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This paper presents a method to design membrane elements of concrete with orthogonal mesh of reinforcement which are subject to compressive 
stress.  Design methods, in general, define how to quantify the reinforcement necessary to support the tension stress and verify if the compression 
in concrete is within the strength limit. In case the compression in membrane is excessive, it is possible to use reinforcements subject to compres-
sion. However, there is not much information in the literature about how to design reinforcement for these cases. For that, this paper presents a 
procedure which uses the model based on Baumann’s [1] criteria. The strength limits used herein are those recommended by CEB [3], however, 
a model is proposed in which this limit varies according to the tensile strain which occur perpendicular to compression. This resistance model is 
based on concepts proposed by Vecchio e Collins [2].
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Este artigo apresenta métodos de dimensionamento analíticos de armaduras de compressão para chapas de concreto com malha de armadura 
ortogonal. Os métodos de dimensionamento, em geral, propõem formas para quantificar a armadura necessária para equilibrar os esforços de 
tração e verificar se a compressão no concreto atende ao limite de resistência. Para os casos em que a compressão na chapa é excessiva, uma 
das soluções possíveis seria a adoção de armaduras que funcionam comprimidas. Entretanto, não há muita informação na literatura para di-
mensionamento nestas situações. Assim, é apresentado um procedimento para determinação dessas armaduras que se fundamenta no método 
baseado nos critérios utilizados por Baumann [1]. Neste trabalho são utilizados como limites de resistência à compressão aqueles recomendados 
pelo CEB [3], porém, é proposto um modelo em que este limite varia de acordo com a deformação de tração que ocorre perpendicularmente a 
compressão atuante. Este modelo resistente é baseado nos conceitos propostos por Vecchio e Collins [2].

Palavras-chave: concreto armado, dimensionamento, chapas, armaduras de compressão.
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1.	 Introduction

In any reinforced concrete structure, the best efficiency of the rein-
forcement is attained when it is placed in the principal tensile stress 
direction. However, in the case of membranes, this assumption is 
rarely satisfied. For each combination of loading and at each point 
of the structure, there is a principal tensile direction. Therefore, 
there are rare cases in which it is possible to determine a single 
position of the reinforcement which would be in its best condition.
Furthermore, structures are usually subdivided into many membranes 
elements where the stresses are evaluated. It is constructively inad-
equate that the position of reinforcement to be different for each ele-
ment region. Typically, the reinforcement is placed on the structure 
in a pattern which makes the construction easier. This paper only 
discusses the cases of orthogonal positioning of the reinforcement, 
because it is the most common and constructively simpler. For these 
reasons, the direction of reinforcement, in general, does not coincide 
with the direction of principal tensile stress in membranes.
Due to the aspects described, the design for ULS, i.e., the quanti-
fication of the reinforcement and verification of compressive stress 
in concrete, is not easy. However, this problem has been studied 
by many researchers and there are some methods for resolution. 
One of the first solutions was provided by Baumann [3] in 1972. 
He assumes some hypotheses that make his model one of the 
simplest to operate.
The solutions proposed for ULS consider cases in which the re-
inforcement is under tension. An also important issue is how to 
design membranes which compressive stress in concrete does not 
satisfy the strength limit. Possible solutions to this problem are in-
creasing the strength of concrete, increasing membrane thickness 
or adopting reinforcement which resists compressive stress.
The objective of this paper is to obtain criteria to use and to design 
membranes in the ULS with orthogonal grid reinforcement with at 
least one of the directions of reinforcement submitted to compres-
sion. For this study, the method based on Baumann’s criteria [1] 
will be used as a basis. The formulation presented in this paper can 
be found with more details in Silva [18].

2.	 Brief history about membrane design

Researchers have long studied the problem of membrane design. 
Nielsen [4] proposed a model based on the cracked membrane 
concept, in which the reinforcement resists only axial stress and 
the concrete is subjected to compressive stress. Baumann [1], in 
1972, was probably the first to develop equations that satisfy both 
the equilibrium and the compatibility of the membrane. His model 
is based on the premise that there is no shear stress along the 
cracks. The solutions reached by Baumann [1] and Nielsen [4] are 
the same, but deduced from different models.
Gupta [5] uses Baumann’s model to obtain equations that allow 
ULS design. Moreover, he solved the problem of obtaining the 
minimum amount of reinforcement necessary and the minimum 
compression in concrete.
Vecchio and Collins [6] executed an experiment in which thirty re-
inforced concrete panels, with different amounts of reinforcement 
in two directions were subjected to several in-plane loadings.
Fialkow [7] adapts the proposed criteria in ACI 318-77 Building 
Code [8] of the American Concrete Institute (ACI) to design linear 

elements for membrane elements, considering not only the rein-
forcement axial strength and the compressive strength of con-
crete, but also the shear strength provided by the concrete and 
the reinforcement.
Based on experiments by Peter [10] and Vecchio and Collins [6], 
Gupta and Akbar [9] present a model in order not to only design 
membranes, but also to predict their response when subjected to 
a set of loads. Gupta and Akbar [9] divide the response of the 
membrane into four distinct stages. At the first, the concrete is un-
cracked and the reinforcement has elastic behavior. At the second, 
the concrete is cracked and the reinforcement in both directions 
has elastic behavior. At the third, the concrete still cracked and 
reinforcement in one direction yields. Finally, at the fourth stage, 
concrete is cracked and the reinforcements of both directions yield.
At the first stage, the element has elastic behavior. The last stage 
refers to the element in the ultimate limit state, a problem for 
which there were already some solutions. Gupta e Akbar [9] pres-
ent solutions that allow predicting the behavior of the membrane 
for the intermediate stages. To do so, they use some simplifying 
assumptions to the problem such as the non-existence of shear 
stress between the cracks. They mention the concept of rotation 
of cracks, which consists in the change of the cracks direction as 
the load increases.
Vecchio and Collins [2] propose the Modified Compression Field 
Theory (MCFT). This model considers the effect of tension-stiff-
ening, presupposes the existence of shear stress in the crack, 
but only transmitted by aggregate interlock and also considers 
the softening of cracked concrete. Because it is more realistic, 
considering more variables, it is more complex, but achieves sat-
isfactory results.
Currently, some researchers published studies on this subject. In 
his work, Chen [11] compiles some of the above design methods, 
such as the one based on the criteria proposed by Baumann [1], 
Nielsen [4] and elaborated by Fialkow [7].
Jazra [12] compares the MCFT with the method based on the 
Baumann’s criteria, and presents some formulations for designing 
compression reinforcement for membranes.
Pereira [17] uses the equations to design membranes to calculate 
shells obtaining stresses from a finite element model.

3.	 Method based on Baumann’s criteria

The design method based on the Baumann’s criteria is probably 
the simplest to use to design membranes. For this reason, it was 
chosen as the basis of this study.
The method itself has no solution for the case of adopting com-
pression reinforcement, but it will be used to propose a formulation 
and criteria to use this reinforcement.
Jazra [12] compares this method with the MCFT proposed by Vec-
chio and Collins [2] and observes that the design obtained with 
Baumann`s criteria results higher stress in concrete. This conclu-
sion was expected, because this formulation adopts some hypoth-
eses assuming this result.
Although adequate for ULS design, it will not obtain the same ef-
ficacy in predicting characteristics to verify the SLS, such as strain 
and cracking.
The basic hypotheses are:
1.	 The cracks are approximately parallel and straight.
2.	 The tensile strength of concrete is null
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(2)nsy=ny+nxy.cotgθ 

(3)nc=nxy.(tgθ+cotgθ) 

(4)
εy

εx
=tg²θ. [1+ εc

εx
.(1-cotg2θ)] 

From these expressions, it is possible to demonstrate that the mini-
mum reinforcement required to equilibrate the tensile stresses in 
the membrane occurs when angle θ is equal to 45° in case the re-
inforcement is subjected to tensile stresses in x and y. The demon-
stration of this result can be found in several works as in Leonhardt 
and Mönning [13], Chen [11] and Jazra [12].

3.1	 Cases of design

The CEB [3] divides the design of membranes into four cases. 
Case I considers that the reinforcements are subject to tension in 
both directions, making nsx and nsx positive.
When one of the forces in the reinforcement takes negative values, 
i.e. compression, the use of reinforcement in that direction is not nec-
essary. If there is no tensile force in the x direction, case II of design 
applies. If there is no tensile force in the y direction, applies case III.

3.	 The dowel effect will not be considered
4.	 The effect due to aggregate interlock will not be considered
5.	 The bond between reinforcement and concrete is perfect
6.	 The tension-stiffening effect will not be considered
7.	 The directions of principal strains and the directions of principal 

stresses coincide 
Considering a membrane element subjected to normal forces per unit 
length, nx and ny, and shear force also per unit length, nxy, wherein the 
reinforcements are positioned in the direction of the x and y axes. Angle 
θ is formed between the principal direction of compression in concrete 
and the y direction. In case the element is cracked, angle θ is formed by 
axis y and the direction of cracks because, as hypothesized, there is no 
shear stress between the cracks. Thus, the axis of the principal com-
pressive stress in concrete coincides with the axis parallel to cracks. By 
hypothesis, the principal directions of strain and stress in concrete are 
considered coincident. This configuration is shown in Figure 1.
Forces nsx and nsy are positive when they represent tension. When nc 
and n’c are compression, they are positive. n’c is the minimum com-
pression in the element, when existing, and nc is the maximum com-
pression. Figure 1 also shows this convention.
The problem consists in knowing forces nx, ny and nxy, finding the nec-
essary area of reinforcement asx and asy and verifying if compressive 
stress in concrete is below its strength. For this purpose, the equilib-
rium and compatibility equations will initially be written for the situation 
in which the reinforcement is subjected to tensile stresses in the x 
and y directions. This result in expressions 1, 2, 3 and 4, where nsx 
and nsy are the forces in the reinforcement in the x and y directions, 
respectively, and εy and εx are the strains in x and y and εc is the strain 
in concrete in the direction of principal compressive strain.

(1)nsx=nx+nxy.tgθ 

Figure 1 – Positive membrane forces and axes considered in this paper
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Thus, eliminating the reinforcement in the x direction, angle θ will 
no longer be 45 ° as mentioned, but will be determined by equa-
tion 12.

(12)θ=arctg ( --
nx
nxy)  

Thus, in the x direction, there is no reinforcement. Expression 13 
determines the reinforcement in y direction.

(13)asy=
nsy

fyd
=
ny-

nxy²
nx

fyd
 

To verify the concrete stress, fcd2 will be used for the same reason 
given for case I, as shown by Equation 14:

(14)-nx-
nxy²
nx

h
≤fcd2=0,6 (1- fck

250) .fcd 

3.1.3 Case III – Reinforcement only in the x direction

Case III is similar to case II; the only difference is the reinforcement 
direction. Hence, for reinforcement to be necessary only in the x 
direction, the following inequations must be satisfied.

(15)nsx=nx+|nxy|>0 

(16)nsy=ny+|nxy|≤0 

Similarly, also in this case, angle θ will not be 45 °, but is deter-
mined by equation 17.

(17)θ=arctg (--
nxy

ny
)  

In this case, asx is null and asy is given by equation 18.

(18)asx=
nsx
fyd

=

nx-
nxy²
ny

fyd
 

The verification of concrete stress is given by expression 19.

When the membrane is completely compressed, case IV is charac-
terized. In this case, reinforcement is not necessary. 
This design method does not consider using of compression rein-
forcement in any case.

3.1.1 Case I – Reinforcement in both directions

For reinforcement to be necessary in both directions, the following 
conditions must be satisfied.

(5)nsx=nx+|nxy|>0 

(6)nsy=ny+|nxy|>0 

Thus, the reinforcement area is defined by 7 and 8, where fyd is the 
yield design stress of steel.

(7)asx=
nsx

fyd
=
nx+|nxy|

fyd
 

(8)asy=
nsy

fyd
=
ny+|nxy|

fyd
 

For verifying concrete in case I, fcd2 will be used, as suggested by 
CEB [3] for the compressive strength because, in this case, con-
crete is cracked. Thus, the expression is as follows.

(9)
2|nxy|

h
=fcd2=0,6(1- fck

250) .fcd 

3.1.2 Case II – Reinforcement only in the y direction

In order to use reinforcement only in the y direction, nsx must be nega-
tive while nsy must be positive, satisfying the following expressions.

(10)nsx=nx+|nxy|≤0 

(11)nsy=ny+|nxy|>0 
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(19)-ny-
nxy²

ny

h
≤fcd2=0,6 (1--fck250) .fcd 

3.1.4 Case IV – Membrane without reinforcement

In order not to use reinforcement, there can be no tensile stresses 
in membrane, thus loading conditions shall satisfy the following 
inequations.

(20)nsx=nx+|nxy|≤0 

(21)nsy=ny+|nxy|≤0 

Therefore, in this case, it must only check if the compressive stress 
in the concrete is less than the limit strength. For this verification, 
differently from the other cases, it is used as a reference value fcd1 
of CEB [3] for the strength of concrete, because there is no crack-
ing in this case. From membrane equilibrium, this verification can 
be written as:

(22)(- nx+ny

2
+

( )nx-ny ²

4
+nxy²) .1h ≤fcd1=0,85. (1--- - -

fck
250) .fcd

3.2	 Considerations about the study 
	 of compression reinforcement

Keeping the design cases proposed by CEB [3] in mind, it will be 
examined which of them is consistent for studying compression 
reinforcement.
Firstly, in case I, compression reinforcement could only be effec-
tively used if it were arranged in the direction of the cracks, which 
would help reduce compressive stress in the concrete. However, in 
this case, there is already an orthogonal grid of reinforcement, and 
if another layer of bars is placed in the other direction, the solution 
would be constructively bad, only recommended in special cases.
Another possibility would be to use a larger reinforcement area than 
necessary to limit compression strain and to reduce stress in the princi-
pal compressive direction. However, this solution would lead to a brittle 
rupture, because concrete would collapse before reinforcements yield.
For cases II and III, it is reasonable to think that placing reinforce-
ment in the direction that it was not reinforced, it will affect the 
stress field in the membrane and it will reduce the compressive 
stress in the concrete.
For case IV, for which there is no reinforcement, it is evident that if 
reinforcement is placed appropriately in this membrane, it will help 

to reduce the compressive stresses.
Therefore, this paper will only study design cases II, III and IV.

4.	 Strength model and verification  
	 of compressive stress in concrete

In the method based on Baumann`s criteria presented, the strength 
values ​​of concrete follow those recommended by the CEB [3]. How-
ever, this imposes a discontinuity of concrete strength between the 
case in which the concrete is cracked and that in which it is intact.
Therefore, this work will be adopted a resistance model for the 
concrete that optimizes the use of the material. To do so, the ob-
jective is to find strength values ​​for the concrete that are between 
fcd1 and fcd2, using the tensile strain that occurs perpendicular to the 
compressive strain as a parameter.
Vecchio and Collins [2] propose a formulation which includes concrete 
softening due to cracking differently from CEB [3]. For them, the loss of 
strength of cracked concrete is related to principal tensile strain ε1 im-
posed on the membrane. Equations 23 and 24 define the stress-strain 
diagram for the compression in the concrete proposed by Vecchio and 
Collins [2]. Considering the strain value that leads to stress peak in con-
crete ε’c=2‰, equation 24 is obtained. Figure 2 shows this model.

(23)fc2=fc2max. [2. ( (ε2
ε`c

) )-- -
ε2
ε`c

2

] 

(24)fc2max=
f`c

0,8+170. ε1
≤f`c  

Expression 23 is similar to that suggested by CEB [3] for the stress-
strain diagram of concrete, only changing the strength limit. In this 
paper, it will use the limits proposed by CEB [3], but interpolated by 
equation 24. Thus, it follows that:

(25)σc=fc2max. [2. ( ε2ε`c) -- -(
ε2
ε`c

)
2

] 

Figure 2 – Stress-strain diagram for cracked 
concrete in compression (Vecchio e Collins, 1986)
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(26)fcd2≤fc2max=
fcd1

0,8+170. ε1
≤fcd1 

The maximum strain used in this work is the same as that suggested 
by CEB [3] for zones subjected to axial compression, and this limit is 2 
‰. Thus, Figure 3 shows the stress-strain diagram used in this work.

4.1	 Verification of compressive strength of concrete

The strength limit for concrete is herein calculated considering the con-
cepts presented in item 4. Thus, the way to check if the compressive 
force respects this limit is different from that presented in the method 
based on Baumann`s criteria, because the concrete capacity now de-
pends on the tensile strain to which the membrane is subjected in ULS.
In case IV, verification of concrete is the same of that in item 3, 
because in this case there is no tension in the membrane and the 
compressive strength of concrete is always given by fcd1.
For the cases II and III, it should be first checked if:

(27)σc=
nc
h
≥fcd1 

This study admits that fcd1 is the maximum limit for the compressive 
strength of concrete in any case. If inequation 27 is satisfied, the 
compressive stress in the concrete is above the limit and, it should 
thus evaluate the possibility of using compression reinforcement. 
The way to do this evaluation will be presented in item 5.
For the case in which inequation 27 is not satisfied, it should be 
verified if:

(28)σc=
nc
h
≤fcd2 

As fcd2 is the lowest limit for the compressive strength of concrete, 
if expression 28 is satisfied, the compressive stress in the concrete 

respects the strength limit imposed and it will not therefore be nec-
essary to use compression reinforcement. If inequations 27 and 28 
are not satisfied, it consequently follows that:

(29)fcd2≤
nc
h
≤fcd1  

In this case, the strains in the membrane must be considered to de-
termine the strength limits to be used, because it will depend on ε1.

4.1.1 Calculation to determinate the limit of compressive 
strength of the concrete

The objective of this item is to find the value of fcd2max. However, it 
depends on the strain of the membrane. A calculation method based 
on that presented by Jazra [12] will be presented. This calculation is 
valid for cases II and III. Due to their being analog, changing just the 
reinforcement position (y axis to case II and x axis to case III), only 
case III will be described. For case II, equation 30 must be replaced 
by the equivalent equation to εy and the same process must be re-
peated. Thus, from Mohr circle, it follows that:

(30)εx=
ε1+ε2

2
+ (ε1-ε22 ) .cos2θ 

So:

(31)ε1=
2.εx-ε2.(1-cos2θ)

(1+cos2θ)
 

Therefore:

(32)fc2max=
fcd1

0,8+170. [2.εx-ε2.(1-cos2θ)(1+cos2θ) ]
 

From equation 25 it is possible to express the compressive strain 
as a function of strength.

(33)ε2=ε`c. 1- 1--
f

fc2max))  

Considering by hypothesis that εx is equal to the yield strain of 
steel, it follows that:

(34)
ε2=ε`c . ( (1- 1-

σc
fcd1

0,8+170. [2.εyd-ε2.(1-cos2θ)(1+cos2θ) ]

Figure 3 – Stress-strain diagram adopted
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For case II, equation 34 modifies and results in expression 35:

(35)
ε2=ε`c . ( (1- 1-

σc
fcd1

0,8+170. [2.εyd-ε2.(1+cos2θ)(1-cos2θ) ]
Equations 34 and 35 can be solved by iterative methods. Assum-
ing an initial value to ε2 for which the function exists (i.e., the radi-
cand will not be negative), it will converge to the solution. If the 
radicand assumes a negative value in any iteration, then the prob-
lem has no solution, and therefore the stress in concrete is higher 
than the maximum limit.

5.	 Design of compression reinforcement 	
	 for cases II and III

All the demonstrations in this item will be made ​​only for design case 
III. Case II is analogous and only its final formulation will be presented.
For those cases in which the compressive stress in concrete is 
higher than the strength calculated as shown in item 4, it should 
be checked if adopting compressed reinforcement in the direction 
in which there was no reinforcement previously, it will be effective 
to decreases the stress in concrete so that it will be lower or equal 
to the strength. First, for the purposes of this problem the same 
assumptions given by the method based on Baumann`s criteria, 
presented in item 3, will be used.
Moreover, some considerations about strain must be made. First, 
it will be admitted that the strain in the x direction is equal to the 
yield stress in steel. This assumption limits the strain in the mem-
brane, optimizing the compressive strength of the concrete, be-
sides resulting in a reinforcement area in which ductile rupture in 
ULS occurs. In other words, even if to solve the problem it would 
be necessary to over-reinforce the membrane, this result will be 
discarded because the membrane would collapse in a brittle way. 
Furthermore, it is assumed that strain ε2 is always equal to ε’c, lead-
ing the concrete to the strength limit and, consequently, reducing 
the consumption of reinforcement. Summarizing the hypotheses, 
it follows that:
1.	 The cracks are approximately parallel and straight.
2.	 The tensile strength of concrete is null
3.	 The dowel effect will not be considered
4.	 The effect due to aggregate interlock will not be considered
5.	 The bond between reinforcement and concrete is perfect
6.	 The tension-stiffening effect will not be considered
7.	 The directions of principal strains and the directions of principal 

stresses coincide 
8.	 The strain in x direction is equal to the yield strain of steel (εx = εyd).
9.	 The principal compressive strain is equal to the strain resulting 

in the peak stress in concrete (ε2 = ε’c).

5.1	 Design limits

With these hypotheses, it is intended to determine the cases in 
which it is possible to design compression reinforcement. Thus, 
firstly, a membrane subjected to stresses such that tensile rein-

forcement in the y direction is not necessary, therefore, it lies in de-
sign case III, and the compressive stress in the concrete is higher 
than the strength fc2max, as shown in item 4 is assumed. As hypo-
thetically εx = εyd and ε2 = ε’c, the compressive strength of concrete 
is given by equation 36.

(36)fc2max=
fcd1

0,8+170. [2.εyd-ε'c.(1-cos2θ)(1+cos2θ) ]
 

In which:

fcd2≤fc2max≤fcd1  

The graph that describes the strength as a function of θ is shown 
in Figure 4. For case III, all the functions of θ have domain 0 ≤ θ ≤ 
|45º|. For case II, the domain is |45º| ≤ θ ≤ |90º|.
It can determine the values ​​of θ1 and θ2 shown in Figure 4. Angle θ1 is 
the one which equates fc2max at fcd1. Thus, it can be demonstrated that:

(37)
θ1=

arccos ( 0,00118-2.εyd+ε'c
(ε'

c
-0,00118) )

2
 

As the cosine function produces the same result, no matter the 
angle signal, both positive and negative θ1 are solutions. Similarly, 
θ2 is the value that equates fc2max at fcd2. Thus, it follows that:

(38)( )
θ2=

arccos
0,003627-2.εyd+ε'c
(ε '

c
-0,003627)

2
 

Also for θ2, both positive and negative solutions satisfy equation 38.
However, if θ exceeds a certain limit, strain εy assumes positive 
values. Thus, the area of reinforcement in y results in negative 
values, which is not physically possible. As by hypothesis εx = εyd 
and ε2 = ε’c, it can calculate to what values ​​of θ, εy is lower than 
0. The objective is to find θ* for which εy = 0. From Mohr circle, it 
follows that:

Figure 4 – Compressive strength of concrete 
as a function of θ to case III
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(39)ε1+ε2=εx+εy 

Then:

(40)ε1=εyd-ε'c 

Also through the Mohr circle, by replacing θ with θ*, it follows that:

(41)εx=
ε1+ε2

2
+ (ε1-ε22 ) .cos2θ*  

Replacing 40 in 41, θ* is given by equation 42:

(42)
θ*=

arccos (
εyd

εyd-2.ε' c)
2

 

Table 1 shows the values ​​of θ1, θ2 and θ* to steels determined by 
NBR 6118 [14]. It can be observed that for steels CA-50 and CA-60 
there are no values of ​​θ1. This is because for strain values ​​assumed 
by hypothesis for this problem, the strength of the concrete never 
reaches the value of fcd1 for these steels. Thus, the strength of con-
crete reaches its maximum when θ = 0º. Thus, it equalizing strength 
with stress in concrete, if θ1 exists and θ = 0, then nxy = 0 and:

(43)fcd1=
nc
h

 

If θ1 exists and 0 < θ ≤ |θ1|, then:

(44)fcd1=
2.nxy

h.sen(2θ)
 

Table 1 – Values of θ1, θ2 and θ* for steels 
prescribed by NBR 6118 to case III

  (‰)yd   o|θ | ( )1  o|θ | ( )2  o|θ*| ( ) 

CA-25 1,04 12,17 42,74 39,07 
CA-50 2,07 DOES NOT EXIST 31,74 35,03 
CA-60 2,48 DOES NOT EXIST 26,79 33,74 

If θ1 does not exist and θ = 0, so nxy = 0 and:

(45)
fcd1

0,8+170. [2.εyd-ε'c.(1-cos2θ)(1+cos2θ) ]
=
nc
h

 

If θ1 exists and |θ1|< θ < |θ2| or if θ1 does not exist and 0 < θ < |θ2|, 
then:

(46)
fcd1

0,8+170. [2.εyd-ε'c.(1-cos2θ)(1+cos2θ) ]
=

2.nxy

h.sen(2θ)

If |θ2| ≤ θ < |θ*|, then:

(47)fcd2=
2.nxy

h.sen(2θ)
 

Considering this situation, the objective is to find for which values 
of forces it is possible to design compression reinforcement. For 
normal forces, there is no mathematical limit, there is only con-
structive limit to the reinforcement ratio prescribed by NBR 6118 
[14]. For shear force, there is a limit, but the formulation of which 
varies with the kind of steel adopted. This is because limits θ1, θ2 
and θ* are different for each steel. For CA-25, as |θ*| <|θ2|, equation 
47 will never be valid. Thus, it should be known which maximum 
value of nxy can be assumed for this steel. Then, taking back equa-
tion 46, it is possible to demonstrate that:

(48)
|nxy|≤

fcd1.h

2
. ( (

sen(2.|θxy|)

0,8+170. [ 2.εyd-ε
'
c .(1-cos(2.|θxy|))

(1+cos? (2.|θxy|)) ]
In which:

(49)|θxy|=33,76° 

For CA-50 and CA-60, as |θ*| > |θ2|, equation 47 is valid. From it, it 
is possible to demonstrate that:

(50)|nxy|≤
fcd2.h.sen(2|θ

*|)

2
 

Therefore, if nxy respects the condition imposed by 48 or 50, the 
problem has a solution, in other words, there is a reinforcement 
which will decreases stress in concrete until its maximum strength. 
Table 2 shows the maximum values ​​of θ for each kind of steel.
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5.2	 Design reinforcement in case III

Assuming a membrane that is subjected to forces which respects the con-
ditions imposed by equations 48 and 50, the intention is to calculate the 
amount of reinforcement necessary to be positioned in the y direction in 
order to compressive stress in concrete is equal to the maximum strength 
fc2max. This calculation method was based that presented by Jazra [12]. 
Therefore, with equations 43, 44, 45, 46 and 47 the intention is to find the 
value of θ which is the solution to the problem. First, if nxy = 0, then θ = 0°. 
If θ1 exists and 0 < θ ≤ |θ1|, so:

(51)
θ=

arcsen( 2.nxyfcd1.h
)

2
 

If θ1 exists and |θ1| < θ < |θ2| or if θ1 does not exist and 0º < θ < |θ2|, then:

(52)
θ=

arcsen(
2.nxy
fcd1.h

0,8+170. [ [2.εyd-ε'c .(1-cos2θ)

(1+cos2θ)
)

2

Finaly, if |θ2| ≤ θ < |θ*|, then:

(53)
θ=

arcsen( 2.nxyfcd2.h
)

2
 

Therefore, to find θ, it should follow the steps.
1.	 If nxy = 0, θ = 0.
2.	 If nxy ≠ 0, use the iterative method to find θ through equation 52. 
3.	 If converges, for CA-25, two solutions can be found, but it is 

only valid that one which it respects θ <θmax.
4.	 If converges, for CA-25, check if θ ≤ θ1. Because equation 52 is 

not valid for this domain, θ must be found using equation 51.
5.	 If converges, for CA-50 and CA-60, θ found is solution.
6.	 If does not converge, find the solution using equation 53.
With values ​​of εx = εyd, ε2 = ε’c and θ, it is possible to obtain the 
value of ε1 and εy. Taking back equation 31 and 39, then:

(54)εy=
2.εyd-ε'c.(1-cos2θ)

(1+cos2θ)
+ε'c-εyd 

Table 2 – Maximums values for θ  in case IIImax

  (‰)yd   oθ  ( )max

CA-25 1,04 
CA-50 2,07 
CA-60 2,48 

33,76
35,03
33,74

It is possible to calculate the forces in the reinforcement using 
equations 1 and 2. The reinforcements are given by:

(55)asx=
nsx

σx
=

nsx

Ecs.εx
=

nsx

E.εyd
=
nsx

fyd
 

(56)asy=
nsy

σy
=

nsy

Ecs.εy
 

5.3	 Design reinforcement in case II

In this item, the formulation for designing compression reinforcement in 
case II will be presented. As already exposed, the demonstration of equa-
tions is the same for case III and only the final equations will be presented 
here. Thus, for case II, the design limits presented in item 5.1 also must 
be considered, but the domain of functions of θ is |45°| ≤ θ ≤ |90°|.
In this case, εy = εyd. By adapting expression 36, fc2max is repre-
sented by equation 57.

(57)
fc2max=

fcd1

0,8+170. [2.εyd-ε'c.(1+cos2θ)

(1-cos2θ) ]
 

Thus, for case II, the limits of θ assume the values ​​shown in Table 3.
For CA-25, it follows that:

(58). ( (
sen(2.|θmax|)

0,8+170. [ [2.εyd-ε
'
c .(1+cos (2.|θmax|))

(1-cos(2.|θmax|))

|nxy|≤
fcd1.h

2

For CA-50 e CA-60, it follows that:

(59)|nxy|≤
fcd2.h.sen(2|θmax|)

2
 

If the shear force to which the membrane is subjected respects 
condition 58 or 59, then the value of θ must be found by using the 

Table 3 – Values of θ , θ  e θ* and θ1 2 max

 for steels prescribed by NBR 6118 in case II

  (‰)yd   o|θ | ( )1  o|θ | ( )2  o|θ*| ( ) oθ  ( )max 

CA-25 
CA-50 
CA-60 

1,04
 

77,83
 

47,26
 

50,93
 

56.24
 

2,07
 

DOES NOT EXIST
 

58,26
 

54,97
 

54,97
 

2,48
 

DOES NOT EXIST
 

63,21
 

56,26
 

56,26
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same steps used in case III, but using the formulation found here-
in. First, if nxy = 0, then θ = 90 °. If θ1 exists and |θ1| ≤ θ <90 °, then:

(60)
θ=

arcsen( 2.nxyfcd1.h
)

2
 

If θ1 exists and |θ2| < θ < |θ1| or if θ1 does not exist and |θ2| < θ < 90º, then:

(61)

θ=

arcsen ( (
2.nxy
fcd1.h

0,8+170. [ [2.εyd-ε
'
c.(1+cos2θ)

(1-cos2θ)

2

Finally, if |θ*| < θ ≤ |θ2|, then:

(62)
θ=

arcsen( 2.nxyfcd2.h
)

2
 

For case II, εyd = εy. So, with ε2 = ε’c e θ, it is possible to find the 
value of ε1 and then εx. Thus, it follows that:

(63)εx=
2.εyd-ε

'
c.(1+cos2θ)

(1-cos2θ)
+ε'c-εyd 

It is possible to calculate the forces in the reinforcement using 
equations 64 and 65. The reinforcements are given by:

(64)asx=
nsx
σx

=
nsx
E.εx

 

(65)asy=
nsy

σy
=

nsy

E.εy
=

nsy

E.εyd
=
nsy

fyd
 

6.	 Design of compression reinforcement 	
	 to case IV

Case IV is different from cases II and III because the concrete 
strength conditioning is not the same. As in this case the membrane 
is in biaxial compression state, the concrete strength could be even 
higher than the value of fcd1, as recommended by the CEB [3]. How-
ever, in this study, concrete strength will be considered equal to fcd1.
The objective of the formulation that will be presented is to design 
the reinforcement in x and y directions for membranes in which 
stress in concrete is higher than its strength.

First, it is assumed that stress in concrete is equal to its limit in 
ULS. Another problem hypothesis is that the membrane is always 
in biaxial compression state; in other words, the inclusion of rein-
forcement which leads to tensile stress in membrane will not be 
contemplated by this study. Thus, the hypotheses are:
1.	 The tensile strength of concrete is null
2.	 The bond between reinforcement and concrete is perfect
3.	 The membrane is always in biaxial compression state
4.	 The directions of principal strains and the directions of principal 

stresses coincide
5.	 The concrete strength is given by fcd1
6.	 The principal compressive strain is equal to the strain resulting 

in the peak stress in concrete (ε2 = ε’c). Thus, the principal com-
pressive stress is equal to the compressive strength (σc = fcd1).

7.	 The effect due to aggregate interlock will not be considered
8.	 The tension-stiffening effect will not be considered
By equilibrium of membrane, the following expressions are obtained 
where n’c is the force in the direction of minimum compression.

(66)nc=-nx+nxy.cotgθ+nsx 

(67)nc=nsy-ny+nxy.tgθ 

(68)nc=nc
'+nxy.(tgθ+cotgθ) 

(69)nc=-
(nx-nsx)+(ny-nsy)

2
+

((nx-nsx)-(ny-nsy))2

4
+nxy²

(70)nc
'=-

(nx-nsx)+(ny-nsy)

2
-

((nx-nsx)-(ny-nsy))2

4
+nxy²

6.1	 Design limits

The objective in this item is to define the cases for which it is possi-
ble to design compression reinforcement. By hypothesis, the mem-
brane is always in biaxial compression state, then n’c ≥ 0. Thus, 
from equation 68, it follows that:

(71)sen2θ≥
2.nxy

nc
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Then:

(72)|nxy|≤
fcd1.h

2
 

Equation 72 means an absolute limit to nxy
As the assumptions define only one  fixed strain, there are infinite 
solutions within a range. The parameter that defines this interval is 
θ. Thus, it is interesting to delimit the angles θ which are possible 
to be assigned to the problem. Thus, using equation 71, it can be 
demonstrated that:

(73)θc1≤θ≤θc2  

In which:

(74)
θc1=

arcsen ( 2.nxy

fcd1.h)
2

 
o o

to 0  ≤ θ ≤ |45 |

(75)o o
to |45 | ≤ θ ≤ |90 |

θc2=
arcsen ( 2.nxy

fcd1.h)
2

 

Besides this criterion, by hypothesis the membrane is always in 
biaxial compression state, the strains in any direction are always 
negative. Thus, in order to not obtain reinforcement area with a 
negative sign, which is an incongruity, the reinforcement forces 
should also be negative. Hence, in order to nsx ≤ 0, θ must respect 
the following premise.

(76)θ≤θx=arctg (
nxy

nx+nc)  

Similarly, in order to nsx ≤ 0, the following criteria must be followed.

(77)θ≥θy=arctg (
nc+ny

nxy
)  

6.2	 Reinforcement design 

The method that will be presented was based on Jazra [12]. 
First, the forces to which the membrane is submitted must re-
spect the equation 72. Once this criterion is verified, it must 
arbitrate a value of θ such that it respects the limits imposed 
by inequations 73, 76 and 77. There will be infinite values pos-

sible to θ, but just one will lead to a minimal reinforcement area. 
Thus, it follows that:

(78)nsx=nc+nx-nxy.cotgθ 

(79)nsy=nc+ny-nxy.tgθ 

With ​​nsx and nsy, it is possible to calculate n’c through expression 70.
As the direction of the principal stress is the same of the direction 
of the principal strain by hypothesis, force n’c is related to strain ε1. 
These terms are related by the constitutive model for the concrete. 
Therefore:

(80)ε1=ε`c. ( 1- 1-
nc
'

fcd1.h)
Obtaining the value of ε1 and as the value of ε2 = ε’c and θ is known, 
it is possible to calculate εx and εy through expressions 81 and 82, 
obtained by the Mohr circle.

(81)εx=
ε1+ε2

2
+ (ε1-ε22 ) .cos2θ 

(82)εy=
ε1+ε2

2
- (ε1-ε22 ).cos2θ 

Thus, reinforcement is designed by:

asx=
nsx

σx
=

nsx

Ecs.εx
 

asy=
nsy

σy
=

nsy

Ecs.εy
 

The reinforcement areas obtained are not necessarily the mini-
mum. Therefore, attempts must be made to find this minimum.

7.	 Example of design

Assuming a membrane with 12cm thickness, fck equal to 25 MPa, 
CA-50 and subjected to forces per unit length as shown in Figure 5. 
First, it must be verified which design case this problem belongs to. 
In order to do that, it must calculate forces nsx and nsy from equa-
tions 83 and 84.
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(83)nsx=nx+|nxy| 

(84)nsy=ny+|nxy| 

Then:
nsx=nx+|nxy|=320+|200|=500 kN/m 

nsy=ny+|nxy|=-2000+|200|=-1800 kN/m 

From inequations 15 and 16, as nsx> 0 and nsy ≤ 0, it is not neces-
sary to use tensile reinforcement in y direction, which characterizes 
design case III. Then, first, concrete stress must be verified.

θ=arctg ( (-- -
nxy

ny
) )=arctg -

200

-2000
=5,71° 

nc=nxy.(tgθ+cotgθ)

nc=200.(tg5,71°+cotg5,71°)=2020 kN/m 

σc=
nc

h
=

2020

0,12
=16833,33

kN

m2
=16,83 MPa 

fcd1=0,85. ( (1-
fck

250) ). fcd=0,85. 1-
25

250
.

25

1,4
=13,66 MPa 

fcd2=0,60.( (1-
fck

250) ). fcd=0,60. 1-
fck

250
.

25

1,4
=9,64 MPa 

Figure 5 – Example of design

In this case σc > fcd1, the compressive stress in the concrete is 
higher than the maximum limit of strength. Then, it will check if it 
is possible design compression reinforcement in the y direction to 
decrease the compressive stress in concrete.
First, because steel CA-50 is being used, it must verify if nxy re-
spects inequation 85.

(85)|nxy|≤
fcd2.h.sen(2|θ

*|)

2
 

Then, θ* will be calculated through equation 86.

(86)
θ*=

arccos( εyd
εyd+2.2)
2

 

θ*=
arccos( (2,07

2,07+2.2) )
2

=
arccos

2,07
6,07

2
=35,03°

Now, it is possible to find the limit to nxy:

|nxy|≤
9642,9.0,12.|sen(2.35,03)|

2
=543,7 kN/m 

Therefore, because the nxy is lower than the limit, it is possible to 
calculate the compression reinforcement for this case. Thus, using 
equation 87, it follows that:

(87)
θ=

arcsen ( (
2.nxy
fcd1.h

0,8+170. [2.εyd+2‰.(1-cos2θ)

(1+cos2θ) ]
2

( (
θ=

arcsen

2.200
13660,7.0,12

0,8+170. [2.2,07‰+2‰.(1-cos2θ)
(1+cos2θ) ]

2

Iteratively, it is possible to obtain the value of θ. It can be seen from 
Table 4 that, in this case, value θ converges. In this example, the 
steel is assumed to be CA-50, it is not necessary to check if θ ≤ θ1, 
because θ1 does not exist.
Going forward, it is now possible to calculate εy.

(88)
εy=

2.εyd-ε'c.(1-cos2θ)

(1+cos2θ)
+ε'c-εyd  

εy=
2.2,07‰+2‰.(1-cos(2.8,27°))

(1+cos(2.8,27°))
-2‰-2,07‰= -1,91‰
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Thus, the forces in reinforcements are calculated

(89)
nsx=nx+nxy.tgθ 

nsx=320+200.tg8,27°=329,07 kN/m 

(90)
nsy=ny+nxy.cotgθ  

nsy=-2000+200.cotg8,27°=-623,78 kN/m

Finally, the reinforcement areas are given by:

asx=
nsx

fyd
=
329,07

43,49
=7,57cm² 

asy=
nsy

σy
=

nsy

E.εy
=

-623,78

21000.(-1,91‰)
=15,52 cm² 

8.	 Conclusions

Methods are presented herein to determine compression reinforcement 
in design case II, III and IV provided by CEB [3]. The limits for this design 
were also presented; in other words, cases in which it is possible to adopt 
compression reinforcement so that compressive stress in concrete is re-
duced to its strength are delimited. In all the cases, these limits are only 
related to the shear force to which the membrane is subjected.
Furthermore, a model for concrete strength was used that interpo-
lates the values ​​of strength between fcd1 and fcd2 according to the 
curve obtained by Vecchio and Collins [2], so that there is no discon-
tinuity of strength values between cases II and IV and cases III and 
IV. Also, we presented how to evaluate whether the compressive 
stress in the concrete is lower than the limit to this strength model.
Due to this model adopted for concrete, for cases II and III, the re-
inforcement design became more complex and iterative methods 
were necessary for resolution. However, it leads to fewer amounts 
of reinforcement than those found when using only the values ​​sug-
gested by CEB [3] for strength.
About case IV, it was found that there are infinite solutions for re-
inforcement design, although just one leads to the minimum rein-

Table 4 – Iterative calculation of θ 
 

 

i oθ  ( )i     (‰)1   f  (MPa)c2max     (Mpa)c   oθ  ( )f   

1 1,000 2,072 11,856 95,512 8,164 
2 8,164 2,154 11,714 11,856 8,266 

3 8,266 2,156 11,710 11,714 8,269 

4 8,269 2,156 11,710 11,710 8,269 

5 8,269 2,156 11,710 11,710 8,269 

6 8,269 2,156 11,710 11,710 8,269 

forcement required. This occurs due to the smaller number of fixed 
variables as compared to cases II and III. It is possible to find the 
most economic solution design through the trial and error method.
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10.	 Symbols
asx	 reinforcement area in x-direction
asy	 reinforcement area in the y-direction
ECS	 modulus of elasticity of concrete
fc’	 characteristic compressive strength of concrete according  

to ACI
fc2	 principal compressive concrete stress in concrete
fcd	 design compressive strength of concrete
fck	 characteristic compressive strength of concrete
fcd1	 design compressive strength of uncracked concrete
fcd2	 design compressive strength of cracked concrete 
fc2max	 maximum compressive strength of concrete 
fyd	 design yield stress of reinforcement
fyk	 characteristic yield stress of reinforcement
h	 thickness of membrane
nc	 maximum compressive force in concrete
n’c	 minimum compressive force in concrete
nx	 normal force in the x-direction
ny	 normal force in the y-direction
nxy	 shear force in membrane
nsx	 reinforcement force in the x-direction
nsy	 reinforcement force in the y-direction
ε1	 strain in direction 1
ε2	 strain in direction 2
εx	 strain in direction x
εy	 strain in direction y
εsx	 reinforcement strain in the x-direction
εsy	 reinforcement strain in the y-direction
εc	 maximum compressive strain in concrete
εc’	 minimum compressive strain in concrete
εyd	 design yield strain of reinforcement
θ	 angle between y-axis and direction of principal compression 

in concrete
θ1	 limit angle between curves fcd1 and fc2max 
θ2	 limit angle between curves fc2max e fcd2
θ*	 limit angle that define εy sign 
θmax	 limit angle to design of compression reinforcement in case II 

and III
θxy	 angle that corresponds to maximum shear stress
θc1	 limit angle to membrane remains in biaxial compressive 

state in case IV
θc2	 limit angle to membrane remains in biaxial compressive 

state in case IV
θx	 limit angle to reinforcement force in y-direction to be of com-

pression in case IV
θy	 limit angle to reinforcement force in y-direction to be of com-

pression in case IV
σc	 maximum compressive stress
σc’	 minimum compressive stress
σcd	 design compressive stress


