN, ed. Systematics, historical ecology and North American freshwater fishes Stanford: Stanford University Press.
  • CREER, K.M., 1962. Palaeomagnetism of the Serra Geral formation. Geophysical Journal International, vol. 7, no. 1, pp. 1-22. http://dx.doi.org/10.1111/j.1365-246X.1962.tb02249.x
    » http://dx.doi.org/10.1111/j.1365-246X.1962.tb02249.x
  • DAGA, V.S., SKÓRA, F., PADIAL, A.A., ABILHOA, V., GUBIANI, E.A. and VITULE, J.R.S., 2015. Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia, vol. 746, no. 1, pp. 327-347. http://dx.doi.org/10.1007/s10750-014-2032-0
    » http://dx.doi.org/10.1007/s10750-014-2032-0
  • DELARIVA, R.L., NEVES, M.P., LARENTIS, C., KLIEMANN, B.C.K., BALDASSO, M.C. and WOLFF, L.L., 2018. Fish fauna in forested and rural streams from an ecoregion of high endemism, lower Iguaçu River basin, Brazil. Biota Neotropica, vol. 18, no. 3, pp. e20170459. http://dx.doi.org/10.1590/1676-0611-bn-2017-0459
    » http://dx.doi.org/10.1590/1676-0611-bn-2017-0459
  • DÍAZ, S., PURVIS, A., CORNELISSEN, J.H.C., MACE, G.M., DONOGHUE, M.J., EWERS, R.M., JORDANO, P. and PEARSE, W.D., 2013. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecology and Evolution, vol. 3, no. 9, pp. 2958-2975. http://dx.doi.org/10.1002/ece3.601 PMid:24101986.
    » http://dx.doi.org/10.1002/ece3.601
  • FRANCO-MAGALHAES, A.O.B., HACKSPACHER, P.C., GLASMACHER, U.A. and SAAD, A.R., 2010. Rift to post-rift evolution of a “passive” continental margin: the Ponta Grossa Arch, SE Brazil. International Journal of Earth Sciences, vol. 99, no. 7, pp. 1599-1613. http://dx.doi.org/10.1007/s00531-010-0556-8
    » http://dx.doi.org/10.1007/s00531-010-0556-8
  • FROTA, A., DEPRÁ, G.C., PETENUCCI, L.M. and GRAÇA, W.J., 2016a. Inventory of the fish fauna from Ivaí River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, e20150151. http://dx.doi.org/10.1590/1676-0611-BN-2015-0151
    » http://dx.doi.org/10.1590/1676-0611-BN-2015-0151
  • FROTA, A., GONÇALVES, E.V.R., DEPRÁ, G. and GRAÇA, W.J., 2016b. Inventory of the ichthyofauna from the Jordão and Areia river basins (Iguaçu drainage, Brazil) reveals greater sharing of species than thought. Check List, vol. 12, no. 6, pp. 1995. http://dx.doi.org/10.15560/12.6.1995
    » http://dx.doi.org/10.15560/12.6.1995
  • FROTA, A., MESSAGE, H.J., OLIVEIRA, R.C., BENEDITO, E. and GRAÇA, W.J., 2019. Ichthyofauna of headwater streams from the rio Ribeira de Iguape basin, at the boundaries of the Ponta Grossa Arch, Paraná, Brazil. Biota Neotropica, vol. 19, no. 1, pp. e20180666. http://dx.doi.org/10.1590/1676-0611-bn-2018-0666
    » http://dx.doi.org/10.1590/1676-0611-bn-2018-0666
  • GARAVELLO, J.C. and SAMPAIO, F.A.A., 2010. Five new species of genus Astyanax Baird & Girard, 1854 from Rio Iguaçu, Paraná, Brazil (Ostariophysi, Characiformes, Characidae). Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 70, no. 3, suppl., pp. 847-865. http://dx.doi.org/10.1590/S1519-69842010000400016 PMid:21085790.
    » http://dx.doi.org/10.1590/S1519-69842010000400016
  • GÉRY, J., 1969. The freshwater fishes of South America. In: E.J. FITTKAU, J. ILLIES and H. KLINGE, eds. Biogeography and ecology in South America The Hague: Junk, pp. 828-848.
  • GOMES, L.C. and MIRANDA, L.E., 2001. Riverine characteristics dictate composition of fish assemblages and limit fisheries in reservoirs of the upper Paraná river basin. Regulated Rivers: Research and Management, vol. 17, no. 1, pp. 67-76. http://dx.doi.org/10.1002/1099-1646(200101/02)17:1<67::AID-RRR615>3.0.CO;2-P
    » http://dx.doi.org/10.1002/1099-1646(200101/02)17:1<67::AID-RRR615>3.0.CO;2-P
  • GUBIANI, É.A., ANGELINI, R., VIEIRA, L.C.G., GOMES, L.C. and AGOSTINHO, A.A., 2011. Trophic models in Neotropical reservoir: testing hypotheses on the relationship between aging and maturity. Ecological Modelling, vol. 222, no. 23-24, pp. 3838-3848. http://dx.doi.org/10.1016/j.ecolmodel.2011.10.007
    » http://dx.doi.org/10.1016/j.ecolmodel.2011.10.007
  • HARRIS, G., 1999. This is not the end of limnology (or of science): the world may well be a lot simpler than we think. Freshwater Biology, vol. 42, no. 4, pp. 689-706. http://dx.doi.org/10.1046/j.1365-2427.1999.00486.x
    » http://dx.doi.org/10.1046/j.1365-2427.1999.00486.x
  • HOEINGHAUS, D.J., AGOSTINHO, A.A., GOMES, L.C., PELICICE, F.M., OKADA, E.K., LATINI, J.D., KASHIWAQUI, E.A.L. and WINEMILLER, K.O., 2009. Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conservation Biology, vol. 23, no. 5, pp. 1222-1231. http://dx.doi.org/10.1111/j.1523-1739.2009.01248.x PMid:19459891.
    » http://dx.doi.org/10.1111/j.1523-1739.2009.01248.x
  • JUNK, W.L., BAYLAY, P.B. and SPARKS, R.E., 1989. The flood pulse concept in river-floodplain systems. Canadian Special Publication of Fisheries and Aquatic Sciences, vol. 106, pp. 110-127.
  • KARL, M., GLASMACHER, U.A., KOLLENZ, S., FRANCO-MAGALHAES, A.O.B., STOCKLI, D.F. and HACKSPACHER, P.C., 2013. Evolution of the South Atlantic passive continental margin in southern Brazil derived from zircon and apatite (U-Th-Sm)/He and fission-track data. Tectonophysics, vol. 604, pp. 224-244. http://dx.doi.org/10.1016/j.tecto.2013.06.017
    » http://dx.doi.org/10.1016/j.tecto.2013.06.017
  • LANGEANI, F., CASTRO, R.M.C., OYAKAWA, O.T., SHIBATTA, O.A., PAVANELLI, C.S. and CASATTI, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica, vol. 7, no. 3, pp. 181-197. http://dx.doi.org/10.1590/S1676-06032007000300020
    » http://dx.doi.org/10.1590/S1676-06032007000300020
  • LARENTIS, C., DELARIVA, R.L., GOMES, L.C., BAUMGARTNER, D., RAMOS, I.P. and SEREIA, D.A.O., 2016. Ichthyofauna of streams from the lower Iguaçu River basin, Paraná State, Brazil. Biota Neotropica, vol. 16, no. 3, pp. e20150117. http://dx.doi.org/10.1590/1676-0611-BN-2015-0117
    » http://dx.doi.org/10.1590/1676-0611-BN-2015-0117
  • LOWE-MCCONNELL, R.H., 1999. Estudos ecológicos de comunidades de peixes tropicais São Paulo: EDUSP.
  • LUIZ, E.A., GOMES, L.C., AGOSTINHO, A.A. and BULLA, C.K., 2003. Influência de processos locais e regionais nas assembleias de peixes em reservatórios do Paraná, Brasil. Acta Scientiarum. Biological Sciences, vol. 25, no. 1, pp. 107-114. http://dx.doi.org/10.4025/actascibiolsci.v25i1.2087
    » http://dx.doi.org/10.4025/actascibiolsci.v25i1.2087
  • MAACK, R., 1981. Geografia física do Estado do Paraná 2. ed. Rio de Janeiro: José Olympio.
  • MARQUES, H., DIAS, J.H.P., PERBICHE-NEVES, G., KASHIWAQUI, E.A.L. and RAMOS, I.P., 2018. Importance of dam-free tributaries for conserving fish biodiversity in Neotropical reservoirs. Biological Conservation, vol. 224, pp. 347-354. http://dx.doi.org/10.1016/j.biocon.2018.05.027
    » http://dx.doi.org/10.1016/j.biocon.2018.05.027
  • MATTHEWS, W.J., 1998. Patterns in freshwater fish ecology Massachusetts: Chapman and Hall. http://dx.doi.org/10.1007/978-1-4615-4066-3
    » http://dx.doi.org/10.1007/978-1-4615-4066-3
  • MIMS, M.C. and OLDEN, J.D., 2012. Life history theory predicts fish assemblage response to hydrologic regimes. Ecology, vol. 93, no. 1, pp. 35-45. http://dx.doi.org/10.1890/11-0370.1 PMid:22486085.
    » http://dx.doi.org/10.1890/11-0370.1
  • MIRANDA, L.E. and KROGMAN, R.M., 2015. Functional age as an indicator of reservoir senescence. Fisheries, vol. 40, no. 4, pp. 170-176. http://dx.doi.org/10.1080/03632415.2015.1007207
    » http://dx.doi.org/10.1080/03632415.2015.1007207
  • MIRANDA, L.E., HABRAT, M. and MIYAZONO, S., 2008. Longitudinal gradients along a reservoir cascade. Transactions of the American Fisheries Society, vol. 137, no. 6, pp. 1851-1865. http://dx.doi.org/10.1577/T07-262.1
    » http://dx.doi.org/10.1577/T07-262.1
  • MORAIS-SILVA, J.P., OLIVEIRA, A.V., FABRIN, T.M.C., DIAMANTE, N.A., PRIOLI, S.M.A.P., FROTA, A., GRAÇA, W.J. and PRIOLI, A.J., 2018. Geomorphology influencing the diversification of fish in small-order rivers of neighboring basins. Zebrafish, vol. 15, no. 4, pp. 389-397. http://dx.doi.org/10.1089/zeb.2017.1551 PMid:29653071.
    » http://dx.doi.org/10.1089/zeb.2017.1551
  • OLIVEIRA, A.G., BAUMGARTNER, M.T., GOMES, L.C., DIAS, R.M. and AGOSTINHO, A.A., 2018. Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biology, vol. 63, no. 3, pp. 293-305. http://dx.doi.org/10.1111/fwb.13064
    » http://dx.doi.org/10.1111/fwb.13064
  • OLIVEIRA, E.D., GOULART, E. and MINTE-VERA, C.V., 2004. Fish diversity along spatial gradients in the Itaipu Reservoir, Paraná, Brazil. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 64, no. 3A, pp. 447-458. http://dx.doi.org/10.1590/S1519-69842004000300008 PMid:15622842.
    » http://dx.doi.org/10.1590/S1519-69842004000300008
  • OTA, R.R., DEPRÁ, G.C., GRAÇA, W.J. and PAVANELLI, C.S., 2018. Peixes da planície de inundação do alto rio Paraná e áreas adjacentes: revised, annotated and updated. Neotropical Ichthyology, vol. 16, no. 2, pp. e170094. http://dx.doi.org/10.1590/1982-0224-20170094
    » http://dx.doi.org/10.1590/1982-0224-20170094
  • OYAKAWA, O.T., AKAMA, A., MAUTARI, K.C. and NOLASCO, J.C., 2006. Peixes de riachos da Mata Atlântica São Paulo: Neotrópica.
  • PELICICE, F.M., AZEVEDO-SANTOS, V.M., ESGUÍCERO, A.L.H., AGOSTINHO, A.A. and ARCIFA, M.S., 2018. Fish diversity in the cascade of reservoirs along the Paranapanema River, southeast Brazil. Neotropical Ichthyology, vol. 16, no. 2, pp. e170150. http://dx.doi.org/10.1590/1982-0224-20170150
    » http://dx.doi.org/10.1590/1982-0224-20170150
  • PETCHEY, O.L. and GASTON, K.J., 2006. Functional diversity: back to basics and looking forward. Ecology Letters, vol. 9, no. 6, pp. 741-758. http://dx.doi.org/10.1111/j.1461-0248.2006.00924.x PMid:16706917.
    » http://dx.doi.org/10.1111/j.1461-0248.2006.00924.x
  • PILLAR, V.D., DUARTE, L.D.S., SOSINSKI, E.E. and JONER, F., 2009. Discriminating trait-convergence and trait-divergence assembly patterns in ecological community gradients. Journal of Vegetation Science, vol. 20, no. 2, pp. 334-348. http://dx.doi.org/10.1111/j.1654-1103.2009.05666.x
    » http://dx.doi.org/10.1111/j.1654-1103.2009.05666.x
  • POFF, N.L., OLDEN, J.D., MERRITT, D.M. and PEPIN, D.M., 2007. Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5732-5737. http://dx.doi.org/10.1073/pnas.0609812104 PMid:17360379.
    » http://dx.doi.org/10.1073/pnas.0609812104
  • POOL, T.K., OLDEN, J.D., WHITTIER, J.B. and PAUKERT, C.P., 2010. Environmental drivers of fish functional diversity and composition in the lower Colorado river Basin. Canadian Journal of Fisheries and Aquatic Sciences, vol. 67, no. 11, pp. 1791-1807. http://dx.doi.org/10.1139/F10-095
    » http://dx.doi.org/10.1139/F10-095
  • R CORE TEAM, 2013. R: a language and environment for statistical computing Viena: R Foudation for Statistical Computing.
  • RIBEIRO, A.C., 2006. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: an example of faunal evolution associated with a divergent continental margin. Neotropical Ichthyology, vol. 4, no. 2, pp. 225-246. http://dx.doi.org/10.1590/S1679-62252006000200009
    » http://dx.doi.org/10.1590/S1679-62252006000200009
  • RÖPKE, C.P., AMADIO, S., ZUANON, J., FERREIRA, E.J.G., DEUS, C.P., PIRES, T.H.S. and WINEMILLER, K.O., 2017. Simultaneous abrupt shifts in hydrology and fish assemblage structure in a floodplain lake in the central Amazon. Scientific Reports, vol. 7, no. 1, pp. 40170. http://dx.doi.org/10.1038/srep40170 PMid:28071701.
    » http://dx.doi.org/10.1038/srep40170
  • ROXO, F.F., LUJAN, N.K., TAGLIACOLLO, V.A., WALTZ, B.T., SILVA, G.S.C., OLIVEIRA, C. and ALBERT, J.S., 2017. Shift from slow- to fast-water habitats accelerates lineage and phenotype evolution in a clade of Neotropical suckermouth catfishes (Loricariidae: hypoptopomatinae). PLoS One, vol. 12, no. 6, pp. e0178240. http://dx.doi.org/10.1371/journal.pone.0178240 PMid:28591189.
    » http://dx.doi.org/10.1371/journal.pone.0178240
  • SANCHES, B.O., HUGHES, R.M., MACEDO, D.R., CALLISTO, M. and SANTOS, G.B., 2016. Spatial variations in fish assemblage structure in a southeastern Brazilian reservoir. Brazilian Journal of Biology = Revista Brasileira de Biologia, vol. 76, no. 1, pp. 185-193. http://dx.doi.org/10.1590/1519-6984.16614 PMid:26909635.
    » http://dx.doi.org/10.1590/1519-6984.16614
  • SANTOS, N.C.L., SANTANA, H.S., ORTEGA, J.C., DIAS, R.M., STEGMANN, L.F., ARAÚJO, I.M.S., SEVERI, W., BINI, L.M., GOMES, L.C. and AGOSTINHO, A.A., 2017. Environmental filters predict the trait composition of fish communities in reservoir cascades. Hydrobiologia, vol. 802, no. 1, pp. 245-253. http://dx.doi.org/10.1007/s10750-017-3274-4
    » http://dx.doi.org/10.1007/s10750-017-3274-4
  • SHIBATTA, O.A., GEALH, A.M. and BENNEMANN, S.T., 2007. Ictiofauna dos trechos alto e médio da bacia do rio Tibagi, Paraná, Brasil. Biota Neotropica, vol. 7, no. 2, pp. 125-134. http://dx.doi.org/10.1590/S1676-06032007000200014
    » http://dx.doi.org/10.1590/S1676-06032007000200014
  • SHIBATTA, O.A., ORSI, M.L., BENNEMANN, S.T. and SILVA-SOUZA, A.T., 2002. Diversidade e distribuição de peixes na bacia do rio Tibagi. In: M.E. MEDRI, E. BIANCHI, O.A. SHIBATTA and J.A. PIMENTA, eds. A bacia do Rio Tibagi Londrina: M.E. Medri, pp. 403-424.
  • SIGLER, W.E. and SIGLER, J.W., 1987. Fishes of the great basin: a natural history Reno: University of Nevada Press.
  • SOUTHWOOD, T.R.E., 1977. Habitat, the template for ecological strategies? Journal of Animal Ecology, vol. 46, no. 2, pp. 337-365. http://dx.doi.org/10.2307/3817
    » http://dx.doi.org/10.2307/3817
  • THORNTON, K.W., KIMMEL, B.L. and PAYNE, F.E., 1990. Reservoir Limnology: ecological perspectives New York: John Wiley & Sons.
  • TONN, W.M., 1990. Climate change and fish communities: a conceptual framework. Transactions of the American Fisheries Society, vol. 119, no. 2, pp. 337-352. http://dx.doi.org/10.1577/1548-8659(1990)119<0337:CCAFCA>2.3.CO;2
    » http://dx.doi.org/10.1577/1548-8659(1990)119<0337:CCAFCA>2.3.CO;2
  • VILLÉGER, S., MIRANDA, J.R., FLORES HERNÁNDEZ, D. and MOUILLOT, D., 2010. Contrasting changes in taxonomic vs. functional diversity of tropical fish communities after habitat degradation. Ecological Applications, vol. 20, no. 6, pp. 1512-1522. http://dx.doi.org/10.1890/09-1310.1 PMid:20945756.
    » http://dx.doi.org/10.1890/09-1310.1
  • WARD, J.V. and STANFORD, J.A., 1995. Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation. Regulated Rivers: Research and Management, vol. 11, no. 1, pp. 105-119. http://dx.doi.org/10.1002/rrr.3450110109
    » http://dx.doi.org/10.1002/rrr.3450110109
  • WEBB, C.T., MILLER, K.A., KING, E.L., LITTLE, S.C., STEWARDSON, M.J., ZIMMERMAN, J.K.H. and POFF, N.L., 2013. Squeezing the most out of existing literature: a systematic re-analysis of published evidence on ecological responses to altered flows. Freshwater Biology, vol. 58, no. 12, pp. 2439-2451. http://dx.doi.org/10.1111/fwb.12234
    » http://dx.doi.org/10.1111/fwb.12234
  • WINEMILLER, K.O. and ROSE, K.A., 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Canadian Journal of Fisheries and Aquatic Sciences, vol. 49, no. 10, pp. 2196-2218. http://dx.doi.org/10.1139/f92-242
    » http://dx.doi.org/10.1139/f92-242
  • WINEMILLER, K.O., FITZGERALD, D.B., BOWER, L.M. and PIANKA, E.R., 2015. Functional traits, convergent evolution, and periodic tables of niches. Ecology Letters, vol. 18, no. 8, pp. 737-751. http://dx.doi.org/10.1111/ele.12462 PMid:26096695.
    » http://dx.doi.org/10.1111/ele.12462
  • ZARFL, C., LUMSDON, A.E., BERLEKAMP, J., TYDECKS, L. and TOCKNER, K., 2014. A global boom in hydropower dam construction. Aquatic Sciences, vol. 77, no. 1, pp. 161-170. http://dx.doi.org/10.1007/s00027-014-0377-0
    » http://dx.doi.org/10.1007/s00027-014-0377-0

Publication Dates

  • Publication in this collection
    21 Sept 2020
  • Date of issue
    Jul-Sep 2021

History

  • Received
    11 Nov 2019
  • Accepted
    22 Jan 2020
  • Published
    31 Aug 2021
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br