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Abstract:We present two new classes of polynomial maps satisfying the real Jacobian conjecture in R2.

The first class is formed by the polynomials maps of the form (q(x) – p(y),q(y) + p(x)) : R2 → R2 such that

p and q are real polynomials satisfying p′(x)q′(x) 6= 0. The second class is formed by polynomials maps

(f,g) : R2 → R2 where f and g are real homogeneous polynomials of the same arbitrary degree satisfying

some conditions.
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INTRODUCTION

Let F = (f,g) : R2 → R2 be a polynomial map such that its Jacobian never vanishes. The celebrated real

Jacobian conjecture states that under these conditions F is injective. This conjecture goes back to 1939, see

Keller (1939).

In 1994 Pinchuk (1994) found amap F = (f,g)with f and g polynomials of degree 10 and 25 respectively,

and with Jacobian strictly positive, such that F is not injective.

Although the real Jacobian conjecture has been proved false by Pinchuk, a considerable number of

papers has been devoted to this subject, mainly searching for additional conditions such that the conjecture

might hold. The problem of determining if F is injective in the case of its Jacobian to be a non–zero constant,

known as the Jacobian conjecture, is still open, see Essen (2000) and the references therein for more

information.

Correspondence to: Jackson Itikawa

E-mail: itikawa@unir.br

ORCid: https://orcid.org/0000-0002-8268-0016

2010 Mathematics Subject Classification.

Primary 14R15, 34C25, 37C05, 37C10, 37J45.

MATHEMATICAL SCIENCES An Acad Bras Cienc (2019) 91(2)



JACKSON ITIKAWA and JAUME LLIBRE POLYNOMIAL MAPS SATISFYING THE REAL JACOBIAN CONJECTURE

MAIN RESULTS

In this note we present two new classes of polynomial maps that satisfies the real Jacobian conjecture. In

what follows we present our main results.

Theorem 1. Let p and q be real polynomials of one variable and consider the polynomial map F = (f,g) :
R2 → R2 with f = f(x,y) = q(x) – p(y), g = g(x,y) = q(y) + p(x) and p′(x)q′(x) 6= 0. Then the Jacobian of

polynomial map F never vanish and F is injective.

Theorem 1 is proved in the section Proofs of the Theorems.

As usual here p′(x) denotes the derivative of p with respect to the variable x, and if f = f(x,y) we denote
by fx the partial derivative of f with respect to the variable x. Similarly is defined fy.

Theorem 2. Let f and g be real homogeneous polynomials of the same degree in the variables x and y such

that

(i) the Jacobian of the polynomial map F = (f,g) : R2 → R2 never vanish,

(ii) f and g have no real linear factors in common,

(iii) the polynomials P = –ffy – ggy and Q = ffx + ggx have no real common factors, and

(iv)
∫ +∞

–∞

P(1,y)
Q(1,y) – yP(1,y)

dy = 0.

Then the polynomial map F is injective.

Theorem 2 is also proved in the section Proofs of the Theorems.

Other classes of polynomial maps satisfying the real Jacobian conjecture were given in Braun and Llibre

(2015) and Braun et al. (2016).

PRELIMINARY RESULTS

Let P and Q be polynomials in the variables x and y. Consider the polynomial differential system

ẋ = P(x,y), ẏ = Q(x,y). (1)

We say that an isolated singularity p of system (1) is a center when there is a neighborhood Vp ⊂ U
of p such that every solution in Vp \ {p} is periodic. The biggest open connected set containing p, denoted
by Wp ⊂ U, such that Wp \ {p} is filled with periodic orbits is called the period annulus of the center. If

Wp = R2 then p is a global center of system (1).

Let q be an isolated singularity of system (1). If X = (P,Q) then DX(q) is the Jacobian matrix of system

(1) at q. If det (DX(q)) 6= 0 then we say that q is a non–degenerate singular point. Under these assumptions

a necessary condition in order that q be a center is that the eigenvalues of DX(q) are purely imaginary. Such

a center is a non-degenerate center.

The polynomial differential system (1) is a Hamiltonian system if there is a polynomial H such

that P(x,y) = –Hy(x,y) and Q(x,y) = Hx(x,y). Then the polynomial H is called the Hamiltonian of the

Hamiltonian system (1).
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The following result is due to Sabatini, see Theorem 2.3 of Sabatini (1998). This result provides

a relation between the real Jacobian conjecture and the global centers of some polynomial Hamiltonian

systems.

Theorem 3. Let F = (f,g) :R2 →R2 be a polynomial map such that its Jacobian never vanishes and F(0,0) =
(0,0). Then the following statements are equivalent.

(a) The polynomial Hamiltonian system with Hamiltonian H = (f(x,y)2 +g(x,y)2)/2 has a global center at

the origin of coordinates.

(b) The map F is a global diffeomorphism of R2 onto itself.

In addition we present the following result due to Braun and Llibre, see Lemma 1 of Braun and Llibre

(2017).

Lemma 4. Let F = (f,g) : U → R2 be a C 2 function defined in an open connected set U ⊂ R2 and

(x0,y0) ∈ U such that the Jacobian of F in (x0,y0) does not vanish. Moreover consider the Hamiltonian

H =
(

f(x,y)2 + g(x,y)2
)

/2. Then (x0,y0) is a singular point of the polynomial Hamiltonian system ẋ = –Hy,
ẏ = Hx if and only if F(x0,y0) = (0,0). Under these conditions (x0,y0) is a non-degenerate center and also

an isolated global minimum of H. In particular if the Jacobian of F never vanishes in U all the singular

points of the Hamiltonian system ẋ = –Hy, ẏ = Hx in U are non–degenerate centers and are the zeros of the

map F.

THE POINCARÉ COMPACTIFICATION

The set S2 = {y = (y1,y2,y3)∈R3 : y2
1 +y2

2 +y2
3 = 1} is called the Poincaré sphere. Consider TyS2 the tangent

space to the Poincaré sphere at the point y and the central projection f : T(0,0,1)S2 → S2.

Let X be a polynomial vector field of degree n in the plane T(0,0,1)S2. The map f defines 2 copies of

X in S2, one in the northern hemisphere and the other in the southern hemisphere. Let X′ be the vector

field Df ◦X defined on the Poincaré sphere except on its equator S1 = {y ∈ S2 : y3 = 0}. We remark that

X′ is everywhere tangent to S2 and S1 is identified to the infinity of R2. We define p(X), the Poincaré

compactified vector field associated to X as the analytic extension of yn–1
3 X′ to S2. Note that studying the

behavior of p(X) around S1, we obtain the behavior of X at infinity. Also, S1 is invariant under the flow of

p(X).
The Poincaré disc is the projection of the closed northern hemisphere of S2 on y3 = 0 under

(y1,y2,y3) 7−→ (y1,y2).
The singular points of p(X) in the interior of the Poincaré disc, or equivalently in open northern

hemisphere {(y1,y2,y3) ∈ S2 : y3 > 0}, are called the finite singular points of X. While the singular points

of p(X) contained in S1 are called the infinite singular points of X.

For more details on the Poincaré compactification, see chapter 5 of Dumortier et al. (2006).

The following result is the Poincaré–Hopf Theorem for the Poincaré compactification of a polynomial

vector field. For a proof see for instance Theorem 6.30 of Dumortier et al. (2006).

Theorem 5. Let X be a polynomial vector field. If p(X) defined on the Poincaré sphere S2 has finitely many

singular points, then the sum of their topological indices is two.
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PROOFS OF THE THEOREMS

Proof of Theorem 1. We claim that the Jacobian of F is q′(x)q′(y)+p′(x)p′(y) > 0. Indeed, since p′(x)q′(y) 6=
0 each one of the one-variable polynomials p′(x), q′(y) is either strictly positive or strictly negative. Consider
the case p′(x) > 0 and q′(y) < 0, the other cases can be done similarly. Then p′(x)q′(y) < 0. But whatever
the signals of each of these polynomials are, we have that p′(x)p′(y) > 0 and q′(x)q′(y) > 0, consequently
q′(x)q′(y) + p′(x)p′(y) > 0, and the claim is proved.

From the claim we have that the polynomial map F = (f,g) with f = q(x) – p(y), g = q(y) + p(x) satisfies
the assumptions of Lemma 4 with U = R2. Hence all the singular points of the polynomial Hamiltonian

system with Hamiltonian H = (f(x,y)2+ g(x,y)2)/2 are non–degenerated centers.

We study the infinite singular points of the system

ẋ = P = –Hy = –ffy – ggy, ẏ = Q = Hx = ffx + ggx, (2)

where f = q(x) – p(y), g = q(y) + p(x) with p(x) = axn + l.o.t., q(x) = bxm + l.o.t., n and m positive integers,

ab 6= 0, and l.o.t. means lower order terms of the polynomial.

First we assume that n = m. For studying the infinite equilibria consider the homogeneous polynomial

yP2n–1(x,y)–xQ2n–1(x,y) of degree 2n, where P2n–1 and Q2n–1 are the homogeneous parts of degree 2n–1
of the polynomials P and Q respectively.

Since yP2n–1(x,y) – xQ2n–1(x,y) = –n(a2 + b2)(x2n + y2n) 6= 0 for (x,y) 6= (0,0), the Hamiltonian system

(2) has no infinite singular points.

For the cases n > m and n < m we have respectively yP2n–1(x,y)–xQ2n–1(x,y) = –na2(x2n +y2n) 6= 0 and
yP2m–1(x,y)–xQ2m–1(x,y) = –mb2(x2m +y2m) 6= 0 for (x,y) 6= (0,0). Therefore again theHamiltonian system

has no infinite singular points, and S1 is a periodic orbit of the Poincaré compactification of system (2).

In summary we know that all the finite singular points of system (2) are centers, and that it has no infinite

singular points. Moreover, since this system is polynomial it has finitely many singular points, therefore by

the Poincaré–Hopf Theorem (Theorem 5) applied to the Poincaré sphere, we obtain that two times the sum

of the indices of the finite singular points is equal to 2. One of the “two times” comes from the northern open

hemisphere and the other from the south open hemisphere of the Poincaré sphere because we have a copy

in each of these hemispheres of our system (2). Hence since the sum of the indices of all the finite singular

points is 1, and each center has index 1, the system has a unique center, which we denote by c.
To end the proof applying Theorem 3 we must prove that the local center c is global. But for applying

Theorem 3 we need that F(0,0) = (0,0), so we consider the map F̄ = T ◦F, where T(x,y) = (x – a,y – b) if
F(0,0) = (a,b). Then the map F̄ satisfies F̄(0,0) = (0,0) and also satisfies all the conditions of the map F given

in the statement of Theorem 1. So we shall prove that F̄ is injective, and consequently F will be injective. In

what follows for simplifying the notation we denote F̄ by F.
Let Wc be the period annulus of c. If the last periodic orbit of Wc is the infinity in the Poincaré disc we

are done. Assume that γ is the last periodic orbit of Wc and that it does not coincide with the periodic orbit

at S1, and let p be a point of γ. Consider the Poincaré map Π : Σ0 → Σ associated to γ, where Σ is a local

transverse section to the vector field associated to system (2) through the point p, for further information on

these topics see chapter 1 of Dumortier et al. (2006). Here Σ0 denotes the domain of definition of the map

Π on the section Σ.
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By Proposition 1.21 of Dumortier et al. (2006) the map Π is analytic because system (2) is polynomial.

Clearly the map Π restricted to the part of Σ0 contained in the period annulus Wc is the identity. Therefore,

sinceΠ is an analytic map of one variable, it is analytic in the whole Σ0. Hence γ cannot be the last periodic

orbit of Wc, a contradiction. Consequently the center is global and by Theorem 3 we conclude that F = (f,g)
is injective.

Proposition 4.2 of Cima and Llibre (1990) states:

Proposition 6. Let P and Q be two real homogeneous polynomials of degree n in the variables x and y.
Assume that P and Q do not have real common factors, that xQ(x,y) – yP(x,y) has no real linear factors,

and that ∫ +∞

–∞

P(1,y)
Q(1,y) – yP(1,y)

dy = 0.

Then the phase portrait of the polynomial vector field (P,Q) is a global center.

Proof of Theorem 2. Under the assumptions of Theorem 2, first we shall see that the polynomial xQ(x,y) –
yP(x,y) has no real linear factors. By the Euler’s Theorem for homogeneous functions we have that

xQ – yP = x(ffx + ggx) + y(ffy + ggy) = n(f2 + g2).

Therefore since the homogeneous polynomials f and g has no real linear factors in common, the

homogeneous polynomial xQ(x,y) – yP(x,y) also does not have a real linear factor. Hence, from the

hypotheses of Theorem 2 all the assumptions of Proposition 6 are satisfied. Consequently the Hamiltonian

system with Hamiltonian H = (f2 + g2)/2 has a global center. So by Theorem 3 we get that the polynomial

map F = (f,g) is injective. We note that as in the proof of Theorem 1, for applying Theorem 3 we need

that F(0,0) = (0,0), again taking the map F̄ = T◦F, where T(x,y) = (x – a,y – b) if F(0,0) = (a,b), we verify
that F̄(0,0) = (0,0) and that F̄ satisfies the conditions of the map F given in the statement of Theorem 2. So

we apply Theorem 3 to the map F̄, and we obtain the injectivity for the map F̄, and consequently for the

map F.
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