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ABSTRACT

Tidal processes were important for deposition of the Barreiras Formation located in northern Brazil, while correlatable

deposits in northeastern Brazil have been traditionally related to continental environments. Facies analysis in southern

Alagoas revealed that the Barreiras Formation consists of cross-stratified conglomerates and sandstones (facies Sx and

Cgx), compound cross-stratified sandstones (facies Cx), and heterolithic beddings (facies H). A significant portion

of these deposits occurs within channel morphologies displaying fining and thinning upward successions. An abun-

dance of sedimentary features is comparable to those from the northern Brazilian counterpart. These include: tidal

bundles; herringbone cross-stratification; heterolithic beddings with sandstone and mudstone beds in sharp contacts;

and ichnofossils mostly consisting of Ophiomorpha nodosa, Skolithos and Planolites. Altogether, these features point

to a marginal marine depositional setting dominated by tidal processes, which are related to an estuarine system, an

interpretation also provided for the Barreiras Formation in northern Brazil. The widespread occurrence of deposits

with unambiguous evidence of tidal processes in the Barreiras Formation of northern Brazil, and now in the State of

Alagoas, leads to argue that the early/middle Miocene worldwide marine transgression might have left a much more

widespread sedimentary record along the Brazilian coast than currently regarded.
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INTRODUCTION

The early/middle Miocene is well known as a period

for a worldwide transgression due to a sea level rise.

The Barreiras Formation exposed in the States of Pará

and Maranhão, northern Brazil, displays an excellent

record of this event. In these areas, the Barreiras For-

mation consists of lower/middle Miocene deposits (Arai

et al. 1988, 1994, Arai 1997, Leite 2004, Leite et

al. 1997a, b, F.P.R. Leite, unpublished data) that are

dominated by an abundance of sedimentary and ichno-

logic features derived under influence of tidal processes
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(Rossetti and Truckenbrodt 1989, Rossetti et al. 1990,

Rossetti 2000, 2001, 2006a, b, Netto and Rossetti 2003,

Rossetti and Santos Jr. 2004). Despite its occurrence

in several geological contexts, including different sedi-

mentary basins and platformal areas, the Barreiras For-

mation shows both faciological and stratigraphic orga-

nizations easily reproduced throughout northern Brazil

(e.g., Rossetti 2004). Its sedimentary nature is compat-

ible with deposition in a variety of environments linked

to incised valley estuaries developed under the combined

effect of eustasy and tectonics (Rossetti and Santos Jr.

2004, 2006).
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The Barreiras Formation is widespread along the

Brazilian coast, occurring throughout the Northeast and

Southeast Regions up to the State of Rio de Janeiro,

being particularly well represented along numerous but

discontinuous coastal cliffs. In contrast to more inland

areas, the sedimentary structures have a higher preser-

vation potential along these cliffs. This is due to the

combined effect of wind, waves and tidal currents, which

preclude vegetation growth and promote frequent sedi-

ment fall. The constant renewal of cliff face provides

fresh exposures, which favor sedimentological investiga-

tion aiming the reconstruction of sedimentary processes.

There are several works dealing with the Barreiras

Formation in northeastern Brazil (e.g., Mabesoone et al.

1972, Bigarella 1975, Suguio et al. 1986, Alheiros et

al. 1988, Alheiros and Lima Filho 1991, Vilas Boas

et al. 2001, C.C.U. Lima, unpublished data, Lima and

Vilas Boas 2004, Araújo et al. 2006, Furrier et al. 2006,

Lima et al. 2006). However, in contrast to northern

Brazilian areas, these studies have recognized only con-

tinental, mostly fluvial and lacustrine deposits within

this unit. If these interpretations are correct, then an

intriguing question to be answered is why the Miocene

transgression is well recorded only in northern Brazil,

and not along its northeastern coast, where these de-

posits are well represented?

Perhaps, there is no need for one to seek answers

for this question, as the recognition of marine features

might have been under looked. Some authors (Suguio

and Nogueira 1999, Arai 2006, Rossetti 2006b) com-

mented that a marine transgression should be also re-

ported in northeastern Brazil, though no data have

been provided to sustain this claim. In addition, Salim

et al. (1975) and Menezes et al. (1998) documented

marine influenced deposits in the Barreiras Formation

exposed in the eastern coast of the State of Rio Grande

do Norte. Although to the present authors knowledge

this represents the only report of this kind, it motivated

to look for further evidence that could provide conclu-

sive data for supporting a marine influence in north-

eastern Brazil.

The recognition of marine influence in deposits

lacking fossil data, as in the Barreiras Formation, might

be problematic. In this case, one must rely on detailed

observation of physical sedimentary structures, which

might be combined with the study of ichnofossils, in or-

der to interpret the sedimentary processes.

This work aims to present the results of a sedimen-

tological investigation undertaken along several cliffs

distributed along the southern coast of the State of Ala-

goas (Fig. 1), where an abundance of sedimentary fea-

tures in the Barreiras Formation could be characterized

in great detail. Based on the data provided herein, it

is possible to assure that tidal currents were responsible

for the deposition of this unit.

GEOLOGICAL CONTEXT

The study area is located in the Sergipe-Alagoas Basin.

This consists of a NNE/SSW elongated asymmetric

structure formed along the Brazilian coast during the

South Atlantic rifting, initiated in the late Jurassic to

early Cretaceous. This basin reaches up to 13,000 km2

onland and nearly 35,000 km2 offshore. It separates from

the Pernambuco-Paraíba Basin by the Maragoji High to

the north, and from the Estância Platform and Jacuípe

Basin by the Vaza-Barris Fault Zone to the south. The

basin is internally sub-divided in two sub-basins by the

Jaboatã-Penedo High (Aquino and Lana 1990).

The sedimentary fill of the Sergipe-Alagoas Basin

consists of four megasequences representative of the

pre-rift, rift, transitional and post-rift phases (Mohriak

et al. 1997), with a depocenter located in the Mosqueiro

Low, south of Aracajú (SE). The pre-rift megasequence

has Mesozoic and Paleozoic ages, and is represented

by the Baixo São Francisco Group, which includes the

Estância Formation (Precambrian), glacial deposits of

the Batinga Formation (Carboniferous), sabkha deposits

of the Aracaré Formation (Permian), and fluvio-lacus-

trine deposits of the Candeeiros, Bananeiras and Ser-

raria formations (late Jurassic/early Cretaceous). The

main rifting took place from Neocomian to Barremian,

being represented by the Rio Pitanga, Penedo and Barra

de Itiúba formations. The transitional megasequence,

formed from Barremian to Aptian, consists of the Poção,

Coqueiro Seco and Maceió formations, as well as tran-

sitional deposits of the Muribeca Formation (F.J. Feijó,

unpublished data). The post-rift megasequence, formed

during the Albian to Campanian, includes marine de-

posits of the Riachuelo Formation. Following the Cam-

panian, the Sergipe-Alagoas Basin experienced a regres-
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Fig. 1 – Location map of the study area containing exposures of the Barreiras Formation in the

southern coast of the State of Alagoas, between the city of Maceió and the locality of Jequiá.

sion, which is represented by the Calumbi, Mosqueiro

and Marituba formations.

The Barreiras Formation overlies the above de-

scribed megasequences in the onland portion of the

Sergipe-Alagoas Basin. This unit has not been dated

in this study area yet, but studies of correlatable de-

posits in northern Brazil have indicated a Miocene age

for these deposits (Arai et al. 1988, 1994, Arai 1997,

F.P.R. Leite, unpublished data, Leite et al. 1997a, b).

THE BARREIRAS FORMATION IN THE STUDY AREA

Deposits of the Barreiras Formation studied herein

occur in several cliffs along the southern coast of the

State of Alagoas, particularly between the city of Ma-

ceió and the locality of Jequiá (Fig. 1). Cliffs are up to

25 m high, several hundreds of meters long (Fig. 2A),

and display strata with a variety of well preserved sed-

imentary features that can be used for the reconstruc-

tion of the depositional processes. Likewise many other

places in northeastern Brazil, the Barreiras Formation

in this study area consists of quartzose conglomerates,

fine to coarse-grained sandstones, heterolithic deposits

and mudstones. These lithologies display a wide range

of colors, varying from red, yellow, pink, white to purple,

as typical for this unit.

In general, the base of the Barreiras Formation is

not exposed in the study area, but in a few places, it is

marked by a discontinuity surface mantled by an iron-

cemented conglomeratic lag (Fig. 2B) displaying abun-

dant root marks (Fig. 2C). In addition, this unit is dis-

tinguished from overlying sandy deposits, which are

herein designated informally as the Post-Barreiras Sedi-

ments (sense Rossetti 2001), with basis on the presence

of an unconformity. This unconformity, observed even

on remote sensing image (Fig. 2D), is similar to the un-

conformity that occurs at the top of the Barreiras Forma-

tion in northern Brazil. Likewise that region, the uncon-

formity atop the Barreiras Formation in the study area

is characterized by an irregular, erosional discontinuity

surface. This is marked by a lateritic paleosol present-

ing a ferruginous concretionary horizon up to 3 m thick

(Fig. 2D-E). The thickness of the Barreiras Formation

below this unconformity averages 15 m along the stud-

ied cliffs.

Analysis of the studied exposures revealed an

abundance of strata with channel morphologies charac-

terized by shallow (3 to 5 m thick), but laterally wide-

spread (several tens of meters long), concave up features

(Fig. 3A-C). The bulk of the channels are lithologically

represented by well sorted, cross-stratified sandstones.

An Acad Bras Cienc (2009) 81 (4)



“main” — 2009/10/9 — 13:03 — page 744 — #4

744 DILCE F. ROSSETTI and ANA M. GÓES

Fig. 2 – A) General view of a cliff consisting of exposures of the Barreiras Formation (person for scale indicated in the inside circle is 1.75 m tall).

B-E) Characterization of discontinuity surfaces that bound the Barreiras Formation, illustrating: the iron-cemented conglomeratic lag (B) and the

root marks (C) associated with the basal discontinuity surface; a spatial view of the upper unconformity, which separates the Barreiras Formation

from the overlying Post-Barreiras Sediments (D; Image 2007-Digital Globe); general view of the upper unconformity, which is marked by lateritic

paleosol (E; person for scale indicated in the inside circle is 1.75 m tall); and a close-up of the concretionary horizon of this paleosol (F).

However, the sandstones might grade both laterally and

downward into conglomerates. Additionally, channel

fills dominated by heterolithic deposits are also com-

mon. Channel deposits are amalgamated (Fig. 3B) or

cut down into thick, laterally continuous, flat lying, het-

erolithic and muddy deposits (Fig. 3C). Both, i.e., the

channel and the flat lying deposits, are internally orga-

nized into fining and thinning upward successions.

In the following, a detailed facies description of

the studied deposits is provided in order to discuss the

sedimentary processes responsible for the genesis of the

channel deposits, as well as of the adjacent strata.
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Fig. 3 – Typical channel morphologies of the Barreiras Formation. A) General view of a channel shape (person for scale indicated by inside circle

is 1.65 m tall). B) Amalgamation of several channel deposits (Ch) that cut down into each other. C) A channel deposit (Ch) that cut down into

laterally continuous flat lying heterolithic deposits (Pl).

FACIES DESCRIPTION

For the purpose of this work, the studied deposits can

be described in terms of four main sedimentary facies:

cross-stratified conglomerates (facies Cgx), cross-strat-

ified sandstones (facies Sx), compound cross-stratified

sandstone (facies SCx), and heterolithic deposits (H).

CROSS-STRATIFIED CONGLOMERATE (FACIES CGX)

This facies (Fig. 4A-D) consists of poorly- to mod-

erately-sorted, sub-rounded to rounded pebbles of quartz

and intraformational mudstones, which are bounded

by a matrix of coarse- to medium-grained sandstones.

The mud clasts occur in sizes commonly larger than the

quartz pebbles, reaching up to 10 cm. Facies Cgx is

crudely to well stratified, with dominance of medium to

large scale, opposed dipping, trough, and less commonly,

tabular cross-stratifications. Despite the coarse-grained

nature, thin mud drapes highlight internal reactivation

surfaces (Fig. 4). Laminated mud layers averaging 5 cm

thick are also present along set boundaries. These overly

deposits topped by either symmetric or asymmetric rip-

ple marks. A striking feature of this sedimentary facies

is the abundance of trace fossils dominated by Ophio-

morpha and Skolithos (Fig. 4B-D).

CROSS-STRATIFIED SANDSTONE (FACIES SX)

Cross-stratified sandstones (Fig. 5A-H) show, in gen-

eral, poorly- to well-sorted, fine- to coarse-grain sizes

and small to medium scale, tabular and trough cross-

stratifications. Not rarely, large scale cross-stratification

is also present, with individual sets reaching locally up

to 3 m thick. As observed in facies Cgx, opposed-dip-

ping cross strata are widespread in this facies, locally
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Fig. 4 – Cross-stratified conglomerates (facies Cgx). A) General view of several sets of cross-stratified conglomerates that grade downward into

cross-stratified sandstones (facies Sx). B-D) Details of the cross sets with abundant (B) and disperse trace fossils (C-D) (white arrows), mostly

consisting of Ophiomorpha and Skolithos. The white rounded clasts in all figures are mudstone intraclasts.

forming herringbone cross sets (Fig. 5A). The domi-

nant type is tabular cross-stratification, which is usually

highly tangential to set bottoms (Fig. 5C-D). Sigmoidal

cross-stratication was also observed locally. A particu-

lar feature of this lithofacies is the presence of abundant

reactivation surfaces and mud drapes (Fig. 5B-D) lo-

cally organized into laterally alternating thicker/thinner

successions of foreset packages, which vary from only

a few centimeters up to 30 cm thick (Fig. 5E). Mud clasts

are abundant throughout these deposits. Some of them

have barely been displaced from the mud drapes that

separate the foreset packages. In addition, trace fos-

sils are pervasive in this facies, mostly consisting of

Ophiomorpha nodosa (Fig. 5F-G) and, subordinately,

Skolithos and Planolites. The first occurs in large

sizes, i.e., burrow galleries averaging 10 cm in diam-

eter and up to 40 cm, and locally forms monospecific

ichnofabric. In places, bioturbation is so intense that

the primary sedimentary structures have been almost

completely obliterated (Fig. H).
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Fig. 5 – Cross-stratified sandstones (facies Sx). A) General view of several sets of cross-stratified sandstones displaying opposed foresets. B and

C) Large scale cross sets with packages of foresets marked by reactivation surfaces and/or mud drapes, highlighted by white lines in B and white

mud drapes in C. D) Close up of the cross-stratified sets with abundant, either continuous or discontinuous, mud drapes (white color). E) Detail

of a cross set with abundant, alternating thicker and thinner foreset packages (black lines), defined by mud couplets (white lines), a feature related

to ebb/flood tidal cycles. F) The trace fossil Ophiomorpha nodosa, which is abundant in this facies. G) Detail of a large, branched Ophiomorpha

nodosa. H) Highly bioturbated sandstones where primary sedimentary structures became almost totally obliterated by the activity of organisms.

Note the chaotic mud chips, resulting from disturbance of once continuous drapes.
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COMPOUND CROSS-STRATIFIED SANDSTONE

(FACIES SCX)

Compound cross-stratified sandstones (Fig. 6) are char-

acterized by low angle (< 15◦) dipping, large scale (up

to 5 m thick) cross sets internally showing superimposed,

medium scale, either tabular or trough cross beds. Sand

grain sizes vary from fine to coarse, and the sorting is usu-

ally moderate. Mud clasts are disperse throughout these

beds, particularly in association with coarser grain sizes.

The superimposed cross sets usually ascend (climb) upon

the large scale foresets, though descending cross sets are

also present. Foresets within the superimposed cross sets

also dip at low angle (< 20◦, on average). Facies SCx is

most common at the base of channel deposits, or it can

fill up the entire channel. Likewise facies Sx, climbing

cross sets display abundant reactivation surfaces, but mud

drapes are rare. Master beddings, however, are marked

by mud layers. Trace fossils similar to those found in

facies Sx are disperse throughout these deposits, though

they are much less abundant than in that facies.

HETEROLITHIC DEPOSITS (H)

This facies (Fig. 7A-D) consists of interbedded sand-

stones and mudstones with layers in sharp contacts. The

proportion between these lithologies varies, resulting in

several types of heterolithic beddings. Thinly-laminated

(pinstripe) beddings are formed where mudstones are

dominant, with only minor sandstone stripes forming

thin lenses or continuous laminae less than 1 mm thick.

Lenticular/wavy bedding is characterized by alternating

sandstone and mudstone layers commonly 1-2 cm thick

(Fig. 7A). Flaser bedding consists of sandstone layers

internally displaying discontinuous mud laminae. Ad-

ditional features are vertically accreting sandstone units

up to 5 cm thick that are separated by either planar or

slightly undulatory, laterally continuous mudstone layers

a few mm thick (Fig. 7B). Sandstone layers are mainly

parallel laminated and, less commonly, cross lamin-

ated. Interestingly is the internal organization of these

lithologies, which form alternating thicker/thinner suc-

cessions of sandstones separated by mud couplets (Fig.

7C-D), as observed in facies Sx. Similarly to the other

sedimentary facies described herein, the heterolithic de-

posits display abundant trace fossils, particularly within

the sandy components. In addition to the types of traces

described above, there are several smaller-scale, unde-

termined burrows.

INTERPRETATION OF SEDIMENTARY PROCESSES

In the lack of fossil bodies, the best criteria to recog-

nize deposits formed under influence of marine flows in

the sedimentary record are based on the presence of sed-

imentary structures diagnostic of tidal processes. The

sedimentological imprint of tidal currents relies chiefly

on their cyclic nature, which results from diurnal/semi-

diurnal ebb and flood tide and monthly neap and spring

tide fluctuations. Earlier workers focusing on the recog-

nition of tidal deposits had to rely their interpretation

basically on the presence of bipolar or bidirectional her-

ringbone cross-stratification (Yagishita 1997). However,

the action of tidal currents on sediments does not nec-

essarily produce this structure. This is because many

tidal settings display asymmetrical tidal currents, when

reduced deposition or even no deposition is expected

during weak, subordinate tides (Kreisa and Moiola

1986), as observed in many ancient and modern settings

(Dalrymple et al. 1978, de Boer et al. 1989, Nio and

Yang 1991).

The advance of studies on tidal settings resulted

in several additional criteria that can be used to iden-

tify tidal rhythmites (see Nio and Yang 1991 for a re-

view). These are imprinted in the sedimentary deposits

as tidal beddings (Reineck and Wunderlich 1968, Visser

1980, Terwindt 1981). Tidal bundles were first iden-

tified by Boersma (1969) as being deposited by domi-

nant tidal currents, and thin mud layer were ascribed by

Terwindt (1971) to slack water deposition during tidal

reversals. The thickness variation of tidal bundles was

shown to correspond to neap/spring tidal cycles by Visser

(1980). Based on these works, many deposits previously

ascribed as entirely continental in origin were reinter-

preted as primarily formed by tidal processes.

The main feature diagnostic of tidal bundles is the

repetitive thick-thin pairing of strata marked by reacti-

vation surfaces and/or mud drapes, which are related to

ebb/flood tidal periodicities (e.g., Mowbray and Visser

1984, Yang and Nio 1985, Kreisa and Moiola 1986,

Chakraborty and Bose 1990, Leckie and Singh 1991,

Simpson and Eriksson 1991, Shanley et al. 1992).
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Fig. 6 – Compound cross-stratified sandstone (facies SCx) with large scale cross sets defined

by low angle dipping master bedding separating internal, medium scale, ascending cross sets.

Note that this facies is sharply overlain by a concave up deposit related to a tidal channel

(Ch) (the dotted white line highlights the base of the channel deposit).

In the study area, there are several features assur-

ing that deposition took place chiefly in a marine influ-

enced setting under the action of tidal currents. The com-

mon occurrence of opposed dipping cross sets forming

herringbone cross-stratification is consistent with highly

fluctuating flow conditions, as occurs in marine settings.

However, the most convincing evidence is the abund-

ance of sedimentary structures diagnostic of tidal pe-

riodicities. This is particularly indicated in facies Sx

by the laterally alternating thick-thin pairing marked by

double mud couplets, which is similar to many others

recorded in both modern and ancient tidal-generated

deposits (e.g., Visser 1980, Allen 1981a, b, Boersma

and Terwindt 1981, Nio et al. 1983, Allen and Home-

wood 1984, Mowbray and Visser 1984, Tessier and

Gigot 1989, Nio and Yang 1991, Archer et al. 1995,

Shanley et al. 1992). Sandstones with lateral succes-

sions of tidal bundles are related to megaripple migra-

tion under fluctuating asymmetric flood and ebb tides.

The thicker and thinner sand beds that compose the pairs

are formed during dominant and subordinate tides, re-

spectively. The mud couplets record the two moments
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Fig. 7 – Heterolithic bedding (facies H). A) Lenticular/wavy heterolithic bedding. B) Heterolithic bedding consisting of vertically accreting

sandstone packages defined by either planar or slightly undulating, laterally continuous mudstone layers. C-D) Internal organization of the

vertically accreting sandstones, forming alternating thicker/thinner successions separated by mud couplets related to dominant (DT)/subordinated

(ST) daily tidal cycles.

of slack water that occur just before flow inversions.

The sigmoidal cross strata present in facies Sx are also

attributed to tidal processes, as similar structures have

been recorded in many tidal-influenced settings (e.g.,

Kreisa and Moiola 1986, Nio and Yang 1991). Sig-

moidal beddings reflect progressive acceleration from

full vortex to deceleration flow conditions within a single

ebb-flood tide (Boersma and Terwindt 1981, Allen and

Homewood 1984, Uhlir et al. 1988).

Facies H is also related to tidal processes, as re-

vealed by several lines of evidence. First, this facies

is commonly intergraded with facies Sx. Second, the

abundance of heterolithic facies is, in itself, suggestive

of fluctuating tidal velocities, since frequent alternations

of traction and suspended-load deposition are naturally

favored under the time velocity asymmetry of tidal

currents (e.g., Reineck and Wunderlich 1968, Reineck

and Singh 1986, Terwindt 1971, Terwindt and Breu-

sers 1972, Howley 1981, Mowbray 1983). Third, the

sharp contacts between sandstone and mudstone layers,

though not exclusive, are typical of tidal processes, in-

dicating rapid changes between periods of quiescence

(mud settling) and periods with relative increase in flow

strength (sand deposition). Finally, the tidal influence

on the genesis of facies H is particularly shown by the

vertically accreting sandstone beds that are separated by

either planar or slightly undulatory, laterally continuous

mud couplets. This feature is equivalent to the thicker/

thinner pairing observed in facies Sx. However, instead

of related to lateral bedform migration, this structure
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reflects periodic vertical sand accumulation due to tidal

currents affecting flat areas (tidal flats and shoals) with

high sediment rates. Shallow waters under this envi-

ronmental condition would have momentaneously en-

hanced tidal flows, promoting upper flow regime sand

deposition, as recorded by the abundance of parallel

laminated sandstones.

The high volume of features characteristical of tidal

bundles in facies Sx and H is consistent with formation

of tidal bundles under subtidal conditions. The preser-

vation of subordinate, slack water mud drapes is not

favored in the intertidal zone (Clifton 1983, Terwindt

1988, Nio and Yang 1991).

Given the genetic relationship of facies Sx and H,

the compound cross-stratified sandstones are related to

migration of large-scale bedforms, mostly within chan-

nels, during alternating dominant and subordinate tidal

currents (e.g., Houbodt 1968, Allen 1980, Dalrymple

1984, Mowbray and Visser 1984, Chakraborty and Bose

1990, Simpson and Eriksson 1991). The large scale bed-

forms were superimposed by smaller scale bedforms

that migrated mostly upstream during subordinate tides,

producing the ascending cross sets. Deeper waters with-

in tidal channel settings would have favored the devel-

opment of this facies, as indicated by its frequent occur-

rence within channelized deposits.

Facies Cgx was also formed by tidal currents, as

indicated by its transition to facies Sx. The coarse-

grained nature of these deposits, added to the abundance

of large mud clasts, record high energy tidal flow con-

ditions. However, the reactivation surfaces with mud

drapes record punctuated episodes of low flow condi-

tions, which are naturally developed in tidal settings.

In addition to the abundance of sedimentary struc-

tures diagnostical and/or suggestive of tidal processes,

the types of trace fossils recorded in the studied strata

support deposition in marginal marine settings. A fur-

ther specific ichnological investigation is still needed in

order to fully characterize the entire assemblage of trace

fossils present in these deposits. However, the over-

all prevalence of Ophiomorpha nodosa and Skolithos,

with subordinate occurrence of Planolites, attests a low

diversified community of benthic opportunistic organ-

isms, which is typical of stressed settings undergone

to fluctuating salinity (Pemberton and Wightman 1992).

Ophiomorpha nodosa records dwelling/feeding activity

of organisms reworking marine settings. Its occurrence

as large burrows forming monospecific ichnofabric re-

flects an opportunistic behavior of marine organisms,

which was also recorded frequently in the Barreiras For-

mation in northern Brazil (Netto and Rossetti 2003).

Skolithos is a dwelling trace that occurs in marginal

marine, brackish and freshwater environments under-

gone to highly fluctuating flow energy, being particu-

larly common in tidal settings (Bromley and Asgaard

1979, Pemberton et al. 1992a, b, Buatois et al. 1998,

Pattison 1992, Gibert and Martinell 1998). Planolites

is a feeding structure that occurs in a variety of depo-

sitional settings (Pemberton and Frey, 1982). Together,

these traces characterize the Skolithos ichnofacies devel-

oped in high energy marine influenced settings.

CONCLUSION

This work records the first unequivocal evidence of

marine influence in the Barreiras Formation of north-

eastern Brazil. Combination of sedimentary structures

and ichnological data led to the conclusion that the Bar-

reiras Formation that occurs in the southern coast of the

State of Alagoas is definitely related to sediment deposi-

tion in a marine, tidal dominated depositional setting.

The studied deposits display a variety of sedimen-

tary features that resemble those documented in estuar-

ine deposits of the Barreiras Formation located in north-

ern Brazil. In particular, the dominance of tidal signa-

ture, though not exclusive to, is typical of estuarine set-

tings. The complex sedimentary record consisting of an

abundance of channel fills, characterized by wide and

extensive concave up deposits with fining/thinning up-

ward successions, is common in estuarine successions,

as are heterolithic beddings. This environmental context

is further sustained by the ichnological assemblage sug-

gestive of stressed waters with constant salinity fluctu-

ations. However, future detailed facies mapping should

be undertaken in this area in order to determine the spa-

tial (i.e., lateral and vertical) distribution of facies asso-

ciations, which is crucial to reconstruct the paleoenvir-

onments and better characterize the depositional system.

Based on data presented herein, it is recommended

to search further evidence of tidal sedimentation in the

Barreiras Formation that occurs in other coastal areas
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of northeastern Brazil. The pervasive occurrence of de-

posits with unambiguous evidence of tidal processes in

the Barreiras Formation of northern Brazil, and now

in the State of Alagoas, leads to argue that the early/mid-

dle Miocene period of worldwide marine transgression

might have left a much more widespread sedimentary

record along the Brazilian coast than currently regarded.
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RESUMO

Processos de maré foram importantes na deposição da For-

mação Barreiras localizada no norte do Brasil, enquanto depósi-

tos correlatos do nordeste brasileiro têm sido tradicionalmente

relacionados a ambientes continentais. Análise de fácies no

sul de Alagoas revelou que a Formação Barreiras consiste em

conglomerados e arenitos com estratificações cruzadas (facies

Sx e Cgx), arenitos com estratificação cruzada composta (fa-

cies Cx), e acamamentos heterolíticos (facies H). Uma porção

significativa desses depósitos ocorre inserida em morfologias

de canal, internamente contendo sucessões de granocrescência

e adelgaçamento ascendentes. A abundância de feições sedi-

mentares é comparável àquelas documentadas em depósitos

correlatos do norte do Brasil. Estas incluem: bandamentos de

maré; estratificações cruzadas espinha-de-peixe; acamamen-

tos heterolíticos contendo camadas de arenitos e argilitos em

contato brusco; e icnofósseis consistindo principalmente em

Ophiomorpha nodosa, Skolithos e Planolites. Estas feições

apontam para ambiente deposicional marinho marginal domi-

nado por processos de maré, possivelmente relacionado a sis-

tema estuarino. Esta interpretação é similar à atribuída para a

Formação Barreiras no norte do Brasil. A ampla ocorrência de

depósitos contendo evidência inequívoca de processos de maré

na Formação Barreiras no norte do Brasil, e agora também

no Estado de Alagoas, leva a propor que o período de trans-

gressão marinha registrada globalmente no eo/meso Mioceno

pode ter deixado um registro sedimentar muito mais amplo ao

longo da costa brasileira do que até então considerado.

Palavras-chave: Mioceno, transgressão marinha, correntes de

maré, estruturas sedimentares, nordeste do Brasil.
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