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ABSTRACT

We show how to compute the number of reducible cubic scrolls of codimension 2 in P
n incident

to the appropriate number of linear spaces.
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1 INTRODUCTION

A cubic rational normal scroll of codimension 2 in P
n is the residual intersection of 2 quadric

hypersurfaces containing a codimension 2 plane. It is also equal to the locus of rank 1 of a 2×3

matrix (
L1(x) L2(x) L3(x)

M1(x) M2(x) M3(x)

)
(1)

(cf. (Harris 1992) where the Li, Mj denote sufficiently general linear forms in the homogeneous

coordinates x0, . . . , xn of P
n. For n = 3, this is a twisted cubic. Enumeration of such curves

has attracted some attention in the last two decades, and is now but an example in Gromov–

Witten theory, cf. (Fulton and Pandharipande 1997), (Kock and Vainsencher 1999). No such

general technique is known yet for higher dimension. For the case of cubic scrolls, a procedure to

determine some of these numbers was explained in (Vainsencher and Xavier 2002).

The purpose of this note is to show an application of Bott’s residual formula for the calculation

of the number of reducible (n− 2)−dimensional cubic scrolls in P
n satisfying suitable incidence
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conditions to linear subspaces. The whole point is the simple observation that, just as in the

case of twisted cubics, a general reducible cubic scroll of dimension (n − 2)− is the union of an

(n− 2)−plane with an (n− 2)−dimensional quadric meeting along an (n− 3)−plane.

2 THE PARAMETER SPACE

As customary in enumerative questions, we take the lead from the previous observation and consider

the incidence variety,

X = {(p, �, κ ⊂ h) | p = [n− 3] ⊂ � = [n− 2], p ⊂ κ = quadric in the hyperplane h
}
. (2)

X is naturally obtained as a tower of fiber bundles. Start with the grassmannian,

Y := Gr[n− 3n]
of projective (n− 3)−dimensional subspaces of P

n. It carries a tautological exact sequence

S >→F � Q,

where rank S = 3 and F denotes the trivial bundle with fiber the dual space (Cn+1)�. The homoge-

neous coordinates x0, . . . , xn form a basis for the latter space. The fiber of S over p = [n−3] ∈ Y

is the 3–dimensional space of linear forms vanishing on p. The choice of a space � = [n − 2]
containing a fixed p = [n − 3] is tantamount to picking a 2–dimensional vector subspace of the

fiber Sp, i.e., a point in the dual space S�
p. Thus, the set of pairs p ⊂ � is the total space of the P

2–

bundle, P (S�) → Y. Likewise, hyperplanes h through p form the total space of the P
2–bundle,

P (S) → Y. The choice of a quadric κ ⊂ h containing p yields the P
2n−2− bundle,

P
(R) → P (S) .

Here R stands for the rank–(2n − 1) vector bundle over P (S) obtained as follows. Let R be

the kernel of S2F � S2Q. Since 3n = (
n+2

2

) − (n−3+2
2

)
, this is the rank–3n bundle of quadrics

vanishing at the varying p ∈ Y. Let H = OS(−1) >→S be the line bundle over P (S) with fiber

over h given by the scalar multiples of the linear form h. Put F = F/H. Then R fits into the

diagram of natural vector bundle maps,

H⊗ F >→ R � R
|| v↓ v↓

H⊗ F >→ S2F � S2F
↓↓ ↓↓

S2Q = S2Q
We may summarize the previous discussion as follows.

Lemma 2.1. Notation as above, the parameter space X is isomorphic to the fiber product,

X = P
(S�

)×YP
(R)

and dim X = 5n− 4. �
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Remark 2.2. Let

X̃ = { ((p, �, κ), x) ∈ X×P
n | x ∈ κ ∪ �

}
.

It should be noted that X̃ →X is not a flat family. It can be rendered flat by a single blowup along

a suitable smooth subvariety of X using techniques as in (Vainsencher and Xavier 2002), but this

is not needed in the sequel.

3 CYCLE CLASSES

Now we define the divisors corresponding to the relevant incidence conditions.

Fix a line �0 = P
1 ⊂ P

n and a plane π0 = P
2 ⊂ P

n. We define

Dπ0,p =
{
p ∈ Y |p ∩ π0 �= ∅

}
,

D�0,� = {
� ∈ P (S�) | � ∩ �0 �= ∅

}
,

D�0,κ = {
κ ∈ P

(R) | κ ∩ �0 �= ∅
}
.

We also need a bit more of notation. We write

L >→S � OS�(1)

for the tautological sequence over P (S�), where rank L=2.

Proposition 3.1. The cycle classes of the divisors defined above can be expressed as follows in

terms of Chern classes of the natural bundles:

(1) Dπ0,p = c1(Q).

(2) D�0,� = c1(L�) = c1(S�)+ c1(OS�(1)) = c1(Q)+ c1(OS�(1)).

(3) D�0,κ = 2c1(OS(1))+ c1(OR(1)).

Proof. Let E = 〈x3, . . . , xn〉 ⊂ F be the space of n− 2 linear forms cutting π0 = P
2 ⊂ P

n. Let

E = F/E denote the rank–3 quotient. Studying the diagram of vector bundles over Y,

E
↓̌

S >→ F � Q
σ ↘ ↓↓

E

it can be seen that p ∈ Y meets π0 if and only if the slant arrow σ : S → E is not injective

at p. Hence Dπ0,p is the divisor of zeros of
3∧ σ . It follows that Dπ0,p = c1(

3∧ S�) = c1(Q).

The proof of 2. is similar. The last formula is slightly trickier. It suffices to establish it over an

open subset the complement of which contains no divisor. Thus, we may restrict to the locus of

h transversal to �0. Let E = 〈x2, . . . , xn〉 ⊂ F be now the space of equations for �0 = P
1 ⊂ P

n.
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Let E = F/E be the rank 2 quotient. The composition H → F → E � C
2 is injective over

the transversal locus. The quotient map F � H = F/(E +H) can be thought of as evaluation

of linear forms at the point of intersecion of �0 with a varying, transversal hyperplane. It yields an

evaluation map for quadratic forms, S2F → S2H and induces S2(F/H) → S2H. Composing

with OR(−1) >→R >→ S2(F/H), we find OR(−1) → S2H. The latter vanishes precisely over

D�0,κ (along the transversal locus). Since c1(S2H) = 2c1(H) = −2c1(H), the formula follows. �

4 NUMBERS

We shall abuse notation and keep writing

Dπ0,p, D�0,�, D�0,κ

for the pullback of these divisors to X. The intersection of general translates is transversal by

standard Bertini-Kleiman-Sard arguments (applied to (2.2) X̃ → P
n). Taking i1 + i2 + i3 =

5n− 4 = dim X such translates, we may find the number of elements (p, �, κ) of X such that the

subspace p = [n−3]meets i1 P
2’s, the subspace � = [n−2]meets i2 P

1’s and the (n−2)−quadric

κ meets i3 P
1’s. This is done by evaluating Ni1,i2 :=∫

X

(Dπ0,p)i1 · (D�0,�)
i2 · (D�0,κ )

i3 =
∫

X

c1(Q)i1 · c1(L�)i2 · (2c1(OS(1))+ c1(OR(1)))i3 .

For the specific task of enumerating the reducible cubic scrolls, we take translates of the

divisors Dπ0,p and D�0,�∪ κ := D�0,� +D�0,κ . We are now asked to compute

Ni :=
∫

X

(Dπ0,p)i · (D�0,�∪ κ)
j

for i + j = dim X. This is a purely mechanical matter with the help of either Schubert calculus

(e.g., as implemented in (Katz and Strømme 1992) or Bott’s residue formula (cf. (Bott 1967),

(Meurer 1996)). Here are the ingredients for the latter. First find the fixed points of a C
�−action on

X, induced by an action xi �→ twi xi on P
n. Choosing the integral weights wi sufficiently general,

it can be checked that all fixed points are isolated, starting at Y, then climbing up the tower

Y← P (S)← P
(R)← P

(S�
)×YP

(R) = X.

Pick p1 = 〈x0, x1, x2〉 ∈ Y = Gr[n− 3n], among the
(
n+1

3

)
fixed points in Y. There are just three

fixed points on the fiber P
2 = P

(Sp1

)
. Choose one, say p1,1 = 〈x0〉 (a hyperplane through p1).

The fiber of P
(R) over p1,1 is

P
2n−2 = P

(〈x2
1 , x1x2, . . . , x1xn, x

2
2 , . . . , x2xn〉

)
,

with the obvious 2n−1 fixed points. Pick p1,1,1 = 〈x2
1〉. By the same token, the fiber of X → P

(R)
over p1,1,1 is P

2 = P (〈x0, x1, x2〉), with xi = 〈x0, x1, x2〉/〈xj , xk〉. We obtain thus the fixed point

p1,1,1,1 = x0 (among a total of
(
n+1

3

)·3·(2n−1)·3 possible ones). The contribution of this fixed point
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to Bott’s formula is given by evaluating the indicated Chern classes in the equivariant cohomology

ring at the point. Explicitly, c1(Q) evaluates to
∑n

3 wi , because the fiber Qp1 = 〈x3, . . . , xn〉
decomposes into eigenspaces with weights wi, i = 3 . . . n. The term c1(L�) evaluates to−w1−w2.

Next, the fiber of OS(−1) is the line spanned by the equation of the hyperplane 〈x0〉; dualizing,

we see that c1(OS(1)) yields −w0. The fiber of OR(1) is dual to the line 〈x2
1〉 hence contributes

with −2w1. We also need the weights of the fiber of the tangent bundle of X. Starting at Tp1Y,

we write the eigenspace decomposition Hom(〈x3, . . . , xn〉, F/〈x3, . . . , xn〉) = ∑
xi/xj , with

i ∈ {0, 1, 2}, j ∈ {3, . . . , n}. Add to this the (decomposition of the) tangent along the fiber

of P (S) → Y, at 〈x0〉, namely, x1/x0 + x2/x0. Continuing, get the tangent along the fiber

of P
(R) → P (S), to wit, (x1x2 + · · · + x1xn + x2

2 + · · · + x2xn)/x
2
1 . At last, add the fiber

of T (P (S�) /Y) at 〈x0〉, x0/x1 + x0/x2. The top Chern class needed is the product of weights

(wi − wj), i ∈ {0, 1, 2}, j ∈ {3, . . . , n}, times (w1 − w0)(w2 − w0), times (w2 − w1) · · · (wn −
w1)(2w2 − 2w1) · · · (w2 + wn − 2w1), times (w0 − w1)(w0 − w2); call this product w. The total

contribution of the present fixed point is the fraction(( n∑
3

wi

)i1

(−w1 − w2)
i2(−2w0 − 2w1)

i3

)/
w.

Quite miraculously, adding up the contributions over all fixed points, we get an integer.

The table below compiles some examples for 3 ≤ n ≤ 6.

n i Ni i1 i2 Ni1,i2

3 0 121440 0 3 368

3 1 37920 0 4 184

3 2 6336 1 4 36

3 3 504 2 2 92

3 4 0 3 2 18

4 0 285726000 4 2 5700

4 3 7484880 5 2 1570

5 0 681923574360

5 1 259044433830

6 0 1676746892620800

Thus we find in P
4 the numbers N3 = 7484880 of reducible cubic scrolls � ∪ κ ↔ (p, �, κ) such

that the line p = P
1 ⊂ P

4 meets 3 general given P
2 ⊂ P

4 and p ⊆ �∩ κ and the union �∪ κ meets

dim X− 3 = 5 · 4− 4− 3 = 13 general lines. On the same row of the table we read N5,2 = 1570,

the number of configurations (p, �, κ) ∈ X with the line p meeting i1 = 5 general P
2’s, the plane �

meeting i2 = 2 general lines and the quadric surface κ meeting i3 = 16− i1− i2 = 9 other general

lines. The entries have been computed employing Greuel et al. 2001. A script can be downloaded

from Vainsencher 2004.
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Closing Remarks

As kindly pointed out by the referee, for n > 5 all rational normal cubic scrolls of codimension 2

in P
n are cones (cf. XXX 1957). For n = 4, 5, the irreducible singular cubic scrolls not contained

in a hyperplane are cones over a scroll in a hyperplane. The enumeration of such cones satisfying

suitable incidence conditions can be pursued by means of a natural fibration. We hope to report on

this elsewhere.
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RESUMO

Mostramos como calcular o número de rolos cúbicos redutíveis de codimensão 2 em P
n incidentes a espaços

lineares apropriados.

Palavras-chave: rolos cúbicos, geometria enumerativa.
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