DIÓXIDO DE ESTANHO NANOESTRUTURADO: SÍNTESE E CRESCIMENTO DE NANOCRISTAIS E NANOFITAS

Adeilton P. Maciel, Elson Longo e Edson R. Leite*

Departamento de Química, Universidade Federal de São Carlos, CP 676, 13565-905 São Carlos - SP

Recebido em 15/5/02; aceito em 2/6/03

NANOSTRUCTURED TIN DIOXIDE: SYNTHESIS AND GROWTH OF NANOCRYSTALS AND NANORIBBONS. The objectives of this work are to supply a basic background on nanostructured materials and also to report about the obtaining of nanoparticles, mainly, tin dioxide nanocrystalline particles (obtained by using the polymeric precursor method) presenting a high stability against particle growth due to the usage of a metastable solid solution. The synthesis and growth of SnO₂ nanoribbons by a carbothermal reduction process are also discussed.

Keywords: nanostructured materials; tin dioxide; metastable solid solution.

INTRODUÇÃO

A nanociência figura como uma das áreas mais atraentes e promissoras para o desenvolvimento tecnológico neste século. Para confirmação desta tendência é suficiente que se faça uma busca em qualquer um dos principais periódicos de alcance internacional, por exemplo, *Science*, onde pode ser verificado um aumento gradativo do número de trabalhos envolvendo nanoestruturas e nanotecnologia. Na literatura científica são encontrados diversos termos relacionados à nanociência, dentre os quais podemos citar nanopartículas, nanocristais, nanofios, nanofitas, nanotubos, nanocompósitos¹⁻¹¹ etc. Na realidade, todos estes são ou estão relacionados com materiais nanoestruturados, que apresentam características estruturais bem definidas.

As propriedades físicas e químicas de materiais em escala nanométrica (normalmente definida no intervalo de 1-100 nm) são de imenso interesse e crescente importância para futuras aplicações tecnológicas. Materiais nanoestruturados geralmente exibem propriedades diferenciadas com relação aos demais materiais. Pode-se encontrar na literatura vários exemplos de como propriedades do tipo magnética, óptica, ponto de fusão, calor específico e reatividade de superfície podem ser afetadas pelo tamanho de partícula¹²⁻¹⁶.

Normalmente, as modificações mais sensíveis nas propriedades desses materiais acontecem quando as partículas se apresentam na faixa de 1-10 nm de tamanho. Estas mudanças são conhecidas como efeitos quânticos de tamanho (confinamento), e sua origem está diretamente relacionada ao tipo de ligação química no cristal¹⁷. A relação entre propriedades e tamanho de partícula é conhecida desde o século XIX, quando Faraday mostrou que a cor de partículas coloidais de Au pode ser modificada mudando o tamanho das partículas de Au¹⁸. No entanto, apesar da longa história que envolve este assunto, o interesse em nanopartículas foi significativo apenas nos últimos 10 anos. As atividades de pesquisas relacionadas a esta área foram impulsionadas pela habilidade para controlar as propriedades dos materiais através do controle do tamanho das partículas. Este desenvolvimento pode resultar em novas tecnologias, inclusive conversão de energia¹⁹⁻²³, armazenamento de dados em altíssima densidade²⁴, diodos emissores de luz (LED)²⁵ e pigmentos especiais²⁶.

Neste trabalho apresenta-se uma abordagem inicial sobre materiais nanoestruturados, em especial o dióxido de estanho, envolvendo alguns aspectos básicos. Versa-se sobre a técnica de obtenção deste composto pelo método químico e o controle do crescimento de partículas através de uma solução sólida supersaturada. Também, reporta-se a obtenção e o crescimento de nanofitas de SnO₂ pelo processo de redução carbotérmica. Aproveita-se ainda para expor o dióxido de estanho como sensor de gases, incluindo a discussão sobre os efeitos gerados pela inserção de dopantes nas propriedades estruturais e sensoras deste óxido.

MATERIAIS NANOESTRUTURADOS

Os materiais considerados nanoestruturados são todos aqueles que se apresentam, pelo menos em uma dimensão, com tamanho na ordem de nanômetros (10-9 m), geralmente menores que 100 nm^{27,28}. Gleiter²⁹ é mais rígido, considerando como material nanoestruturado apenas aqueles que apresentam uma estrutura com um comprimento característico na ordem de poucos nanômetros, tipicamente de 1–10 nm.

Os materiais nanoestruturados podem ser divididos em três categorias:

a) a primeira compreende materiais com dimensões reduzidas e/ ou dimensionalmente na forma de nanopartículas, fios, fitas ou filmes finos. Nanofitas de dióxido de estanho⁹, Figura 1, são um exemplo deste tipo de nanoestrutura, que pode ser obtido por várias técnicas, tais como deposição química ou física de vapor, condensação de gás inerte, precipitação de vapor, líquido supersaturado ou sólido.

As nanopartículas podem ser divididas em orgânicas e inorgânicas. Na literatura encontram-se facilmente muito mais trabalhos envolvendo nanopartículas inorgânicas que orgânicas. As nanopartículas metálicas e óxidos são os principais representantes do grupo dos inorgânicos nanoestruturados. Os exemplos mais comuns de nanopartículas orgânicas são os componentes celulares e os vírus. Horn e Rieger³0, recentemente, escreveram um "review" no qual são abordados a teoria, a parte experimental e o uso de nanopartículas orgânicas; este trabalho merece relevância não apenas por ter sido publicado em um periódico de grande credibilidade, mas também pelo seu conteúdo e a forma como foi abordado. Não se entrará em detalhes sobre esse grupo de nanopartículas.

b) A segunda categoria compreende materiais em que a estrutura é limitada por uma região superficial fina (nanométrica) do volume

Figura 1. TEM (imagem de campo luminoso) de nanofitas de SnO2

do material. Por exemplo, "nanoclusters" de grafite recobertos com uma camada de partículas de cobalto³¹. Pode-se obter este tipo de estrutura por técnicas como deposição química ou física de vapor e irradiação laser, sendo este último o procedimento mais largamente aplicado para modificar a composição e/ou a estrutura atômica da superfície de um sólido em escala nanométrica.

c) A terceira categoria consiste de sólidos volumétricos com estrutura na escala de nanômetros. Algumas ligas metálicas destacamse como exemplos deste tipo de material. Existem várias técnicas para se obter este tipo de estrutura, desde a mistura mecânica³² (moagem) até a deposição química ou física de vapor.

Os materiais nanoestruturados ainda podem ser classificados de acordo com a composição química e dimensionalidade (forma) dos cristalitos (elemento estrutural)³³.

DIÓXIDO DE ESTANHO

O dióxido de estanho, óxido anfótero, semicondutor do tipo *n*, destaca-se pelo fato de ser aplicado em muitos campos, graças a algumas propriedades, tais como alta condutividade elétrica³⁴, alta transparência na região do visível³⁵ e alta estabilidade térmica³⁶. Os campos de aplicação deste material incluem a construção de nariz eletrônico, dispositivos opto-eletrônicos, células solares, "displays" de cristal líquido, catalisadores e sensores de gases³⁷⁻⁴⁶. Esta última é uma das principais aplicações do dióxido de estanho.

Nas últimas décadas, vários trabalhos relacionados a elementos sensores com base em óxidos semicondutores, para detecção e monitoramento de baixos níveis de componentes gasosos poluentes no ar, foram publicados.

As propriedades elétricas desses semicondutores são sensíveis a ambientes gasosos. Assim, estas propriedades podem ser utilizadas para o desenvolvimento de sensores de gases inflamáveis e/ou tóxicos, em ambientes fechados ou ao ar livre.

OBTENÇÃO DO DIÓXIDO DE ESTANHO

Nanopartículas

Vários pesquisadores estão utilizando os mais diferentes métodos de obtenção de SnO₂ nanocristalino, principalmente com o intuito de melhorar as propriedades físico-químicas desse material. Entre os métodos mais empregados podem ser citadas a co-precipitação, sol-gel, condensação de fase gasosa, spray-pirólises, microemulsão, microondas, oxidação de Sn⁰, precursor polimérico e rotas hidrotérmicas, entre outras⁴⁷⁻⁵⁵. A co-precipitação e o sol-gel são geralmente preferidos pela facilidade de execução e bons resultados obtidos. Em recente trabalho, Fraigi *et al.* ⁵⁶ realizaram um estudo comparativo entre duas rotas de combustão de precursor para a síntese de SnO₂ nanocristalino.

O método que vem sendo bastante utilizado para obtenção de nanopartículas de dióxido de estanho, em especial para SnO₂ dopado, é o dos precursores poliméricos, baseado no método Pechini⁵⁷. Este consiste na formação de quelatos entre os cátions metálicos (dissolvidos em meio aquoso) com ácido carboxílico (geralmente o ácido cítrico) e posterior polimerização, utilizando uma reação de poliesterificação com poliálcool (preferencialmente etilenoglicol).

Reações químicas envolvidas na obtenção do precursor polimérico:

A reação de condensação (ácido carboxílico + poliálcool) ocorre em temperaturas moderadas (T < 100 °C), em recipiente aberto, sob agitação. Durante o aquecimento ocorre a reação de poliesterificação, resultando uma "resina" polimérica viscosa, solúvel em água. Após esse estágio, o poliéster é calcinado à temperatura de aproximadamente 300 °C para pirólise do polímero e conseqüente eliminação do material orgânico na forma de ${\rm CO_2}$ e água. O material obtido é desagregado e calcinado novamente para eliminação do material orgânico residual. Assim, o material já está pronto para os tratamentos térmicos com o intuito de se obter a fase e a cristalinidade desejada. O composto de partida utilizado na obtenção do ${\rm Sn^{4+}}$ é o ${\rm SnCl_2.2H_2O.}$

Nanofitas

As nanofitas, os nanotubos e os nanofios são materiais nanoestruturados que vem conquistando espaço, por apresentarem propriedades físicas e químicas específicas, e figuram como materiais potencialmente capazes de aplicação em nanodispositivos em nanoeletrônica⁵⁸.

A síntese de nanofitas pode ser realizada através da evaporação térmica de óxidos pulverizados sob condições específicas^{59,60}. Aqui reporta-se a obtenção e o crescimento de nanofitas de SnO₂ pelo processo de redução carbotérmica às temperaturas de 1100 e 1200 °C.

O dióxido de estanho, quando está na presença de carbono altamente reativo, reduz-se para monóxido de estanho. Sabe-se ainda que a temperatura de evaporação do SnO é menor que a do SnO₂; com base neste fato a seguinte reação deve estar ocorrendo no processo de redução:

$$SnO_{\gamma}(s) + C(s) \Longrightarrow SnO(g) + CO(g)$$
 (1)

Foram utilizados SnO_2 comercial (CESBRA, pureza 99,9%) e carvão ativado, num porta-amostra (barca) de alumina. Nesse procedimento o sistema não precisa estar sob vácuo, simplesmente é necessário um fluxo de nitrogênio por volta de $100~\mathrm{cm}^3/\mathrm{min}$.

A formação das nanofitas de dióxido de estanho pelo método de redução carbotérmica está relacionada ao monóxido de estanho gasoso e não ao dióxido. Sabe-se que, em ambientes altamente redutores o SnO₂ passa para Sn metálico com extrema facilidade. Então, acredita-se que as nanofitas poderiam ser formadas a partir do estanho metálico; neste caso, o estanho metálico estaria agindo como catalisador e estaria seguindo um processo de cristalização do tipo vapor-líquido-sólido (VLS)⁶¹. Assim, propomos duas hipóteses para a formação das nanofitas: a primeira é a reação entre SnO e o O₂ (que difundiu de fora do forno para o ambiente de reação) de acordo com a reação de decomposição peritética⁶²

$$SnO(g) + \frac{1}{2}O_{2}(g) \Longrightarrow SnO_{2}(s)$$
 (2)

A segunda hipótese está relacionada à reação entre as moléculas de SnO no estado gasoso, conforme a seguinte reação:

$$SnO(g) + SnO(g) \Longrightarrow SnO_2(s) + Sn^o(1)$$
(3)

Como não foi observada a presença de estanho metálico junto às nanofitas, descartamos a segunda hipótese; desta forma, a primeira hipótese, em que ocorre a reação entre o SnO e o $\rm O_2$, é a mais provável para a formação das nanofitas de SnO₂.

CONTROLE DO CRESCIMENTO DE NANOCRISTAIS E NANOFITAS DE SNO,

Muitas aplicações dos materiais estão diretamente relacionadas às suas propriedades estruturais. Em Ciências de Materiais o tamanho das partículas figura como um parâmetro importante para explicar vários fenômenos físicos e químicos, tais como propriedades elétricas, magnéticas e catalíticas, apresentados por um determinado material. As propriedades dos catalisadores e sensores de gases são melhoradas sensivelmente quando se utilizam materiais em escala nanométrica. Alguns dos fatores que influenciam na capacidade de otimização de tais propriedades estão relacionados à alta área superficial e à camada de Debye, que praticamente é igual ao diâmetro da partícula.

Manter uma estrutura na escala nanométrica é uma tarefa muito difícil quando se está submetendo este material a um tratamento térmico. Vale lembrar que o tratamento térmico é fundamental para determinadas aplicações. Esse processo térmico é que determina as propriedades físico-químicas (resistência mecânica, eletrônica, catálise etc) apresentadas pelo material. Então, o controle do crescimento das nanopartículas é essencial para o desenvolvimento de novos materiais com propriedades específicas. Conseqüentemente, tem-se uma vasta área de pesquisa interdisciplinar envolvendo métodos de sínteses, processos de controle de crescimento e estabilidade dos materiais nanoestruturados contra crescimento de cristais durante o tratamento térmico ou no momento de uso a altas temperaturas.

Aqui é apresentado um novo procedimento para controle da estabilidade térmica de óxidos metálicos, em particular o dióxido de estanho, contra crescimento de cristais.

Seja o crescimento de uma partícula (nanocristal) controlada pela moção das fronteiras entre as partículas 63 , pode-se assumir que a velocidade média da fronteira, v, é proporcional à força motriz termodinâmica, ΔF , então,

$$v = M\Delta F \tag{4}$$

em que M é a mobilidade da fronteira da partícula, que está intimamente ligada ao mecanismo de difusão, pode-se classificá-la como a parte cinética na Equação 4. Observando-se esta equação fica claro

que, para se reduzir a velocidade de crescimento, se tem dois caminhos, um é reduzindo ΔF (parte termodinâmica) e o outro, reduzindo a mobilidade da fronteira da partícula M (parte cinética). Leite et al. sugerem que, durante a síntese do SnO₂, o crescimento dos cristais pode ser controlado pela adição de Nb₂O₅, que com o aumento da temperatura de tratamento segrega no contorno de grão, contribuindo para a redução da velocidade de crescimento. Esta segregação pode diminuir a mobilidade da partícula e ainda reduzir a força motriz, ΔF. Em sistemas de soluções sólidas metaestáveis este efeito é mais pronunciado⁶⁴. Com base nestes fatos utilizou-se um procedimento envolvendo a formação de uma solução sólida metaestável onde, com o tratamento térmico, ocorreu a segregação de uma segunda fase, enriquecendo a superfície da partícula com o material dopante. Para se obter uma solução sólida metaestável pode-se utilizar qualquer método químico capaz de gerar as fases metaestáveis. O método dos precursores poliméricos não precisa de muitos aparatos e figura como uma excelente técnica para obtenção de fases metaestáveis, tanto cristalinas como amorfas⁶⁵⁻⁶⁷. Este método foi aqui aplicado para obtenção de SnO₂ puro e dopado em 5% (mol). Em dopagens diferentes de 5%, os resultados obtidos para o controle de crescimento dos cristais não foram consideráveis. Para maiores detalhes sobre este método recomenda-se o trabalho de Leite e colaboradores1,2.

As análises de difração de raios-X das nanopartículas de SnO_2 puro e dopado, obtidas num difratômetro Siemens D5000 (K α do Cu e monocromador de grafite), revelaram a formação de uma fase amorfa antes da pré-pirólise e a fase cassiterita (tetragonal) para as nanopartículas tratadas termicamente a temperaturas superiores a 550 °C. Na Figura 2 pode-se observar que até 1000 °C as nanopartículas dopadas com terras raras apresentam tamanho (médio) inferior a 20 nm.

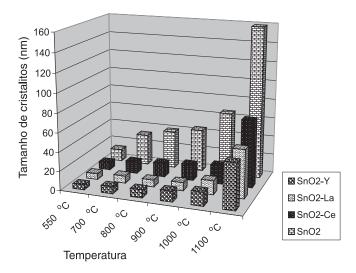


Figura 2. Evolução do tamanho médio de cristalito (obtidos por DRX) para as nanopartículas de SnO,

As nanopartículas de SnO₂ puro e dopado com 5% mol de Ce, Y e La são monofásicos até 800 °C, observando-se apenas a fase cassiterita (tetragonal), indicando a formação de solução sólida. A partir de 900 °C tem início a segregação de segundas fases como CeO₂, Sn₂Y₂O₇ e Sn₂La₂O₇ para as nanopartículas de SnO₂ dopadas com Ce, Y e La, respectivamente. O processo de segregação de segunda fase e separação de fase está ilustrado na Figura 3.

Os resultados de difração de raios-X, corroborados com os de espectroscopia Raman, confirmam a estrutura tetragonal (rutilo) para

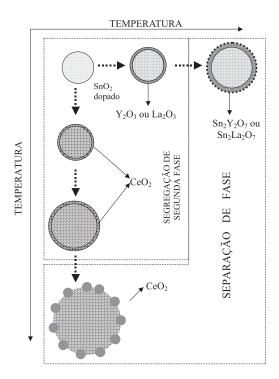


Figura 3. Processo de segregação de segunda fase e separação de fase nas nanopartículas de SnO,

as nanofitas de SnO₂ e que o crescimento pelo processo de evaporação carbotérmica (nas temperaturas de 1100 e 1200 °C) se deu na direção [101]⁶⁸, como observado por Dai *et al.*⁶⁰. Na Figura 4 podese observar a imagem de microscopia de transmissão eletrônica de alta resolução das fitas de SnO₂ mostrando os planos cristalinos da direção [101]. Esta análise confirma o crescimento na direção [101] indicado por difração de raios-X e difração de elétrons. O material obtido apresenta-se como um monocristal com baixa densidade de defeitos estruturais.

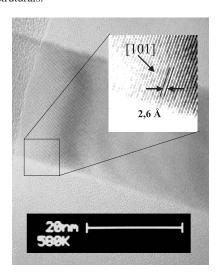


Figura 4. MET de alta resolução das nanofitas de SnO,

SENSORES DE DIÓXIDO DE ESTANHO

O desenvolvimento de dispositivos baseados em sensores resistivos, utilizando-se óxidos metálicos semicondutores para detecção e monitoramento de baixos níveis de componentes gasosos poluentes existentes no ar, tem sido objeto de estudo para vários pesquisadores⁶⁹⁻⁷³.

O princípio dos sensores semicondutores está baseado na reação entre o oxigênio adsorvido na superfície do semicondutor e os gases do ambiente^{74,75}.

A formação dos íons oxigênio adsorvidos na superfície conduz ao surgimento de centros de dispersão carregados negativamente na mesma. A região onde o movimento dos portadores está perturbado por estes centros, pode ser expressa pela camada de Debye (δ), (Figura 5), como mostra a equação abaixo,

$$\delta = (\in kT/q^2ne)^{1/2} \tag{5}$$

onde ∈ é a constante dielétrica estática, k a constante de Boltzmann, T a temperatura absoluta, q carga elétrica dos portadores e ne a concentração dos portadores.

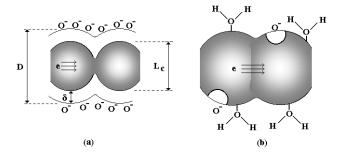


Figura 5. SnO₂ nanoparticulado: (a) íons oxigênio adsorvidos na superfície antes da reação com o gás; (b) após a reação com o gás

Com o aumento da quantidade de íons adsorvidos na superfície do óxido ocorre um aumento na camada δ , e uma diminuição na largura do canal (\mathbf{L}_{c}), vide Figura 5, onde os portadores podem se movimentar sem qualquer influência da superfície carregada. Quando o gás é adsorvido, os íons oxigênio já adsorvidos na superfície são removidos pela reação com o gás, originando espaços onde $\mathbf{L}_{c} \approx \mathbf{D}$ na região do canal.

Quando a concentração do gás aumenta, ocorre uma diminuição da concentração de oxigênio adsorvido na superfície do material, conseqüentemente, $L_{\rm C}$ também aumenta, aumentando a mobilidade dos portadores. Este efeito de atenuação da mobilidade, causada pela mudança de $L_{\rm C}$, está fortemente relacionada ao tamanho da partícula, sendo mais notável no caso de materiais nanoestruturados, em que $D\approx 2\delta^{76}$. Desta forma, os materiais em escala nanométrica figuram, potencialmente, como excelentes elementos sensores de gases. Uma vez que os materiais nanométricos apresentam-se com uma alta razão superfície/volume do cristal pode-se considerar que estes, praticamente, são formados apenas por superfície, ou seja, $D\approx 2\delta$.

Os sensores de SnO₂ podem ser aplicados em diversas áreas. Podemos citar as aplicações em sistemas de monitoramento de gases, controle de ventilação em ar condicionado, equipamentos de análises de gases, dispositivos detectores de fogo e gases tóxicos e detectores de vazamento de gases em indústrias e residências.

EFEITOS DE DOPAGEM NO SnO,

Efeitos na morfologia

A estrutura de um material é sensivelmente alterada pela adição de dopantes, principalmente quando o átomo substituinte tem características muito diferentes das apresentadas pelo átomo central a ser substituído. Por exemplo, valência (carga do íon).

A dopagem tende a influenciar o mecanismo de crescimento das partículas de SnO_2 . A adição de $\mathrm{10\%}$ de $\mathrm{V}_2\mathrm{O}_5$ ao dióxido de estanho, sintetizado por co-precipitação, conduz a uma diminuição no tamanho médio de cristalito e a um aumento na deformação estrutural do material 77 . De acordo com Santilli *et al.* 78 , o CuO (5% em mol) forma uma solução sólida com o SnO_2 gerando uma estrutura muito estressada, que retarda o crescimento do cristalito com a elevação da temperatura.

Dióxido de estanho dopado com manganês $(0,3;0,5;0,7\ e\ 1,0\ \%$ em mol), obtido pelo método dos precursores poliméricos, apresentou considerável diminuição no tamanho médio de cristalito com o aumento da quantidade de Mn, e segregação no contorno de grão de amostras sinterizadas com aumento da temperatura Por este mesmo método, Leite *et al.* sintetizaram SnO₂ dopado com 5% em de Nb₂O₅, observando também uma diminuição no tamanho médio de cristalito e, ainda, um aumento considerável na área superficial, mais que o dobro, quando comparada com o SnO₂ não dopado.

Torna-se evidente que a morfologia do material apresenta uma estreita dependência da dopagem, assim como do método utilizado para a sua obtenção.

Efeitos na sensibilidade do sensor

A adição de metais nobres, ou óxidos desses metais, ao SnO₂ resulta numa diminuição da sensibilidade do sensor para metilmercaptana (CH₃SH) na maioria dos casos. Quando dopado com Pt (0,5% em massa), a sensibilidade do sensor torna-se maior que a do SnO₃ puro⁸⁰.

Jinkawa *et al.*⁷³ baseados nos valores das sensibilidades de sensores ao etanol classificaram os dopantes em três grupos:

- I. promotores de sensibilidade consistindo de óxidos metálicos básicos;
- II. inibidores de sensibilidade consistindo de óxidos de metais de transição externa, exceto o Ni;
- III. dopantes indiferentes à sensibilidade consistindo de óxidos ácidos (WO₂).

Os dopantes do grupo II apresentam maior atividade catalítica nas reações de oxidação, isto pode explicar a origem do efeito de inibição da sensibilidade.

Segundo Zhang e Liu 81 , a sensibilidade de sensores para NO e CO à base de SnO $_2$ foi melhorada pela adição de CuO (15,6% em mol). Weber *et al.* 82 trabalhando com SnO $_2$ dopado com Nb $_2$ O $_5$ (0,1; 1,0; 2,5; e 5,0% em mol) observaram que a concentração do dopante influencia não somente o tamanho médio das partículas, mas também a condutividade do material, alterando a sensibilidade do sistema

Pode-se observar que o efeito da dopagem na sensibilidade do sensor depende intimamente da concentração do dopante e do gás em questão. Assim, este campo de pesquisa está aberto para novas descobertas, tornando-se um desafio para os pesquisadores da área.

CARACTERIZAÇÃO ESTRUTURAL DO SnO_2 NANOESTRUTURADO

Microscopia eletrônica de transmissão (MET) das nanopartículas de SnO,

A grande maioria dos trabalhos envolvendo materiais nanoestruturados está acompanhada por microscopia eletrônica de transmissão, visto que esta técnica é fundamental para caracterizacões estruturais nesta escala.

As observações das imagens de MET revelaram diferenças no tamanho e, em alguns casos, na forma das nanopartículas do dióxido de estanho obtidas pelo método dos precursores poliméricos. Na Figura 6a, imagem de alta resolução das nanopartículas de SnO₂ obtidas, pode-se observar a presença de cristalitos esféricos, quase esféricos e até facetados de diâmetro médio em torno de 8 nm, com a maioria das partículas distribuídas entre 4 e 15 nm de diâmetro. Diéguez *et al.*^{83,84} obtiveram, por precipitação, nanopartículas de SnO₂ a 450 °C com tamanho de cristalito um pouco maior; entretanto, as partículas apresentaram as mesmas formas estruturais: esféricas, quase esféricas e facetadas. O padrão de difração de elétrons, Figura 6b, apresenta os halos de difração referentes aos principais planos da estrutura tetragonal do SnO₂ (cassiterita)⁸⁵.

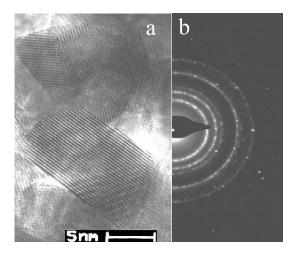
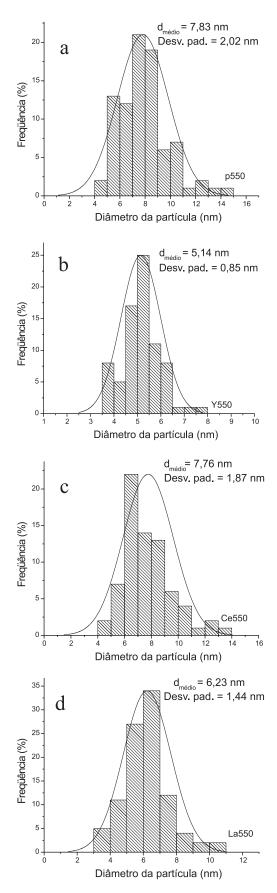
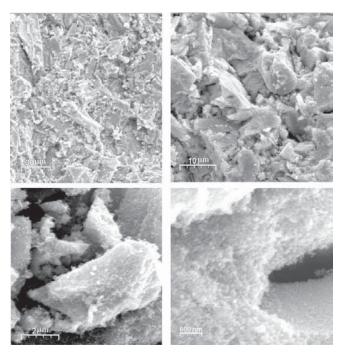


Figura 6. Imagens de MET de alta resolução (a) e padrão de difração de elétrons (b) das nanopartículas de SnO,

As nanopartículas de SnO_2 dopado com Ce, La e Y também se apresentaram na forma de nanocristais esféricos, quase esféricos e até, em alguns casos, facetados. Nos materiais dopados os cristais são bem menores que no caso do SnO_2 não dopado. Todos os materiais apresentaram baixa dispersão de tamanho de cristalito (determinado por contagem através de MET), como pode ser verificado na Figura 7.


Obtenção e caracterização estrutural das pastilhas

Os elementos sensores na forma de compactos cerâmicos (pastilhas) aparecem como uma das formas mais utilizadas em dispositivos para detecção de gases. Por isso, foram preparadas pastilhas a partir da prensagem uniaxial dos pós, tratados a 550 °C por 2 h; utilizou-se um molde de 9 mm de diâmetro e pressão de 210 MPa. Depois de prensadas, as amostras foram sinterizadas por 2 h a 550 °C em atmosfera de ar e caracterizadas por difração de raios-X , BET e microscopia eletrônica de varredura (MEV). As pastilhas não densificaram após a sinterização.


Microscopia eletrônica de varredura das pastilhas

As micrografias foram obtidas com intuito de se verificar os aspectos morfológicos das pastilhas. Nas Figuras 8 e 9 são apresentadas as micrografias referentes à região superficial e fraturada, respectivamente, da pastilha de SnO₂ puro.

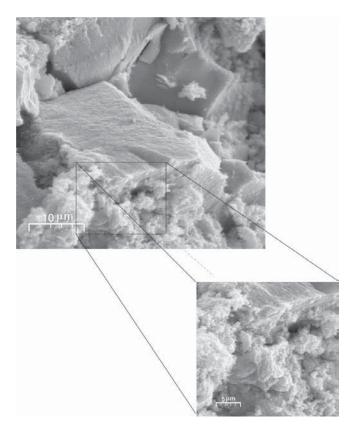

Os materiais apresentaram-se na forma de grandes aglomerados, mas com uma boa porosidade, podendo, assim, ser aplicados como sensores de gases.

Figura 7. Distribuição dos diâmetros das nanopartículas de SnO_2 não dopadas (a) e dopadas com 5% de Y (b), 5% de Ce (c) e 5% de La (d), tratadas a 550 °C/2 h

Figuras 8. Micrografias referentes à pastilha de SnO, não dopado

Figuras 9. Micrografias da pastilha de SnO_2 dopado com 5% de La

CONCLUSÕES

Nesta abordagem inicial sobre materiais nanoestruturados, em particular o dióxido de estanho, expôs-se uma metodologia para obtenção e controle do crescimento de nanocristais de dióxido de esta-

nho. O método utilizado, precursor polimérico seguido do tratamento térmico controlado, resultou na obtenção de dióxido de estanho nanoestruturado com alta estabilidade térmica contra crescimento de partículas. Observa-se que até 1000 °C as nanopartículas de SnO₂ dopadas apresentam tamanho médio de cristalitos menores que 20 nm. Estes resultados mostram claramente que dopantes, como terras raras (Ce, La e Y), podem ser usados para controlar o tamanho de partícula e estabilizar o SnO₂ contra o crescimento de partícula a altas temperaturas. A permanência em escala nanométrica a altas temperaturas é uma característica muito importante do material, principalmente porque se mantém uma alta área específica. Além disso, por este método é possível modificar a superfície do material, conferindo qualidades peculiares para determinadas aplicações, tais como em catalisadores e sensores de gás.

Expôs-se também uma abordagem sobre a obtenção e o crescimento de nanofitas de SnO_2 pelo método de redução-evaporação carbotérmica. No procedimento para obtenção deste composto o sistema utilizado não precisa estar sob vácuo, apenas utilizou-se um fluxo de N_3 .

O conhecimento das propriedades dos materiais nanoestruturados, relacionadas à sua dimensão, é muito importante como base para o desenvolvimento de futuras aplicações tecnológicas. Assim, este campo de pesquisa está aberto para novas descobertas, tornando-se um desafio para os pesquisadores da área.

REFERÊNCIAS

- Leite, E. R.; Weber, I. T.; Longo, E.; Varela, J. A.; Adv. Mater. 2000, 12, 965.
- Leite, E. R.; Maciel, A. P.; Weber, I. T.; Lisboa-Filho, P. N.; Longo, E.; Paiva-Santos, C. O.; Andrade, A. V. C.; Paskocimas, C. A.; Maniette, Y.; Schreiner, W. H.; Adv. Mater. 2002, 14, 905.
- Wang, R.; Yang, J.; Zheng, Z.; Carducci, M. D.; Jiao, J.; Seraphin, S.; Angew. Chem., Int. Ed. 2001, 40, 549.
- Maciel, A. P.; Lisboa-Filho, P. N.; Leite, E. R.; Paiva-Santos, C. O.; Schreiner, W. H.; Maniette, Y.; Longo, E.; J. Eur. Ceram. Soc. 2003, 23, 707
- Hai, B.; Tang, K.; Wang, C.; An, C.; Yang, Q.; Shen, G.; Qian, Y.; J. Cryst. Growth 2001, 225, 92; Diéguez, D.; Romano-Rodriguez, A.; Morante, J. R.; Weimar, U.; Schweizer-Berberich, M.; Göpel, W.; Sens. Actuators, B 1996, 31, 1
- Leite, E. R.; Cerri, J. A.; Longo, E.; Varela, J. A.; J. Eur. Ceram. Soc. 2001, 21, 669.
- Weber, I. T.; Andrade, R.; Leite, E. R.; Longo, E.; Sens. Actuators, B 2001, 72, 180.
- 8. Zheng, M.; Li, G.; Zhang, X.; Huang, S.; Lei, Y.; Zhang, L.; *Chem. Mater.* **2001**, *13*, 3859.
- Leite, E. R.; Gomes, J. W.; Oliveira, M. M.; Lee, J. H.; Longo, E.; Varela, J. A.; Paskocimas, C. A., Boschi, T. M.; Lanciotti Jr., F.; Pizani, P. S.; Soares Jr., P. C.; J. Nanosci. Nanotechnol. 2002, 2, 1.
- Romero, J. G. V; Luengo, C. A.; Huber, J. G.; Rosolen, J. M.; Quim. Nova 2002, 25, 59.
- Gorce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B.; Nature 1998, 398, 456;
 Kumacheva, E.; Kalinina, O.; Lilge, L.; Adv. Mater. 1998, 10, 1083.
- Interrante, L. V.; Hampden-Smith, M. J.; Chemistry of Advanced Materials, Willey-VCH: New York, 1998.
- 13. Alivisatos, A. P.; J. Phys. Chem. 1996, 100, 13226.
- 14. Alivisatos, A. P.; Science 1996, 271, 933.
- 15. Morup, S. Em *Nanomagnetism*; Hernando, A. ed.; Kluwer Academic Publishers: Boston, 1993, p. 93.
- O'Grady, K.; Chantrell, R. W.; Magnetic Properties of Fine Particles, Elsevier: Amsterdam, 1992, p. 93.
- 17. Mulvaney, P.; MRS Bulletin 2001, 12, 1009.
- 18. Faraday, M.; Philos. Trans. R. Soc. 1857, 147, 145.
- 19. O'Regan, B.; Grätzel, M.; Nature 1991, 353, 737.
- Li, W.; Osora, H.; Otero, L.; Duncan, D. C.; Fox, M. A.; J. Phys. Chem. A 1998, 102, 5333.
- Bedja, I.; Kamat, P. V.; Lapin, A. G.; Hotchandani, S.; Langmuir 1997, 13, 2398.
- Kavan, L.; Kratochvilova, K.; Grätzel, M.; J. Electroanal. Chem. 1995, 394, 93

- 23. Hagfeldt, A.; Grätzel, M.; Chem. Rev. 1995, 95, 49.
- Weller, D.; Moser, A.; *IEEE Trans. Magn.* 1999, 35, 4423; Sun, S.; Weller, D.; *J. Magn. Soc. Jpn.* 2001, 25, 1434.
- Wei, C.; Grouquist, D.; Roark, J.; J. Nanosci. Nanotechnol. 2002, 2, 47;
 Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P.; Nature 1994, 370, 354.
- 26. Feldmann, C.; Adv. Mater. 2001, 17, 1301.
- 27. Andrievski, R. A.; Glezer, A. M.; Scr. Mater. 2001, 44, 1621.
- Depero, L. E.; Sangaletti, L.; Allieri, B.; Bontemperi, E.; Marino, A.;
 Zocchi, M.; J. Cryst. Growth 1999, 198, 516.
- 29. Gleiter, H.; Acta Mater. 2000, 48, 1.
- 30. Horn, D.; Rieger, J.; Angew. Chem., Int. Ed. 2001, 40, 4330.
- 31. Jiao, J.; Seraphin, S.; J. Phys. Chem. Solids 2000, 61, 1055.
- Raghu, T.; Sundaresan, R.; Ramakrishnan, P.; Rama Mohan, T. R.; *Mater. Sci. Eng.*, A 2001, 304, 438.
- 33. Gleiter, H.; Nanostruct. Mater. 1995, 6, 78.
- 34. De, A.; Ray, S.; J. Phys. D-Appl. Phys. 1991, 24, 719.
- 35. Mori, N.; J. Appl. Phys. 1993, 73, 1327.
- Teraoka, Y.; Ishida, S.; Yamasaki, A.; Tomonaga, N.; Yasutake, A.; Izumi,
 J.; Moriguchi, I.; Kagawa, S.; Microporous Mesoporous Mat. 2001, 48, 151.
- Llobet, E.; Rubio, J.; Vilanova, X.; Brezmes, J.; Corrieg, X.; Gardner, J. W.; Hines, E. L.; Sens. Actuators, B 2001, 76, 419.
- 38. Mwamburi, M.; Wackelgard, E.; Sol. Energy, A 2000, 68, 371.
- Gopel, W.; Shierbaum K. D.; Wienhofer, H. D.; Solid State Ionics 1990, 28, 1691.
- 40. Bucher, E.; Appl. Phys. 1978, 17, 1.
- 41. Fagan, J. G.; Amarakoon, V. R. W.; Am. Ceram. Soc. Bull. 1993, 72, 119.
- 42. Zarzebski, M.; Marton, J. P.; J. Electrochem. Soc. 1976, 129, 299.
- 43. Duh, J. G.; Jou, J. W.; Chiou, B. S.; J. Electrochem. Soc. 1989, 136, 2740.
- Singh, V. K.; Dwivedi, R.; Srivastava, S. K.; Microelectron. J. 1996, 27, 531.
- Cukrov, L. M.; McCormick, P. G.; Galatsis, K.; Wlodarski, W.; Sens. Actuators, B 2001, 77, 491.
- Jyothi, T. M.; Sreekumar, K.; Talawar, M. B.; Mirajkar, S. P.; Rao, B. S.; Sugunan, S.; Pol. J. Chem. 2000, 74, 801.
- Nayral, C.; Ould-Ely, T.; Maisonnat, A.; Chaudret, B.; Fau, P.; Lescouzères, L.; Peyre-Lavigne, A.; Adv. Mater. 1999, 11, 61.
- 48. Epifani, M.; Alvisi, M.; Mirenghi, L.; Leo, G.; Siciliano, P.; Vasanelli, L.; J. Am. Ceram. Soc. 2001, 84, 48.
- Herrmann, J. M.,; Disdier, J.; Fernández, A.; Jiménez, V. M.; Sánchez-López, J. C.; Nanoestruct. Mater. 1997, 8, 675.
- 50. Song, K. C.; Kim, J. H.; Powder Technol. 2000, 107, 268.
- Carreño, N. L. V.; Maciel, A. P.; Leite, E. R.; Lisboa-Filho, P. N.; Longo, E.; Valentini, A.; Probst, L. F. D.; Paiva-Santos, C. O.; Schreiner, W. H.; Sens. Actuators, B 2002, 86, 185.
- Cirera, A.; Vilà, A.; Cornet, A.; Morante, J. R.; Mater. Sci. Eng., C 2001, 15, 203.
- Brito, G. E. S.; Santilli, C. V.; Pulcinelli, S. H.; Craievich, A. F.; *J. Non-Cryst. Solids* 1997, 217, 41.
- Santilli, C. V.; Pulcinelli, S. H.; Craievich, A. F.; *Phys. Rev. B* 1995, 51, 8801.
- Santilli, C. V.; Pulcinelli, S. H.; Craievich, A. F.; J. Non-Cryst. Solids 2001, 284, 61.
- Fraigi, L. B.; Lamas, D. G.; Walsöe de Reca, N. E.; *Mater. Lett.* 2001, 47, 262.
- 57. Pechini, M.; US pat. 3,330,697 1967.
- Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C.; Science 2001, 294, 1317
- 59. Pan, Z. W.; Daí, Z. R.; Wang, Z. L.; Science **2001**, 291, 1947.
- 60. Daí, Z. R.; Pan; Z. W.; Wang, Z. L.; Solid State Commun. 2001, 118, 351.
- 61. Wagner, R. S.; Ellis, W. C.; Appl. Phys. Lett. 1964, 4, 89.
- 62. Hoening, C. L.; Searcy, A. W.; J. Am. Ceram. Soc. 1966, 49, 128.
- Chiang, Y. M.; Birnie-III, D. P.; Kingery, W. D.; *Physical Ceramics Principles for Ceramic Science and Engineering*, John Wiley & Sons, Inc. New York, 1997.
- 64. Weissmuller, J.; J. Mater. Res. 1994, 9, 4.
- Leite, E. R.; Souza, C. M. G.; Longo, E.; Varela, J. A.; Ceram. Int. 1995,
 21, 143; Kakihana, M.; Okubo, T.; Arima, M.; Uchiyama, O.; Yashima, M.;
 Yoshimura, M.; Chem. Mater. 1997, 9, 451; Nobre, M. A. L.; Longo, E.;
 Leite, E. R.; Varela, J. A; Mater. Lett. 1996, 28, 215.
- Pizani, P. S.; Leite, E. R.; Pontes, F. M.; Paris, E. C.; Rangel, J. H. G.; Lee, E. J.; Longo, E.; Delgado, P.; Varela, J. A.; Appl. Phys. Lett. 2000, 77, 824; Leite, E. R.; Pontes, F. M.; Paris, E. C.; Paskocimas, C. A.; Lee, E. J.; Longo, E.; Pizani, P. S.; Varela, J. A.; Mastelaro, V.; Adv. Mater. Opt. Electron. 2000, 10, 235; Pontes, F. M.; Leite, E. R.; Longo, E.; Varela, J. A.; Pisani, P. S.; Campos, C. E. M.; Lanciotti, F.; Adv. Mater. Opt. Electron. 2000, 10, 81.
- Leite, E. R.; Paris, E. C.; Longo, E.; Varela, J. A.; J. Am. Ceram. Soc. 2000, 83, 1539.

- Leite, E. R.; Gomes, J. W.; Oliveira, M. M.; Lee, E. J. H.; Longo. E.; Varela, J. A.; Paskocimas, C. A.; Boschi, T. M.; Lanciotti, F.; Pizani, P. S.; Soares, P. C.; J. Nanosci. Nanotechnol. 2002, 2, 125.
- 69. Gaidi, M.; Chenevier, B.; Labeau, M.; Sens. Actuators, B 2000, 62, 43.
- Kunimoto, A.; Abe, N.; Uchida, H.; Katsube, T.; Sens. Actuators, B 2000, 65, 122.
- 71. Yamazoe, N.; Tamaki, J.; Miura, N.; Mater. Sci. Eng., B 1996, 41, 178.
- Diéguez, A.; Romano-Rodríguez, A.; Alay, J. L.; Morante, J. R.; Bârsan, N.; Kappler, J.; Weimar, U.; Göpel, W.; Sens. Actuators, B 2000, 65, 166.
- 73. Jinkawa, T.; Sakai, G.; Tamaki, J.; Miura, N.; Yamazoe, N.; *J. Mol. Catal. A: Chem.* **2000**, *155*, 193.
- Ansari, S. G.; Ansari, Z. A.; Kadan, M. R.; Karekar, R. N.; Aiyer, R. C.; Sens. Actuators, B 1994, 21, 159.
- 75. Madhushudana, M. H.; Chandorkar, A. N.; Sens. Actuators, B 1992, 9, 1.
- 76. Ogawa, H.; Nishikawa, M.; Abe, A.; J. Appl. Phys. 1982, 53, 4448.
- Sangaletti, L.; Depero, L. E.; Allieri, B.; Pioselli, F.; Angelucci, R.; Poggi, A.; Tagliani, A.; Nicoletti, S.; J. Eur. Ceram. Soc. 1999, 19, 2073.

- Santilli, C. V.; Pulcinelli, S. H.; Brito, G. E. S.; Briois, V.; *J. Phys. Chem.*, B 1999, 103, 2660.
- Paiva-Santos, C. O.; Gouveia, H.; Las, W. C.; Varela, J. A.; *Mater. Struct.* 1999, 6, 111.
- Shimizu, Y.; Kai, S.; Takao, Y.; Hyodo, T.; Egashira, M.; Sens. Actuators, B 2000, 65, 349.
- 81. Zhang, G.; Liu, M.; Sens. Actuators, B 2000, 69, 144.
- Weber, I. T.; Andrade, R.; Leite, E. R.; Longo, E.; Sens. Actuators, B 2001, 72, 180.
- 83. Diéguez, A.; Romano-Rodríguez, A.; Morante, J. R.; Weimar, U.; Schweizer-Berberich, M.; Göpel, W.; Sens. Actuators, B 1996, 31, 1.
- 84. Diéguez, A.; Romano-Rodríguez, A.; Alay, J.L.; Morante, J. R.; Bârsan, N.; Kappler, J.; Weimar, U.; Göpel, W.; Sens. Actuators, B 2000, 65, 166.
- McClune, W. F. (editor-in-chefe); Powder Diffraction Files, JCPD, International Center for Diffraction Data, Pensylvania: USA, 1984.