Acessibilidade / Reportar erro

Daily vertical distribution of zooplankton in two oligo-mesotrophic north Patagonian lakes (39° S, Chile).

Distribuição vertical diária do zooplâncton em dois lagos oligo-mesotróficos ao norte da Patagônia (39º S, Chile)

Abstract

The zooplankton communities often exhibit daily vertical migrations to avoid natural ultraviolet radiation and/or fish predation. However there is no information on this topic in Chilean North Patagonian lakes up to date. Therefore, this study deals with a first characterization of plankton crustacean daily vertical migration in two temperate, oligotrophic lakes (Villarrica and Panguipulli lakes, 39°S) in Southern Chile. Zooplankton were collected at different depths intervals (0-10m, 10-20 m, 20-30m, 30-40m) at early morning, middle day, evening and night in the studied site. The results revealed that zooplankton species (Daphnia pulex, Ceriodaphnia dubia, Neobosmina chilensis, Mesocyclops araucanus, and Tropocyclops prasinus) are abundant in surface zones at night, early morning and evening, whereas at middle day the zooplankton abundances are high at deep zones. The results agree with observations for Argentinean and North American lakes where these daily migration patterns in crustacean zooplankton species were reported due mainly natural ultraviolet radiation exposure, whereas for northern hemisphere lakes the vertical migration is due to combined effect of natural ultraviolet radiation and fish predation exposure.

Keywords:
zooplankton; daily vertical migration; Patagonian lakes; cladocera; copepod

Resumo

As comunidades zooplanctônicas frequentemente exibem migrações verticais diárias para evitar a radiação ultravioleta natural e/ou a predação de peixes. No entanto, não há informações sobre esse tema em lagos chilenos no norte da Patagônia até a presente data. Portanto, este estudo trata de uma primeira caracterização da migração vertical diária de crustáceo planctônico em dois lagos temperados e oligotróficos (lagos Villarrica e Panguipulli, 39º S) no sul do Chile. O zooplâncton foi coletado em diferentes profundidades (0-10 m, 10-20 m, 20-30 m e 30-40 m) no início da manhã, ao meio-dia, à tarde e à noite no local estudado. Os resultados revelaram que as espécies de zooplâncton (Daphnia pulex, Ceriodaphnia dubia, Neobosmina chilensis, Mesocyclops araucanus e Tropocyclops prasinus) são abundantes nas zonas de superfície à noite, de manhã cedo e à tarde, enquanto, ao meio-dia, as abundâncias do zooplâncton são altas nas zonas de profundidade. Os resultados expostos corroboram as observações para outros lagos argentinos e da América do Norte, onde foram reportados esses padrões de migração diária em espécies crustáceas de zooplâncton por causa, principalmente, da exposição à radiação ultravioleta natural, enquanto, para lagos do hemisfério norte, a migração vertical se dá em razão do efeito combinado da radiação ultravioleta natural e exposição à predação.

Palavras-chave:
zooplâncton; migração vertical diária; lagos patagônicos; cladóceros; copépodes

1. Introduction

In southern Chile and Argentina there is an area called NordPatagonian lakes (39-41°S). These lakes share different features: they are temperate, deep lakes (Zmax≥ 100m), transparent, ultra/oligotrophic, monomictic, of glacial origin, and have low salt and nutrient concentration (Campos, 1984CAMPOS, H., 1984. Limnological study of Araucanian lakes (Chile). Verhandlungen Internationale Vereinigung für Angewandte Limnologie, vol. 22, pp. 1319-1327.; Pérez et al., 2002; Queimaliños, 2002QUEIMALIÑOS, C., 2002. The role of phytoplanktonic size fractions in the microbial food webs in two north Patagonian lakes. Verhandlungen International Verienung Angaldte Applied Limnologie, vol. 8, no. 3, pp. 1236-1240. http://dx.doi.org/10.1080/03680770.2001.11902651.
http://dx.doi.org/10.1080/03680770.2001....
; Woelfl, 2007WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004.
http://dx.doi.org/10.1016/j.limno.2006.0...
). In addition, they exhibit characteristics that are unique to these lakes in relation to temperate northern hemisphere lakes. For example, they lack predators such as Chaoborus and Leptodora (Kamjunke et al., 2009KAMJUNKE, N., VOGT, B. and WOELFL, S., 2009. Trophic interactions of the pelagic ciliate Stentor spp in north Patagonian lakes. Limnologica, vol. 39, no. 2, pp. 107-114. http://dx.doi.org/10.1016/j.limno.2008.08.001.
http://dx.doi.org/10.1016/j.limno.2008.0...
, 2012KAMJUNKE, N., KRAMPS, M., CHAVEZ, S. and WOELFL, S., 2012. Consumption of large Chlorella-bearing ciliates (Stentor) by Mesocyclops araucanus in North Patagonian lakes. Journal of Plankton Research, vol. 34, no. 10, pp. 922-927. http://dx.doi.org/10.1093/plankt/fbs051.
http://dx.doi.org/10.1093/plankt/fbs051...
). Moreover, in these lakes Calanoid copepods dominate the mesozooplankton followed by cyclopoid copepods and Cladocera (Campos, 1984CAMPOS, H., 1984. Limnological study of Araucanian lakes (Chile). Verhandlungen Internationale Vereinigung für Angewandte Limnologie, vol. 22, pp. 1319-1327.; Soto and Zúñiga, 1991SOTO, D. and ZÚÑIGA, L.R., 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Revista Chilena de Historia Natural, vol. 64, no. 3, pp. 569-581.; Modenutti et al., 2010MODENUTTI, B.E., BALSEIRO, E., CALLIERI, C. and BERTONI, R., 2010. Light vs food supply as factors modulating niche partitioning in two pelagic mixotrophic ciliates. Limnology and Oceanography, vol. 53, no. 2, pp. 446-455. http://dx.doi.org/10.4319/lo.2008.53.2.0446.
http://dx.doi.org/10.4319/lo.2008.53.2.0...
; De los Ríos-Escalante et al., In pressDE LOS RÍOS-ESCALANTE, P., CONTRERAS, A., LARA, G., LATSAGUE and ESSE, C. (In press). First reports of associations between spectral properties, chlorophyll, bacterial and zooplankton in two Chilean North Patagonian lakes (Villarrica and Caburgua, 38° S, Araucania region, Chile). Journal of King Saud University - The Sciences, In press.). Also, the phytoplankton community is dominated by Diatoms (Campos, 1984CAMPOS, H., 1984. Limnological study of Araucanian lakes (Chile). Verhandlungen Internationale Vereinigung für Angewandte Limnologie, vol. 22, pp. 1319-1327.).

In these lakes, the vertical distribution of zooplankton communities is particularly important, due to the influence of physical and chemical gradients formed in the water column (e.g. temperature, UV radiation) during the warm season (i.e. spring-summer). Biological factors such as the presence of predators can also influence the vertical distribution of organisms (Ringelberg, 2010RINGELBERG, J., 2010. Diel vertical migration of zooplankton in lakes and oceans. Causal adaptations and adaptative significances. Springer. 356 p.). Together, these factors act at different spatial-temporal scales producing an heterogenous spatial distribution of zooplankton in the water column of these lakes (Geller, 1992GELLER, W., 1992. The temperature stratification and related characteristics of Chilean lakes in midsummer. Aquatic Sciences, vol. 54, no. 1, pp. 37-57. http://dx.doi.org/10.1007/BF00877263.
http://dx.doi.org/10.1007/BF00877263...
; Woelfl and Geller, 2002WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
; Kessler et al., 2008KESSLER, K., LOCKWOOD, R.S., WILLIAMSON, C.E. and SAROS, J.E., 2008. Vertical distribution of zooplankton in subalpine and alpine lakes: ultraviolet radiation, fish predation and the transparency-gradient hypothesis. Limnology and Oceanography, vol. 53, no. 6, pp. 2374-2382. http://dx.doi.org/10.4319/lo.2008.53.6.2374.
http://dx.doi.org/10.4319/lo.2008.53.6.2...
; Woelfl et al., 2010WOELFL, S., GARCÍA, P. and DUARTE, C., 2010. Chlorella-bearing ciliates (Stentor, Ophrydium) dominate in an oligotrophic deep North Patagonian lakes (Lake Caburgua, Chile). Limnologica, vol. 40, no. 2, pp. 134-139. http://dx.doi.org/10.1016/j.limno.2009.11.008.
http://dx.doi.org/10.1016/j.limno.2009.1...
). Usually, the key mechanism involved in the vertical distribution of zooplankton communities is Diel Vertical Migration (DVM), a ubiquitous phenomenon exhibited by many zooplanktonic species in lakes of northern and southern hemispheres (Villafañ et al., 2001VILLAFAÑ, V.E., WALTER HELBLING, E. and ZAGARESE, H.E., 2001. Solar ultraviolet radiation and its impact on aquatic ecosystems of Patagonia, South America. Ambio, vol. 30, no. 2, pp. 112-117. http://dx.doi.org/10.1579/0044-7447-30.2.112. PMid:11374308.
http://dx.doi.org/10.1579/0044-7447-30.2...
; Winder, 2001WINDER, M., 2001. Zooplankton ecology in high mountain lakes. Zürich, Switzerland: Swiss Federal Institute of Technology, 157 p. Doctoral Thesis.; Woelfl and Geller, 2002WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
; Woelfl et al., 2010WOELFL, S., GARCÍA, P. and DUARTE, C., 2010. Chlorella-bearing ciliates (Stentor, Ophrydium) dominate in an oligotrophic deep North Patagonian lakes (Lake Caburgua, Chile). Limnologica, vol. 40, no. 2, pp. 134-139. http://dx.doi.org/10.1016/j.limno.2009.11.008.
http://dx.doi.org/10.1016/j.limno.2009.1...
; Ringelberg, 2010RINGELBERG, J., 2010. Diel vertical migration of zooplankton in lakes and oceans. Causal adaptations and adaptative significances. Springer. 356 p.; Leach et al., 2015LEACH, T.H., WILLIAMSON, C.E., THEODORE, N., FISHER, J.M. and OLSON, M.H., 2015. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. Journal of Plankton Research, vol. 37, no. 5, pp. 886-896. http://dx.doi.org/10.1093/plankt/fbv061.
http://dx.doi.org/10.1093/plankt/fbv061...
). Thus, DVM has attracted great scientific interest in the last 30 years given its important implications for food web dynamics and biological productivity (Ringelberg, 2010RINGELBERG, J., 2010. Diel vertical migration of zooplankton in lakes and oceans. Causal adaptations and adaptative significances. Springer. 356 p.).

There are three types of DWM that have characterised until this point. The “normal” DVM pattern is by far the most common observed movement in marine and freshwater ecosystems (Pearre, 2003PEARRE, S. JR., 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews of the Cambridge Philosophical Society, vol. 78, no. 1, pp. 1-79. http://dx.doi.org/10.1017/S146479310200595X. PMid:12620061.
http://dx.doi.org/10.1017/S1464793102005...
). In such pattern species descend at dawn, whereas at dusk they rise to the upper layers. Typically, descending at dawn reduces the risk of predation, whereas ascending at dusk allows species to feed on zooplankton. In contrast, “twilight” and “reverse” DVM patterns are less common (Guerra et al., 2019GUERRA, D., SCHRÖDER, K., BORGHINI, M., CAMATTI, E., PANSERA, M., SCHROEDER, A., SPARNOCCHIA, S. and CHIGGIATO, J., 2019. Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored ADCP. Ocean Science, vol. 15, pp. 631-649. http://dx.doi.org/10.5194/os-15-631-2019.
http://dx.doi.org/10.5194/os-15-631-2019...
).

The vertical distribution of microcrustacean zooplankton in Nord Patagonian lakes has already been studied seasonally (Campos et al. 1992aCAMPOS, H., STEFFEN, W., AGÜERO, G., PARRA, O. and ZÚÑIGA, L., 1992a. Limnological study of lake Ranco (Chile). Limnologica, vol. 22, pp. 337-353., bCAMPOS, H., STEFFEN, W., AGÜERO, G., PARRA, O. and ZÚÑIGA, L., 1992b. Limnological studies of lake Rupanco (Chile): Morphometry, physics, chemistry and primary productivity. Archiv für Hydrobiologie, vol. 90, suppl., pp. 85-113.; Wõlfl,1996; Woelfl and Geller, 2002WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
; Woelfl et al., 2010WOELFL, S., GARCÍA, P. and DUARTE, C., 2010. Chlorella-bearing ciliates (Stentor, Ophrydium) dominate in an oligotrophic deep North Patagonian lakes (Lake Caburgua, Chile). Limnologica, vol. 40, no. 2, pp. 134-139. http://dx.doi.org/10.1016/j.limno.2009.11.008.
http://dx.doi.org/10.1016/j.limno.2009.1...
). However, the evaluation of their vertical distribution in terms of DVM (i.e. across the diel cycle) is still largely unknown. Only two studies have evaluated DVM across the diel cycle, but these were conducted in lakes of central Chile (Ramos-Jiliberto and Zúñiga, 2001RAMOS-JILIBERTO, R. and ZÚÑIGA, L.R., 2001. Depth-selection patterns and diel vertical migration of Daphnia ambigua (Crustacea, Cladocera) in lake El Plateado. Revista Chilena de Historia Natural, vol. 74, no. 3, pp. 573-585. http://dx.doi.org/10.4067/S0716-078X2001000300007.
http://dx.doi.org/10.4067/S0716-078X2001...
; Ramos-Jiliberto et al. 2004RAMOS-JILIBERTO, R., CARVAJAL, J.L., CARTER, M. and ZÚÑIGA, L.R., 2004. Patrones de migración vertical de tres poblaciones de zooplankton en un lago chileno. Revista Chilena de Historia Natural, vol. 77, no. 1, pp. 29-41. http://dx.doi.org/10.4067/S0716-078X2004000100004.
https://doi.org/10.4067/S0716-078X200400...
). The first limnological studies in lakes in the north of Patagonia (Figure 1) described DVM but their goals did not point the principal regulator factors with enough details (Wõlfl, 1996; Woelfl and Geller, 2002WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
; Woelfl et al., 2010WOELFL, S., GARCÍA, P. and DUARTE, C., 2010. Chlorella-bearing ciliates (Stentor, Ophrydium) dominate in an oligotrophic deep North Patagonian lakes (Lake Caburgua, Chile). Limnologica, vol. 40, no. 2, pp. 134-139. http://dx.doi.org/10.1016/j.limno.2009.11.008.
http://dx.doi.org/10.1016/j.limno.2009.1...
). Recent studies have found a high dominance of cladoceran and low abundances of copepods in summer time in the first 40m of the water column of lake Caburgua (Woelfl et al., 2010WOELFL, S., GARCÍA, P. and DUARTE, C., 2010. Chlorella-bearing ciliates (Stentor, Ophrydium) dominate in an oligotrophic deep North Patagonian lakes (Lake Caburgua, Chile). Limnologica, vol. 40, no. 2, pp. 134-139. http://dx.doi.org/10.1016/j.limno.2009.11.008.
http://dx.doi.org/10.1016/j.limno.2009.1...
), and high zooplankton abundances in the first 5 m of the water column in Tinquilco lake both in early mornings and evenings (De los Ríos-Escalante et al., 2015DE LOS RÍOS-ESCALANTE, P., HAUENSTEIN, E. and ACEVEDO, P., 2015. Daily variations in vertical distribution of crustacean zooplankton in a mountain lake (Lake Tinquilco, 39°S, Araucania region) in Chile. Crustaceana, vol. 88, no. 2, pp. 208-215. http://dx.doi.org/10.1163/15685403-00003401.
http://dx.doi.org/10.1163/15685403-00003...
). Some authors have suggested the combined role of natural ultraviolet radiation and chlorophyll concentration as key determinants of zooplankton community structure in Patagonian lakes (Marinone et al., 2006MARINONE, M.C., MENU-MARQUE, S., AÑON SUÁREZ, D., DIÉGUEZ, M.C., PÉREZ, P., DE LOS RÍOS, P., SOTO, D. and ZAGARESE, H.E., 2006. UV radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochemistry and Photobiology, vol. 82, no. 4, pp. 962-971. http://dx.doi.org/10.1562/2005-09-09-RA-680. PMid:16643085.
http://dx.doi.org/10.1562/2005-09-09-RA-...
). In this scenario, the crustacean zooplankton community would increase its abundance and species composition in the upper layers during low solar radiation exposure (De los Ríos-Escalante et al., 2015DE LOS RÍOS-ESCALANTE, P., HAUENSTEIN, E. and ACEVEDO, P., 2015. Daily variations in vertical distribution of crustacean zooplankton in a mountain lake (Lake Tinquilco, 39°S, Araucania region) in Chile. Crustaceana, vol. 88, no. 2, pp. 208-215. http://dx.doi.org/10.1163/15685403-00003401.
http://dx.doi.org/10.1163/15685403-00003...
).

Figure 1
Location of sampling sites in lakes Panguipulli and Villarrica (•) in Southern Chile. Map was adapted on basis of Google earth image (Google Earth, 2020GOOGLE EARTH, 2020. [viewed 16 January 2020]. Available from: https://www.google.de/maps/@-39.3162606,-2.4943204,119368m/data=!3m1!1e3.
https://www.google.de/maps/@-39.3162606,...
). The corresponding image was supplied by Data SIO, NOAA, U.S. Navy, NGA, GEBCO ©2018 Google, Image Landsat, US Dept. of State Geographer. The map was drawn using software PHOTOIMPACT version 4.2 under licence number RI630-903-61120 (Google, 2018GOOGLE, 2018. [viewed 16 January 2020] Google, Image Landsat, US Dept. of State Geographer. Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Available from: https://archive.org/details/Ulead_Photo-Impact_4.2_-_Windows95- NT_UleadENG-FRE-DE.
https://archive.org/details/Ulead_Photo-...
).

Investigating DVM patterns of zooplankton is crucial for improving our understanding of biological productivity and of the fluxes of energy and matter in the pelagic environment (Ringelberg, 2010RINGELBERG, J., 2010. Diel vertical migration of zooplankton in lakes and oceans. Causal adaptations and adaptative significances. Springer. 356 p.) of Nord Patagonian lakes. For instance, zooplankton can remove nitrogen and carbon from the surface layers and release them at depth (Schnetzer and Steinberg, 2002SCHNETZER, A. and STEINBERG, D.K., 2002. Active transport of particulate organic carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea. Marine Ecology Progress Series, vol. 234, pp. 71-84. http://dx.doi.org/10.3354/meps234071.
http://dx.doi.org/10.3354/meps234071...
). But these fluxes depend on the type of migration, which in the latter case is considered the “normal” DVM pattern (Longhurst and Glen-Harrison, 1989LONGHURST, A.R. and GLEN HARRISON, W., 1989. The biological pump: profiles of plankton production and consumption in the upper ocean. Progress in Oceanography, vol. 22, no. 1, pp. 47-123. http://dx.doi.org/10.1016/0079-6611(89)90010-4.
http://dx.doi.org/10.1016/0079-6611(89)9...
). In turn, the type of migration can result from different set of ecological conditions for each particular lake (Ringelberg, 2010RINGELBERG, J., 2010. Diel vertical migration of zooplankton in lakes and oceans. Causal adaptations and adaptative significances. Springer. 356 p.).

In this study we aim to analyse the DVM of crustacean zooplankton from two Patagonian oligo-mesotrophic lakes, Villarrica and Panguipulli (Campos, 1984CAMPOS, H., 1984. Limnological study of Araucanian lakes (Chile). Verhandlungen Internationale Vereinigung für Angewandte Limnologie, vol. 22, pp. 1319-1327.; Woelfl, 2007WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004.
http://dx.doi.org/10.1016/j.limno.2006.0...
), in summer of 2010 and 2011. To the best of our knowledge, this is the first description of this kind achieved for Chilean Nord Patagonian lakes.

2- Materials and Methods

Study sites: Villarrica (39°32’S; 72°09´W) and Panguipulli lakes (39° 39’ 44”S; 72° 16’ 50’W) (Figure 1) are two typical large (176 and 117 km2), deep (maximum depths: 165 and 268 m) and oligotrophic Nord Patagonian lakes (Geller, 1992GELLER, W., 1992. The temperature stratification and related characteristics of Chilean lakes in midsummer. Aquatic Sciences, vol. 54, no. 1, pp. 37-57. http://dx.doi.org/10.1007/BF00877263.
http://dx.doi.org/10.1007/BF00877263...
; Woelfl, 2007WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004.
http://dx.doi.org/10.1016/j.limno.2006.0...
). They are warm monomictic with an epilimnion depth of about 10 to 15 m (Geller, 1992GELLER, W., 1992. The temperature stratification and related characteristics of Chilean lakes in midsummer. Aquatic Sciences, vol. 54, no. 1, pp. 37-57. http://dx.doi.org/10.1007/BF00877263.
http://dx.doi.org/10.1007/BF00877263...
; DGA, 2019Dirección General de Aguas – DGA. 2019. Datos de lagos [online]. Available from: http://www.dga.cl/servicios hidrometeorologicos/Paginas/default.aspx
http://www.dga.cl/servicios ...
) and Secchi depth during summer between 7 and 15 m (Woelfl, 2007WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004.
http://dx.doi.org/10.1016/j.limno.2006.0...
; DGA, 2019Dirección General de Aguas – DGA. 2019. Datos de lagos [online]. Available from: http://www.dga.cl/servicios hidrometeorologicos/Paginas/default.aspx
http://www.dga.cl/servicios ...
). Phytoplankton community during summer is dominated by diatoms in Lake Panguipulli and by cyanophytes in Lake Villarrica (DGA, 2019Dirección General de Aguas – DGA. 2019. Datos de lagos [online]. Available from: http://www.dga.cl/servicios hidrometeorologicos/Paginas/default.aspx
http://www.dga.cl/servicios ...
).

Zooplankton collection: Water samples from Villarrica lake were collected in January 2011 (21-22th January 2011) and in February for Panguipulli lake (02-03th February 2010. Vertical hauls were taken at different depth intervals (0-10 m; 10-20 m; 20-30 m; 30-40 m; and 40-50 m) using a Hydro-Bios plankton net (Kiel, Germany) with 80µm mesh size and 30 cm diameter equipped with a flowmeter. The sampling started at 12:00 PM and was repeated every six hours until 06:00 AM of the next day, before strong wind conditions at midday made zooplankton sampling unattainable. Zooplankton was preserved in absolute ethanol and counted using a Bogorov chamber to facilitate identification of species according to literature on taxonomical descriptions (Araya and Zúñiga, 1985ARAYA, J.M. and ZÚÑIGA, L.R., 1985. Manual taxonómico del zooplancton lacustre de Chile. Boletín Limnológico, vol. 8, pp. 1-110.; Reid, 1985REID, J., 1985. Chave da identificao e lista de referencias para as species continentais sulamericanas de vida livre da orden Cyclopoida. Boletim Zoologico Universidade do Sao Paulo, vol. 9, pp. 17-143.).

Data analysis: we used the Weighted Mean Depth (WMD) index proposed by Frost and Bollens, (1992)FROST, B.W. and BOLLENS, S.M., 1992. Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Canadian Journal of Fisheries and Aquatic Sciences, vol. 49, no. 6, pp. 1137-1141. http://dx.doi.org/10.1139/f92-126.
http://dx.doi.org/10.1139/f92-126...
and Durbin et al., (2010)DURBIN, E.G., GARRAHAN, P.R. and CASAS, M.C., 2010. Depth distribution of Calanus finmarchicus nauplii on the Georges Bank during 1995 and 1996. ICES Journal of Marine Science, vol. 57, no. 6, pp. 1686-1693. http://dx.doi.org/10.1006/jmsc.2000.0972.
http://dx.doi.org/10.1006/jmsc.2000.0972...
. This index allows to estimate the tendency of vertical distribution for a certain species in the water column. The formula of this index is the following:

W M D = S ( N i * d i ) / S N i

Where:

Ni = individual abundance of determined population at a specific depth

di = depth. We used the centre of the sampled depth intervals.

3- Results

The results revealed the presence of seven species in studied lakes: three cladocerans: Daphnia pulex De Geer, 1877 (Panguipulli), Ceriodaphnia dubia Richard, 1894 (Caburgua and Panguipulli) and Neobosmina chilensis Daday, 1902 (Villarrica), and four copepods Tumeodiaptomus diabolicus Brehm 1935 (Panguipulli), Boeckella gracilipes Daday, 1901 (Panguipulli),, Mesocyclops araucanus Löffler, 1962 and Tropocyclops prasinus (Fischer, 1860) (Table 1 and Table 2). Among them, T. prasinus was only present in lake Villarrica, whereas M. araucanus inhabited only lake Panguipulli.

Table 1
Weighted Mean Depth (WMD) index of crustacean species in lake Panguipulli during summer 2010.
Table 2
Weighted Mean Depth (WMD) index of crustacean species in lake Villarrica during summer 2011.

Lake Panguipulli (Table 1, Figure 2): Both cladoceran species (D. pulex, C. dubia) displayed a small DVM and were mostly concentrated in the epilimnion between 10 m and 20 m at daytime (D. pulex: WMD = 20.5m, D. dubia: WMD = 15.9m) and between 0-20 m (D. pulex: WMD = 15.4 m; C. dubia: WMD =16.2m) during night (Figure 2). For the case of C. dubia, about 81% of the population were concentrated in the 10-20 m depth range at midday. Only a small percentage of the population (< 25%) of both cladocerans were found within or below the thermocline (20 - 50 m) during daytime and night.

Figure 2
Vertical distribution of microcrustacean species during day and night in Lake Panguipulli.

In relation to copepods, only calanoid copepodites (C1-C5 instars) and B. gracilipes (adults) displayed a large DVM, whereas adults of T. diaptomus and M. araucanus were found during daytime and night in the upper 20 m of depth. During daytime about 70% of the copepodites were concentrated below 30 m of the water column (WMD: 37.4 m), whereas at night about 65% of the population were found in the upper10 m of the water column (WMD: 15.4 m) (Figure 2). Individuals of M. araucanus (adults) displayed a fairly uniform distribution throughout the water column (WMD: 26.3 m) showing moderate DVM at night (WMD =16.0 m).

Lake Villarrica (Table 1, Figure 3): Regarding the other two small cladoceran species, D. dubia and N. chilensis, presented in lake Villarrica, only C. dubia revealed a notable DVM comparable to the results obtained in lake Panguipulli. During daytime, it presented a fairly homogenous distribution from surface to 50 m depth (WMD = 25.8 m), but during night about 80% of the population was concentrated in the upper 10 m water layer (WMD = 8.3 m) (Figure 3). In contrast, the second small cladoceran N. chilensis was distributed in the whole water column (0-50 m) during daytime and night (WMD: 24.4 - 29.1 m) (Figure 3).

Figure 3
Vertical distribution of microcrustacean species during day and night in Lake Villarrcia.

With respect to copepods, almost the entire population of calanoid copepods (Boeckella gracilipes) was always below the thermocline between 30 and 50 m and no DVM was found (WMD: 35.7 - 36.8 m) (Figure 3). The very small cyclopoid copepod T. prasinus exhibited a moderate DVM, but only within the hypolimnion/thermocline layer at night (30-10 m). During daytime, more than 70% of the population (mostly males) were concentrated between 40 m and 50 m (WMD: 30.5 m), and revealed DVM of about 13 m during night into water layers between 10 m an 30 m (WMD: 17.7 m) (Figure 3).

4. Discussion

The presence of small bodies crustaceans would be probably to top down fish predation, because under zooplanktivorous fish predation, small bodies zooplankton are abundant in zooplankton community, such as was observed in Europe (Alpine lakes, Tartarotti et al., 2017TARTAROTTI, B., TRATTNER, F., REMIAS, D., SAUL, N., STEINBERG, C.E.W. and SOMMARUGA, R., 2017. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Scientific Reports, vol. 7, no. 1, pp. 4487. http://dx.doi.org/10.1038/s41598-017-04836-w. PMid:28674434.
http://dx.doi.org/10.1038/s41598-017-048...
; Sweden, Zheng, 2018ZHENG, L., 2018. Response of Daphnia magna from natural populations to ultraviolet radiation. Sweden: Lund University, 30 p. MsC Thesis.) North America (Leech and Williamson, 2000LEECH, D.M. and WILLIAMSON, C.E., 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon or lake transparency? Ecology, vol. 10, no. 5, pp. 1530-1540. http://dx.doi.org/10.1890/1051-0761(2000)010[1530:ITTURI]2.0.CO;2.
http://dx.doi.org/10.1890/1051-0761(2000...
; Leech et al., 2005aLEECH, D.M., WILLIAMSON, C.E., MOELLER, R.E. and HARGREAVES, B.R., 2005a. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a data base analysis. Archiv für Hydrobiologie, vol. 162, no. 4, pp. 445-464. http://dx.doi.org/10.1127/0003-9136/2005/0162-0445.
http://dx.doi.org/10.1127/0003-9136/2005...
bLEECH, D.M., PADELETTI, A. and WILLIAMSON, C.E., 2005b. Zooplankton behavioral responses to solar UV radiation vary within and among lakes. Journal of Plankton Research, vol. 27, no. 5, pp. 461-471. http://dx.doi.org/10.1093/plankt/fbi020.
http://dx.doi.org/10.1093/plankt/fbi020...
; Leach et al., 2015LEACH, T.H., WILLIAMSON, C.E., THEODORE, N., FISHER, J.M. and OLSON, M.H., 2015. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. Journal of Plankton Research, vol. 37, no. 5, pp. 886-896. http://dx.doi.org/10.1093/plankt/fbv061.
http://dx.doi.org/10.1093/plankt/fbv061...
), Patagonian lakes of Argentina (Reissig et al., 2004REISSIG, M., MODENUTTI, B., BALSEIRO, E. and QUEIMALIÑOS, C., 2004. The role of predaceous copepod Parabroteus sarsi in the pelagic food web of a large deep Andean lake. Hydrobiologia, vol. 524, no. 1, pp. 67-77. http://dx.doi.org/10.1023/B:HYDR.0000036120.33105.05.
http://dx.doi.org/10.1023/B:HYDR.0000036...
, 2006REISSIG, M., TROCHINE, C., QUEIMALIÑOS, C., BALSEIRO, E. and MODENUTTI, B., 2006. Impacts of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation, vol. 132, no. 4, pp. 437-447. http://dx.doi.org/10.1016/j.biocon.2006.04.036.
http://dx.doi.org/10.1016/j.biocon.2006....
; Hylander et al., 2012HYLANDER, S., SOUZA, M.S., BALSEIRO, E., MODENUTTI, B. and HANSSON, L.A., 2012. Fish mediated trait compensation in zooplankton. Functional Ecology, vol. 26, no. 3, pp. 608-615. http://dx.doi.org/10.1111/j.1365-2435.2012.01976.x.
http://dx.doi.org/10.1111/j.1365-2435.20...
) and Chile (Woelfl and Geller, 2002WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
; Woelfl, 2007WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004.
http://dx.doi.org/10.1016/j.limno.2006.0...
; De los Ríos-Escalante, 2015DE LOS RÍOS-ESCALANTE, P., 2015. Fish predation effects on body length of planktonic cladocerans and copepods in Chilean lakes. Crustaceana, vol. 88, no. 10-11, pp. 1193-1199. http://dx.doi.org/10.1163/15685403-00003472.
http://dx.doi.org/10.1163/15685403-00003...
). This situation would explain also, the presence of copepods under thermocline, such as was observed for Argentinean Patagonian lakes (Reissig et al., 2004REISSIG, M., MODENUTTI, B., BALSEIRO, E. and QUEIMALIÑOS, C., 2004. The role of predaceous copepod Parabroteus sarsi in the pelagic food web of a large deep Andean lake. Hydrobiologia, vol. 524, no. 1, pp. 67-77. http://dx.doi.org/10.1023/B:HYDR.0000036120.33105.05.
http://dx.doi.org/10.1023/B:HYDR.0000036...
, 2006REISSIG, M., TROCHINE, C., QUEIMALIÑOS, C., BALSEIRO, E. and MODENUTTI, B., 2006. Impacts of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation, vol. 132, no. 4, pp. 437-447. http://dx.doi.org/10.1016/j.biocon.2006.04.036.
http://dx.doi.org/10.1016/j.biocon.2006....
).

These presents results (Tables 1 and Table 2, Figure 2, 3) agree with the first descriptions of vertical patterns for zooplankton of Nord Patagonian Lakes in monthly samples, without included daily variations (Campos et al., 1992aCAMPOS, H., STEFFEN, W., AGÜERO, G., PARRA, O. and ZÚÑIGA, L., 1992a. Limnological study of lake Ranco (Chile). Limnologica, vol. 22, pp. 337-353., bCAMPOS, H., STEFFEN, W., AGÜERO, G., PARRA, O. and ZÚÑIGA, L., 1992b. Limnological studies of lake Rupanco (Chile): Morphometry, physics, chemistry and primary productivity. Archiv für Hydrobiologie, vol. 90, suppl., pp. 85-113.), nevertheless, both studies described monthly vertical distribution of total zooplankton. Similar description was done for mixotrophic ciliates for lakes Pirihueico (Woelfl and Geller, 2002WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
), and Caburgua (Woelfl et al., 2010WOELFL, S., GARCÍA, P. and DUARTE, C., 2010. Chlorella-bearing ciliates (Stentor, Ophrydium) dominate in an oligotrophic deep North Patagonian lakes (Lake Caburgua, Chile). Limnologica, vol. 40, no. 2, pp. 134-139. http://dx.doi.org/10.1016/j.limno.2009.11.008.
http://dx.doi.org/10.1016/j.limno.2009.1...
) in northern Chilean Patagonia. In this scenario, the importance of the present study is the first comparative description of DVM for Chilean Patagonian lakes, and second that the present study involves crustacean zooplankton species in two north Patagonian lakes without mixotrophic ciliates (Woelfl, 2007WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004.
http://dx.doi.org/10.1016/j.limno.2006.0...
) but different phytoplankton communities.

However, these samples were collected at mid-day or early afternoon Similar results have been reported for Argentinean Patagonian lakes (Balseiro et al., 2001BALSEIRO, E.G., MODENUTTI, B.E. and QUEIMALIÑOS, C.P., 2001. Feeding of Boeckella gracilipes (Copepoda, Calanoida) on ciliates and phytoflagellates in an ultraoligotrophic Andean lake. Journal of Plankton Research, vol. 23, no. 8, pp. 849-857. http://dx.doi.org/10.1093/plankt/23.8.849.
http://dx.doi.org/10.1093/plankt/23.8.84...
, Reissig et al., 2006REISSIG, M., TROCHINE, C., QUEIMALIÑOS, C., BALSEIRO, E. and MODENUTTI, B., 2006. Impacts of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation, vol. 132, no. 4, pp. 437-447. http://dx.doi.org/10.1016/j.biocon.2006.04.036.
http://dx.doi.org/10.1016/j.biocon.2006....
), North America (Leech and Williamson, 2000LEECH, D.M. and WILLIAMSON, C.E., 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon or lake transparency? Ecology, vol. 10, no. 5, pp. 1530-1540. http://dx.doi.org/10.1890/1051-0761(2000)010[1530:ITTURI]2.0.CO;2.
http://dx.doi.org/10.1890/1051-0761(2000...
; Leech et al., 2005aLEECH, D.M., WILLIAMSON, C.E., MOELLER, R.E. and HARGREAVES, B.R., 2005a. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a data base analysis. Archiv für Hydrobiologie, vol. 162, no. 4, pp. 445-464. http://dx.doi.org/10.1127/0003-9136/2005/0162-0445.
http://dx.doi.org/10.1127/0003-9136/2005...
, bLEECH, D.M., WILLIAMSON, C.E., MOELLER, R.E. and HARGREAVES, B.R., 2005a. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a data base analysis. Archiv für Hydrobiologie, vol. 162, no. 4, pp. 445-464. http://dx.doi.org/10.1127/0003-9136/2005/0162-0445.
http://dx.doi.org/10.1127/0003-9136/2005...
; Leach et al., 2015LEACH, T.H., WILLIAMSON, C.E., THEODORE, N., FISHER, J.M. and OLSON, M.H., 2015. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. Journal of Plankton Research, vol. 37, no. 5, pp. 886-896. http://dx.doi.org/10.1093/plankt/fbv061.
http://dx.doi.org/10.1093/plankt/fbv061...
), Europe (Alpine lakes, Tartarotti et al., 2017TARTAROTTI, B., TRATTNER, F., REMIAS, D., SAUL, N., STEINBERG, C.E.W. and SOMMARUGA, R., 2017. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Scientific Reports, vol. 7, no. 1, pp. 4487. http://dx.doi.org/10.1038/s41598-017-04836-w. PMid:28674434.
http://dx.doi.org/10.1038/s41598-017-048...
; Sweden, Zheng, 2018ZHENG, L., 2018. Response of Daphnia magna from natural populations to ultraviolet radiation. Sweden: Lund University, 30 p. MsC Thesis.) in which descriptions of crustacean zooplankton DVM only included data collected at mid-day and night. These investigations were similar to our investigation where zooplankton was abundant in upper layers at night and showing low abundances during daytime (Wölfl, 1996WÖLFL, S., 1996. Untersuchungen zur Zooplanktonstruktur einschliesslich der mikrobiellen Gruppen unter besonderer Berücksichtigung der mixotrophen Ciliaten in zwei Südchilenischen Andenfußseen. Konstanz, Germany: Universität Konstanz, 242 p. Doctoral Thesis.). Similar results have been reported for Europe (Alpes mountains, and Swedish lakes) North American and Argentinean Patagonian lakes. The potential cause would be the exposure to natural ultraviolet radiation (Leech and Williamson, 2000LEECH, D.M. and WILLIAMSON, C.E., 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon or lake transparency? Ecology, vol. 10, no. 5, pp. 1530-1540. http://dx.doi.org/10.1890/1051-0761(2000)010[1530:ITTURI]2.0.CO;2.
http://dx.doi.org/10.1890/1051-0761(2000...
; Villafañ et al., 2001VILLAFAÑ, V.E., WALTER HELBLING, E. and ZAGARESE, H.E., 2001. Solar ultraviolet radiation and its impact on aquatic ecosystems of Patagonia, South America. Ambio, vol. 30, no. 2, pp. 112-117. http://dx.doi.org/10.1579/0044-7447-30.2.112. PMid:11374308.
http://dx.doi.org/10.1579/0044-7447-30.2...
; Leech et al., 2005aLEECH, D.M., WILLIAMSON, C.E., MOELLER, R.E. and HARGREAVES, B.R., 2005a. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a data base analysis. Archiv für Hydrobiologie, vol. 162, no. 4, pp. 445-464. http://dx.doi.org/10.1127/0003-9136/2005/0162-0445.
http://dx.doi.org/10.1127/0003-9136/2005...
, bLEECH, D.M., PADELETTI, A. and WILLIAMSON, C.E., 2005b. Zooplankton behavioral responses to solar UV radiation vary within and among lakes. Journal of Plankton Research, vol. 27, no. 5, pp. 461-471. http://dx.doi.org/10.1093/plankt/fbi020.
http://dx.doi.org/10.1093/plankt/fbi020...
; De los Ríos-Escalante et al., 2015DE LOS RÍOS-ESCALANTE, P., HAUENSTEIN, E. and ACEVEDO, P., 2015. Daily variations in vertical distribution of crustacean zooplankton in a mountain lake (Lake Tinquilco, 39°S, Araucania region) in Chile. Crustaceana, vol. 88, no. 2, pp. 208-215. http://dx.doi.org/10.1163/15685403-00003401.
http://dx.doi.org/10.1163/15685403-00003...
; Leach et al., 2015LEACH, T.H., WILLIAMSON, C.E., THEODORE, N., FISHER, J.M. and OLSON, M.H., 2015. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. Journal of Plankton Research, vol. 37, no. 5, pp. 886-896. http://dx.doi.org/10.1093/plankt/fbv061.
http://dx.doi.org/10.1093/plankt/fbv061...
; Tartarotti et al., 2017TARTAROTTI, B., TRATTNER, F., REMIAS, D., SAUL, N., STEINBERG, C.E.W. and SOMMARUGA, R., 2017. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Scientific Reports, vol. 7, no. 1, pp. 4487. http://dx.doi.org/10.1038/s41598-017-04836-w. PMid:28674434.
http://dx.doi.org/10.1038/s41598-017-048...
; Zheng, 2018ZHENG, L., 2018. Response of Daphnia magna from natural populations to ultraviolet radiation. Sweden: Lund University, 30 p. MsC Thesis.).

Our results agree with observations for northern hemisphere lakes, where marked vertical migrations are common during day and night hours. These are regulated mainly by natural ultraviolet radiation (Leech and Williamson, 2000LEECH, D.M. and WILLIAMSON, C.E., 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon or lake transparency? Ecology, vol. 10, no. 5, pp. 1530-1540. http://dx.doi.org/10.1890/1051-0761(2000)010[1530:ITTURI]2.0.CO;2.
http://dx.doi.org/10.1890/1051-0761(2000...
; Villafañ et al., 2001VILLAFAÑ, V.E., WALTER HELBLING, E. and ZAGARESE, H.E., 2001. Solar ultraviolet radiation and its impact on aquatic ecosystems of Patagonia, South America. Ambio, vol. 30, no. 2, pp. 112-117. http://dx.doi.org/10.1579/0044-7447-30.2.112. PMid:11374308.
http://dx.doi.org/10.1579/0044-7447-30.2...
; Leech et al., 2005aLEECH, D.M., WILLIAMSON, C.E., MOELLER, R.E. and HARGREAVES, B.R., 2005a. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a data base analysis. Archiv für Hydrobiologie, vol. 162, no. 4, pp. 445-464. http://dx.doi.org/10.1127/0003-9136/2005/0162-0445.
http://dx.doi.org/10.1127/0003-9136/2005...
, bLEECH, D.M., PADELETTI, A. and WILLIAMSON, C.E., 2005b. Zooplankton behavioral responses to solar UV radiation vary within and among lakes. Journal of Plankton Research, vol. 27, no. 5, pp. 461-471. http://dx.doi.org/10.1093/plankt/fbi020.
http://dx.doi.org/10.1093/plankt/fbi020...
; De los Ríos-Escalante et al., 2015DE LOS RÍOS-ESCALANTE, P., HAUENSTEIN, E. and ACEVEDO, P., 2015. Daily variations in vertical distribution of crustacean zooplankton in a mountain lake (Lake Tinquilco, 39°S, Araucania region) in Chile. Crustaceana, vol. 88, no. 2, pp. 208-215. http://dx.doi.org/10.1163/15685403-00003401.
http://dx.doi.org/10.1163/15685403-00003...
; Tartarotti et al. 2017TARTAROTTI, B., TRATTNER, F., REMIAS, D., SAUL, N., STEINBERG, C.E.W. and SOMMARUGA, R., 2017. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Scientific Reports, vol. 7, no. 1, pp. 4487. http://dx.doi.org/10.1038/s41598-017-04836-w. PMid:28674434.
http://dx.doi.org/10.1038/s41598-017-048...
; Zheng, 2018ZHENG, L., 2018. Response of Daphnia magna from natural populations to ultraviolet radiation. Sweden: Lund University, 30 p. MsC Thesis.), fish predation exposure (Williamson et al., 2011WILLIAMSON, C.E., FISCHER, J.M., BOLLENS, S.M., OVERHOLT, E.P. and BRECKENRIDGE, J.K., 2011. Toward a more comprensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnology and Oceanography, vol. 56, no. 5, pp. 1603-1623. http://dx.doi.org/10.4319/lo.2011.56.5.1603.
http://dx.doi.org/10.4319/lo.2011.56.5.1...
; Hylander et al., 2012HYLANDER, S., SOUZA, M.S., BALSEIRO, E., MODENUTTI, B. and HANSSON, L.A., 2012. Fish mediated trait compensation in zooplankton. Functional Ecology, vol. 26, no. 3, pp. 608-615. http://dx.doi.org/10.1111/j.1365-2435.2012.01976.x.
http://dx.doi.org/10.1111/j.1365-2435.20...
), or food resources availability (Overholt et al., 2015OVERHOLT, E.P., ROSE, K.C., WILLIAMSON, C.E., FISHER, J.M. and CABROL, N.A., 2015. Behavioral responses of freshwater calanoid copepods to the presence of ultraviolet radiation: avoidance and attraction. Journal of Plankton Research, vol. 38, no. 1, pp. 16-26. http://dx.doi.org/10.1093/plankt/fbv113.
http://dx.doi.org/10.1093/plankt/fbv113...
). Water column transparence and UV have been recently found to influence this distribution (Häder et al., 2015HÄDER, D-P., WILLIAMSON, C.E., WÄNGBERG, S-A., RAUTIO, M., ROSE, K.C., GAO, K., HELBLING, E.W., SINHA R.P., and WORREST, R., 2015. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical and Photobiological Sciences, vol. 14, no. 1, pp. 108-126. http://dx.doi.org/10.1039/c4pp90035a
http://dx.doi.org/10.1039/c4pp90035a...
; Fischer et al., 2015FISCHER, J.M., OLSON, M.H., THEODORE, N., WILLIAMSON, C.E., ROSE, K.C. and HWANG, J., 2015. Diel vertical migration of copepods in mountain lakes: the changing role of ultraviolet radiation across a transparency gradient. Limnology and Oceanography, vol. 60, no. 1, pp. 252-262. http://dx.doi.org/10.1002/lno.10019.
http://dx.doi.org/10.1002/lno.10019...
; Leach et al., 2015LEACH, T.H., WILLIAMSON, C.E., THEODORE, N., FISHER, J.M. and OLSON, M.H., 2015. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. Journal of Plankton Research, vol. 37, no. 5, pp. 886-896. http://dx.doi.org/10.1093/plankt/fbv061.
http://dx.doi.org/10.1093/plankt/fbv061...
; Urmy et al., 2016URMY, S.S., WILLIAMSON, C.E., LEACH, T.H., SCHLADOW, S.G., OVERHOLT, E.P., 2016. Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke. Geophysical Research Letters, vol. 43, no. 8, pp. 3746-3753. http://dx.doi.org/10.1002/2016GL068533.
http://dx.doi.org/10.1002/2016GL068533...
; Tartarotti et al., 2017TARTAROTTI, B., TRATTNER, F., REMIAS, D., SAUL, N., STEINBERG, C.E.W. and SOMMARUGA, R., 2017. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Scientific Reports, vol. 7, no. 1, pp. 4487. http://dx.doi.org/10.1038/s41598-017-04836-w. PMid:28674434.
http://dx.doi.org/10.1038/s41598-017-048...
). If we consider that North American lakes and Argentinean Patagonian lakes are both exposed to natural ultraviolet radiation, and that the former have a wide water column transparence gradient (Morris et al., 1995MORRIS, D.P., ZAGARESE, H.E., WILLIAMSON, C.E., BALSEIRO, E.G., HARGREAVES, B.R., MODENUTTI, B.E., MOELLER, R.E. and QUEIMALIÑOS, C.P., 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography, vol. 40, no. 8, pp. 1381-1391. http://dx.doi.org/10.4319/lo.1995.40.8.1381.
http://dx.doi.org/10.4319/lo.1995.40.8.1...
), the current results would agree with the potential role of natural ultraviolet radiation as a regulating factor of vertical migration of zooplankton species.

The obtained results (Table 1 and Table 2, Figures 2, 3) would denote the existence of marked daily vertical migration on zooplankton in Patagonian lakes, nevertheless it would be necessary confirm what would be the key role as regulator of ultraviolet radiation (Hylander et al., 2012HYLANDER, S., SOUZA, M.S., BALSEIRO, E., MODENUTTI, B. and HANSSON, L.A., 2012. Fish mediated trait compensation in zooplankton. Functional Ecology, vol. 26, no. 3, pp. 608-615. http://dx.doi.org/10.1111/j.1365-2435.2012.01976.x.
http://dx.doi.org/10.1111/j.1365-2435.20...
) and preys (phytoplankton, protozoa) availability (Woelfl and Geller, 2002WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x.
http://dx.doi.org/10.1046/j.1365-2427.20...
; Woelfl, 2007WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004.
http://dx.doi.org/10.1016/j.limno.2006.0...
) on daily vertical migration in Patagonian lakes.

Acknowledgements

The present study was founded by projects FONDECYT 1080456 and MECESUP UCT 0804, also the authors express their gratitude to M.I. and S.M.A. for their valuable suggestions and comments.

  • (With 3 figures)

References

  • ARAYA, J.M. and ZÚÑIGA, L.R., 1985. Manual taxonómico del zooplancton lacustre de Chile. Boletín Limnológico, vol. 8, pp. 1-110.
  • BALSEIRO, E.G., MODENUTTI, B.E. and QUEIMALIÑOS, C.P., 2001. Feeding of Boeckella gracilipes (Copepoda, Calanoida) on ciliates and phytoflagellates in an ultraoligotrophic Andean lake. Journal of Plankton Research, vol. 23, no. 8, pp. 849-857. http://dx.doi.org/10.1093/plankt/23.8.849
    » http://dx.doi.org/10.1093/plankt/23.8.849
  • CAMPOS, H., 1984. Limnological study of Araucanian lakes (Chile). Verhandlungen Internationale Vereinigung für Angewandte Limnologie, vol. 22, pp. 1319-1327.
  • CAMPOS, H., STEFFEN, W., AGÜERO, G., PARRA, O. and ZÚÑIGA, L., 1992a. Limnological study of lake Ranco (Chile). Limnologica, vol. 22, pp. 337-353.
  • CAMPOS, H., STEFFEN, W., AGÜERO, G., PARRA, O. and ZÚÑIGA, L., 1992b. Limnological studies of lake Rupanco (Chile): Morphometry, physics, chemistry and primary productivity. Archiv für Hydrobiologie, vol. 90, suppl., pp. 85-113.
  • DE LOS RÍOS-ESCALANTE, P., 2015. Fish predation effects on body length of planktonic cladocerans and copepods in Chilean lakes. Crustaceana, vol. 88, no. 10-11, pp. 1193-1199. http://dx.doi.org/10.1163/15685403-00003472
    » http://dx.doi.org/10.1163/15685403-00003472
  • DE LOS RÍOS-ESCALANTE, P., CONTRERAS, A., LARA, G., LATSAGUE and ESSE, C. (In press). First reports of associations between spectral properties, chlorophyll, bacterial and zooplankton in two Chilean North Patagonian lakes (Villarrica and Caburgua, 38° S, Araucania region, Chile). Journal of King Saud University - The Sciences, In press.
  • DE LOS RÍOS-ESCALANTE, P., HAUENSTEIN, E. and ACEVEDO, P., 2015. Daily variations in vertical distribution of crustacean zooplankton in a mountain lake (Lake Tinquilco, 39°S, Araucania region) in Chile. Crustaceana, vol. 88, no. 2, pp. 208-215. http://dx.doi.org/10.1163/15685403-00003401
    » http://dx.doi.org/10.1163/15685403-00003401
  • Dirección General de Aguas – DGA. 2019. Datos de lagos [online]. Available from: http://www.dga.cl/servicios hidrometeorologicos/Paginas/default.aspx
    » http://www.dga.cl/servicios
  • DURBIN, E.G., GARRAHAN, P.R. and CASAS, M.C., 2010. Depth distribution of Calanus finmarchicus nauplii on the Georges Bank during 1995 and 1996. ICES Journal of Marine Science, vol. 57, no. 6, pp. 1686-1693. http://dx.doi.org/10.1006/jmsc.2000.0972
    » http://dx.doi.org/10.1006/jmsc.2000.0972
  • FISCHER, J.M., OLSON, M.H., THEODORE, N., WILLIAMSON, C.E., ROSE, K.C. and HWANG, J., 2015. Diel vertical migration of copepods in mountain lakes: the changing role of ultraviolet radiation across a transparency gradient. Limnology and Oceanography, vol. 60, no. 1, pp. 252-262. http://dx.doi.org/10.1002/lno.10019
    » http://dx.doi.org/10.1002/lno.10019
  • FROST, B.W. and BOLLENS, S.M., 1992. Variability of diel vertical migration in the marine planktonic copepod Pseudocalanus newmani in relation to its predators. Canadian Journal of Fisheries and Aquatic Sciences, vol. 49, no. 6, pp. 1137-1141. http://dx.doi.org/10.1139/f92-126
    » http://dx.doi.org/10.1139/f92-126
  • GELLER, W., 1992. The temperature stratification and related characteristics of Chilean lakes in midsummer. Aquatic Sciences, vol. 54, no. 1, pp. 37-57. http://dx.doi.org/10.1007/BF00877263
    » http://dx.doi.org/10.1007/BF00877263
  • GOOGLE EARTH, 2020. [viewed 16 January 2020]. Available from: https://www.google.de/maps/@-39.3162606,-2.4943204,119368m/data=!3m1!1e3
    » https://www.google.de/maps/@-39.3162606,-2.4943204,119368m/data=!3m1!1e3
  • GOOGLE, 2018. [viewed 16 January 2020] Google, Image Landsat, US Dept. of State Geographer Data SIO, NOAA, U.S. Navy, NGA, GEBCO. Available from: https://archive.org/details/Ulead_Photo-Impact_4.2_-_Windows95- NT_UleadENG-FRE-DE.
    » https://archive.org/details/Ulead_Photo-Impact_4.2_-_Windows95-
  • GUERRA, D., SCHRÖDER, K., BORGHINI, M., CAMATTI, E., PANSERA, M., SCHROEDER, A., SPARNOCCHIA, S. and CHIGGIATO, J., 2019. Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored ADCP. Ocean Science, vol. 15, pp. 631-649. http://dx.doi.org/10.5194/os-15-631-2019
    » http://dx.doi.org/10.5194/os-15-631-2019
  • HÄDER, D-P., WILLIAMSON, C.E., WÄNGBERG, S-A., RAUTIO, M., ROSE, K.C., GAO, K., HELBLING, E.W., SINHA R.P., and WORREST, R., 2015. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors. Photochemical and Photobiological Sciences, vol. 14, no. 1, pp. 108-126. http://dx.doi.org/10.1039/c4pp90035a
    » http://dx.doi.org/10.1039/c4pp90035a
  • HYLANDER, S., SOUZA, M.S., BALSEIRO, E., MODENUTTI, B. and HANSSON, L.A., 2012. Fish mediated trait compensation in zooplankton. Functional Ecology, vol. 26, no. 3, pp. 608-615. http://dx.doi.org/10.1111/j.1365-2435.2012.01976.x
    » http://dx.doi.org/10.1111/j.1365-2435.2012.01976.x
  • KAMJUNKE, N., KRAMPS, M., CHAVEZ, S. and WOELFL, S., 2012. Consumption of large Chlorella-bearing ciliates (Stentor) by Mesocyclops araucanus in North Patagonian lakes. Journal of Plankton Research, vol. 34, no. 10, pp. 922-927. http://dx.doi.org/10.1093/plankt/fbs051
    » http://dx.doi.org/10.1093/plankt/fbs051
  • KAMJUNKE, N., VOGT, B. and WOELFL, S., 2009. Trophic interactions of the pelagic ciliate Stentor spp in north Patagonian lakes. Limnologica, vol. 39, no. 2, pp. 107-114. http://dx.doi.org/10.1016/j.limno.2008.08.001
    » http://dx.doi.org/10.1016/j.limno.2008.08.001
  • KESSLER, K., LOCKWOOD, R.S., WILLIAMSON, C.E. and SAROS, J.E., 2008. Vertical distribution of zooplankton in subalpine and alpine lakes: ultraviolet radiation, fish predation and the transparency-gradient hypothesis. Limnology and Oceanography, vol. 53, no. 6, pp. 2374-2382. http://dx.doi.org/10.4319/lo.2008.53.6.2374
    » http://dx.doi.org/10.4319/lo.2008.53.6.2374
  • LEACH, T.H., WILLIAMSON, C.E., THEODORE, N., FISHER, J.M. and OLSON, M.H., 2015. The role of ultraviolet radiation in the diel vertical migration of zooplankton: an experimental test of the transparency-regulator hypothesis. Journal of Plankton Research, vol. 37, no. 5, pp. 886-896. http://dx.doi.org/10.1093/plankt/fbv061
    » http://dx.doi.org/10.1093/plankt/fbv061
  • LEECH, D.M. and WILLIAMSON, C.E., 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon or lake transparency? Ecology, vol. 10, no. 5, pp. 1530-1540. http://dx.doi.org/10.1890/1051-0761(2000)010[1530:ITTURI]2.0.CO;2
    » http://dx.doi.org/10.1890/1051-0761(2000)010[1530:ITTURI]2.0.CO;2
  • LEECH, D.M., PADELETTI, A. and WILLIAMSON, C.E., 2005b. Zooplankton behavioral responses to solar UV radiation vary within and among lakes. Journal of Plankton Research, vol. 27, no. 5, pp. 461-471. http://dx.doi.org/10.1093/plankt/fbi020
    » http://dx.doi.org/10.1093/plankt/fbi020
  • LEECH, D.M., WILLIAMSON, C.E., MOELLER, R.E. and HARGREAVES, B.R., 2005a. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a data base analysis. Archiv für Hydrobiologie, vol. 162, no. 4, pp. 445-464. http://dx.doi.org/10.1127/0003-9136/2005/0162-0445
    » http://dx.doi.org/10.1127/0003-9136/2005/0162-0445
  • LONGHURST, A.R. and GLEN HARRISON, W., 1989. The biological pump: profiles of plankton production and consumption in the upper ocean. Progress in Oceanography, vol. 22, no. 1, pp. 47-123. http://dx.doi.org/10.1016/0079-6611(89)90010-4
    » http://dx.doi.org/10.1016/0079-6611(89)90010-4
  • MARINONE, M.C., MENU-MARQUE, S., AÑON SUÁREZ, D., DIÉGUEZ, M.C., PÉREZ, P., DE LOS RÍOS, P., SOTO, D. and ZAGARESE, H.E., 2006. UV radiation as a potential driving force for zooplankton community structure in Patagonian lakes. Photochemistry and Photobiology, vol. 82, no. 4, pp. 962-971. http://dx.doi.org/10.1562/2005-09-09-RA-680 PMid:16643085.
    » http://dx.doi.org/10.1562/2005-09-09-RA-680
  • MODENUTTI, B.E., BALSEIRO, E., CALLIERI, C. and BERTONI, R., 2010. Light vs food supply as factors modulating niche partitioning in two pelagic mixotrophic ciliates. Limnology and Oceanography, vol. 53, no. 2, pp. 446-455. http://dx.doi.org/10.4319/lo.2008.53.2.0446
    » http://dx.doi.org/10.4319/lo.2008.53.2.0446
  • MORRIS, D.P., ZAGARESE, H.E., WILLIAMSON, C.E., BALSEIRO, E.G., HARGREAVES, B.R., MODENUTTI, B.E., MOELLER, R.E. and QUEIMALIÑOS, C.P., 1995. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnology and Oceanography, vol. 40, no. 8, pp. 1381-1391. http://dx.doi.org/10.4319/lo.1995.40.8.1381
    » http://dx.doi.org/10.4319/lo.1995.40.8.1381
  • OVERHOLT, E.P., ROSE, K.C., WILLIAMSON, C.E., FISHER, J.M. and CABROL, N.A., 2015. Behavioral responses of freshwater calanoid copepods to the presence of ultraviolet radiation: avoidance and attraction. Journal of Plankton Research, vol. 38, no. 1, pp. 16-26. http://dx.doi.org/10.1093/plankt/fbv113
    » http://dx.doi.org/10.1093/plankt/fbv113
  • PEARRE, S. JR., 2003. Eat and run? The hunger/satiation hypothesis in vertical migration: history, evidence and consequences. Biological Reviews of the Cambridge Philosophical Society, vol. 78, no. 1, pp. 1-79. http://dx.doi.org/10.1017/S146479310200595X PMid:12620061.
    » http://dx.doi.org/10.1017/S146479310200595X
  • PEREZ, G., QUEIMALIÑOS, C.P. and MODENUTTI, B., 2002. Light climate and plankton in the deep chlorophyll maxima in North Patagonian Andean lakes. Journal of Plankton Research, vol. 24, no. 6, pp. 591-599. http://dx.doi.org/10.1093/plankt/24.6.591
    » http://dx.doi.org/10.1093/plankt/24.6.591
  • QUEIMALIÑOS, C., 2002. The role of phytoplanktonic size fractions in the microbial food webs in two north Patagonian lakes. Verhandlungen International Verienung Angaldte Applied Limnologie, vol. 8, no. 3, pp. 1236-1240. http://dx.doi.org/10.1080/03680770.2001.11902651
    » http://dx.doi.org/10.1080/03680770.2001.11902651
  • RAMOS-JILIBERTO, R. and ZÚÑIGA, L.R., 2001. Depth-selection patterns and diel vertical migration of Daphnia ambigua (Crustacea, Cladocera) in lake El Plateado. Revista Chilena de Historia Natural, vol. 74, no. 3, pp. 573-585. http://dx.doi.org/10.4067/S0716-078X2001000300007
    » http://dx.doi.org/10.4067/S0716-078X2001000300007
  • RAMOS-JILIBERTO, R., CARVAJAL, J.L., CARTER, M. and ZÚÑIGA, L.R., 2004. Patrones de migración vertical de tres poblaciones de zooplankton en un lago chileno. Revista Chilena de Historia Natural, vol. 77, no. 1, pp. 29-41. http://dx.doi.org/10.4067/S0716-078X2004000100004.
    » https://doi.org/10.4067/S0716-078X2004000100004
  • REID, J., 1985. Chave da identificao e lista de referencias para as species continentais sulamericanas de vida livre da orden Cyclopoida. Boletim Zoologico Universidade do Sao Paulo, vol. 9, pp. 17-143.
  • REISSIG, M., MODENUTTI, B., BALSEIRO, E. and QUEIMALIÑOS, C., 2004. The role of predaceous copepod Parabroteus sarsi in the pelagic food web of a large deep Andean lake. Hydrobiologia, vol. 524, no. 1, pp. 67-77. http://dx.doi.org/10.1023/B:HYDR.0000036120.33105.05
    » http://dx.doi.org/10.1023/B:HYDR.0000036120.33105.05
  • REISSIG, M., TROCHINE, C., QUEIMALIÑOS, C., BALSEIRO, E. and MODENUTTI, B., 2006. Impacts of fish introduction on planktonic food webs in lakes of the Patagonian Plateau. Biological Conservation, vol. 132, no. 4, pp. 437-447. http://dx.doi.org/10.1016/j.biocon.2006.04.036
    » http://dx.doi.org/10.1016/j.biocon.2006.04.036
  • RINGELBERG, J., 2010. Diel vertical migration of zooplankton in lakes and oceans. Causal adaptations and adaptative significances Springer. 356 p.
  • SCHNETZER, A. and STEINBERG, D.K., 2002. Active transport of particulate organic carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea. Marine Ecology Progress Series, vol. 234, pp. 71-84. http://dx.doi.org/10.3354/meps234071
    » http://dx.doi.org/10.3354/meps234071
  • SOTO, D. and ZÚÑIGA, L.R., 1991. Zooplankton assemblages of Chilean temperate lakes: a comparison with North American counterparts. Revista Chilena de Historia Natural, vol. 64, no. 3, pp. 569-581.
  • TARTAROTTI, B., TRATTNER, F., REMIAS, D., SAUL, N., STEINBERG, C.E.W. and SOMMARUGA, R., 2017. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes. Scientific Reports, vol. 7, no. 1, pp. 4487. http://dx.doi.org/10.1038/s41598-017-04836-w PMid:28674434.
    » http://dx.doi.org/10.1038/s41598-017-04836-w
  • URMY, S.S., WILLIAMSON, C.E., LEACH, T.H., SCHLADOW, S.G., OVERHOLT, E.P., 2016. Vertical redistribution of zooplankton in an oligotrophic lake associated with reduction in ultraviolet radiation by wildfire smoke. Geophysical Research Letters, vol. 43, no. 8, pp. 3746-3753. http://dx.doi.org/10.1002/2016GL068533
    » http://dx.doi.org/10.1002/2016GL068533
  • VILLAFAÑ, V.E., WALTER HELBLING, E. and ZAGARESE, H.E., 2001. Solar ultraviolet radiation and its impact on aquatic ecosystems of Patagonia, South America. Ambio, vol. 30, no. 2, pp. 112-117. http://dx.doi.org/10.1579/0044-7447-30.2.112 PMid:11374308.
    » http://dx.doi.org/10.1579/0044-7447-30.2.112
  • WILLIAMSON, C.E., FISCHER, J.M., BOLLENS, S.M., OVERHOLT, E.P. and BRECKENRIDGE, J.K., 2011. Toward a more comprensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnology and Oceanography, vol. 56, no. 5, pp. 1603-1623. http://dx.doi.org/10.4319/lo.2011.56.5.1603
    » http://dx.doi.org/10.4319/lo.2011.56.5.1603
  • WINDER, M., 2001. Zooplankton ecology in high mountain lakes Zürich, Switzerland: Swiss Federal Institute of Technology, 157 p. Doctoral Thesis.
  • WOELFL, S. and GELLER, W., 2002. Chlorella-bearing ciliates dominate in an oligotrophic northpatagonian lake (Lake Pirehueico, Chile): Abundance, Biomass and Symbiotic Photosynthesis. Freshwater Biology, vol. 47, no. 2, pp. 231-242. http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x
    » http://dx.doi.org/10.1046/j.1365-2427.2002.00799.x
  • WOELFL, S., 2007. The distribution of large mixotrophic ciliates (Stentor) in deep North Patagonian lakes (Chile): first results. Limnologica, vol. 37, no. 1, pp. 28-36. http://dx.doi.org/10.1016/j.limno.2006.08.004
    » http://dx.doi.org/10.1016/j.limno.2006.08.004
  • WOELFL, S., GARCÍA, P. and DUARTE, C., 2010. Chlorella-bearing ciliates (Stentor, Ophrydium) dominate in an oligotrophic deep North Patagonian lakes (Lake Caburgua, Chile). Limnologica, vol. 40, no. 2, pp. 134-139. http://dx.doi.org/10.1016/j.limno.2009.11.008
    » http://dx.doi.org/10.1016/j.limno.2009.11.008
  • WÖLFL, S., 1996. Untersuchungen zur Zooplanktonstruktur einschliesslich der mikrobiellen Gruppen unter besonderer Berücksichtigung der mixotrophen Ciliaten in zwei Südchilenischen Andenfußseen Konstanz, Germany: Universität Konstanz, 242 p. Doctoral Thesis.
  • ZHENG, L., 2018. Response of Daphnia magna from natural populations to ultraviolet radiation Sweden: Lund University, 30 p. MsC Thesis.

Publication Dates

  • Publication in this collection
    23 Oct 2020
  • Date of issue
    Jul-Sep 2021

History

  • Received
    27 Aug 2019
  • Accepted
    20 Apr 2020
Instituto Internacional de Ecologia R. Bento Carlos, 750, 13560-660 São Carlos SP - Brasil, Tel. e Fax: (55 16) 3362-5400 - São Carlos - SP - Brazil
E-mail: bjb@bjb.com.br