BRAGANTIA

Boletim Científico do Instituto Agronômico do Estado de S. Paulo

Vol. 27

Campinas, setembro de 1968

N.º 27

EFEITO DE DOSES CRESCENTES DE NITROGÊNIO, FÓSFORO E POTÁSSIO SÔBRE A PRODUÇÃO DE FÔLHAS E FIBRAS DE FÓRMIO (1)

G. A. DE PAIVA CASTRO, engenheiro-agrônomo, Seção de Plantas Fibrosas, E. S. Freire, engenheiro-agrônomo (2), W. R. Venturini, engenheiro-agrônomo, Seção de Técnica Experimental, Instituto Agronômico, e L. C. Pinto de Toledo, engenheiro-agrônomo (3), fazenda Pinhal

SINOPSE

Em experiência de adubação de fórmio (Phormium tenax Forster), conduzida por quatro anos no Estado de São Paulo, em solo de baixada cultivado e adubado pela primeira vez, o fósforo aumentou considerávelmente a produção de fôlhas e de fibras. O nitrogênio também aumentou-a, mas relativamente pouco, ao passo que o efeito do potássio foi pràticamente nulo.

1 — INTRODUÇÃO

A cultura do fórmio (*Phormium tenax* Forster) para fins industriais já ocupa a atenção de vários agricultores do Estado de São Paulo, sobretudo nos municípios de Cabreúva, Pilar do Sul, Salesópolis e Ibiúna. Segundo Medina (1), a região montanhosa que se estende na direção sudeste do Estado, caracterizada por clima temperado úmido, sem estiagem, com precipitação média anual entre 1.300 e 1.500 mm e temperatura média anual entre 17°C e 19°C, oferece condições ecológicas propícias ao desenvolvimento do fórmio.

⁽¹⁾ Recebido para publicação em 25 de maio de 1968.

⁽²⁾ Contratado pelo Conselho Nacional de Pesquisas, para colaborar com técnicos do Instituto Agronômico. Sua colaboração no presente trabalho foi prestada na apresentação e interpretação dos resultados obtidos.

⁽³⁾ Co-proprietário da fazenda Pinhal, onde foi conduzida a experiência.

As informações sôbre a adubação da cultura em aprêço são muito escassas. Rigg e Watson (2), que a estudaram na Nova Zelândia, verificaram que, em solo bem provido de matéria orgânica, mas fortemente ácido (pH 4,2 a 4,4) e pobre de fósforo assimilável, os efeitos da calagem, do nitrogênio e do potássio foram pequenos, ao passo que o fósforo aumentou consideràvelmente a produção de fôlhas e favoreceu a porcentagem de fibra.

O objetivo dêste trabalho é relatar os resultados de uma experiência com doses crescentes de nitrogênio, fósforo e potássio, conduzida entre 1960 e 1964 no município de Cabreúva, Estado de São Paulo.

2 — MATERIAIS E MÉTODOS (4)

Em um esquema fatorial 3^3 , com quatro repetições distribuídas em blocos de nove unidades (conjunto equilibrado), foram estudados os níveis 0, 50, 100 kg/ha de N, 0, 75, 150 kg/ha de P_2O_5 e 0, 60, 120 kg/ha de K_2O . Como fontes dêsses nutrientes, usaram-se salitre do Chile, superfosfato simples e cloreto de potássio.

A experiência foi instalada em 30 de maio de 1960 e encerrada em 8 de junho de 1964, quando se fêz a terceira e última colheita. As três colheitas foram realizadas nos dias 30 de maio de 1962, 20 de junho de 1963 e na data há pouco mencionada.

As doses totais de fósforo e potássio foram empregadas na ocasião do plantio e repetidas em maio de 1961 e julho de 1962, em sulcos laterais às fileiras de plantas. Quanto ao nitrogênio, que foi sempre aplicado em cobertura, dividiram-se as doses mencionadas em três partes iguais, e cada têrço foi empregado em 5 de julho e 5 de outubro de 1960; 11 de janeiro, 10 de maio e 27 de outubro de 1961; 24 de janeiro, 11 de dezembro e 1.º de março de 1962; 15 de maio e 6 de novembro de 1963; e 3 de fevereiro de 1964.

Note-se que cada aplicação das doses totais de fósforo e de potássio foi seguida, com intervalos variáveis, de três aplicações de um têrço das de nitrogênio; além disso, no último ano agrícola da experiência (1963-64), efetuaram-se mais duas aplicações exclusivamente de nitrogênio, também em doses correspondentes a um têrço das doses totais.

 $[\]big(^4\big)$ Os autores agradecem ao Eng.º Agr.º J. César Medina, pela elaboração do plano experimental.

Nas colheitas ou cortes deixaram-se, em cada "leque" da touceira, o brôto central e as duas fôlhas mais novas, cortando-se as demais bem rente à base. Nessa ocasião, contaram-se e pesaram-se as fôlhas consideradas úteis, isto é, as que tinham mais de 50 cm de comprimento. Sòmente as fôlhas do segundo corte, efetuado cêrca de três anos após o plantio, foram desfibradas, utilizando-se para isso a produção total de fôlhas úteis de cada canteiro. A desfibragem foi feita com uma desfibradora "N.º 9-A Flaxstripper", fabricada pela firma Booth, Mcdonald & Co. Ltd., de Christchurch, Nova Zelândia. As fibras brutas foram pesadas depois de sêcas ao ar.

A área útil de cada canteiro constou de duas fileiras de quatro plantas, com o espaçamento de 2 x 1 m. Entre as partes úteis dos canteiros foi plantada, sem qualquer adubação, uma fileira, que serviu de bordadura comum a dois canteiros.

Para o plantio, usaram-se mudas da variedade Bronzeada, provenientes de plantações locais.

A experiência foi conduzida na fazenda Pinhal, município de Cabreúva, numa várzea bem drenada, com solo arenoso até então não adubado, usada anteriormente como pastagem. A análise (5) de amostra superficial do solo, tirada antes da instalação da experiência, revelou ter êle pH 5,2, e por 100 g de T.F.S.A., 4,49 g de C, 0,13 g de N total, 0,018 e.mg de PO₄ $^{-3}$ solúvel em H₂SO₄ 0,05N, bem como 0,04 e.mg de K⁺, 0,25 e.mg de Ca⁺², traços de Mg⁺², 5,10 e.mg de H⁺ e 1,45 e.mg de Al⁺³ trocáveis.

3 — RESULTADOS

O clima do local da experiência corresponde ao do Planalto Paulista, com queda anual de chuva de cêrca de 1.300, mm. Dêsse total, aproximadamente 80% ocorre no período chamado verão (de outubro a março). No decorrer da experiência e em relação às respectivas normais, a queda total de chuva no verão variou pouco, mas as chuvas do período hibernal (julho a setembro e abril a junho) dos quatro anos agrícolas foram sempre bem inferiores. Nesse período, as plantas, que são exigentes de umidade, tiveram o crescimento pràticamente estacionado.

Não obstante o plantio ter sido efetuado no inverno, as mudas pegaram bem e os "stands" se mantiveram bons até o término da experiência.

^{(&}lt;sup>5</sup>) Efetuada na Seção de Agrogeologia, do Instituto Agronômico.

QUADRO 1. — Número e pêso das fôlhas recém-colhidas com mais de 50 cm de comprimento, obtidos nos três cortes efetuados na experiência fatorial de adubação de fórmio conduzida em Cabreúva

304

Tratamento (Níveis de N, P e K)	Número de fôlhas dos cortes				Pêso das fôlhas dos cortes				
	1.0	2.0	3.∘	Todos	1.0	2.0	3.º	Todo	
	1000/ha	1000/ha	100 0/ha	1000/ha	t/ha	t/ha	t/ha	t/ha	
000	119 85 86 104 160 172 138 120	176 139 117 218 268 323 284 265 332	167 134 109 260 281 358 298 283 370	462 358 312 582 709 853 720 668 883	3,45 2,82 2,95 3,28 4,54 4,24 4,30 3,97 4,99	4,65 4,54 3,95 6,71 7,72 8,07 8,68 7,31	3,01 3,56 2,64 6,04 5,85 6,77 7,22 4,98 8,03	11,1 10,9 9,1 16,0 18,1 19,0 20,2 16,2 23,1	
00 101 	92 133 102 198 179 180 178 185 164	151 193 176 371 349 366 376 359 343	142 177 193 418 392 399 396 426 372	385 503 471 987 920 945 950 970 879	3,31 3,08 2,60 4,42 4,45 5,84 5,22 4,43 4,28	5,52 4,81 4,39 7,64 7,86 11,05 10,16 7,89 9,14	4,24 2,87 3,01 6,31 7,15 9,02 8,76 6,83 7,75	13,0 10,7 10,0 110,0 118,3 19,4 25,9 24,1 119,1 21,1	
200 201 202 210 211 211 212 222 22	101 77 143 155 191 183 176 180 185	160 105 244 306 388 328 335 376 377	151 86 213 310 458 315 380 455 394	412 268 600 771 1037 826 891 1011 956	2,50 2,95 3,13 5,25 5,29 4,81 5,19 4,96 5,10	4,07 4,50 5,18 9,64 10,24 8,07 9,31 9,85 10,09	2,57 3,03 2,98 8,27 9,10 5,89 7,52 8,83 8,43	9,1 10,4 11,2 123,1 24,6 18,7 22,6 23,6	
MÉDIAS							×.		
$egin{array}{cccccccccccccccccccccccccccccccccccc$	129 157 155	236 298 291	251 324 307	616 779 753	3,80 4,18 4,35	6,86 7,61 7,88	5,34 6,21 6,29	16,0 18,0 18,5	
P ₀	104 169 167	162 324 339	153 355 375	419 848 881	2,93 4,68 4,71	4,62 8,55 9,18	3,10 7,16 7,59	10,6 20,3 21,4	
Κ ₀ Κ ₁	140 146 155	264 271 290	280 299 303	684 716 748	4,10 4,05 4,17	7,38 7,19 7,78	5,99 5,80 6,06	17,4 17,0 18,0	

Produção de fôlhas — No quadro 1 são apresentadas as produções de fôlhas obtidas nos três cortes realizados no decorrer da experiência. Essas produções foram relativamente baixas, talvez porque as plantas só cresciam ativamente durante a metade chuvosa do ano agrícola.

A reação aos nutrientes estudados foi sempre a mesma em todos os cortes. Por isso, na análise estatística, considerou-se sòmente a soma dos três cortes.

No número de fôlhas úteis (com mais de 50 cm de comprimento), o coeficiente de variação correspondeu a 20%. O efeito do potássio foi muito pequeno e não significativo. O nitrogênio aumentou apreciàvelmente o número de fôlhas, mas tanto o componente linear como o quadrático alcançaram significância ao nível de 1% de probabilidade. Efetivamente, enquanto o aumento proporcionado por N_1 foi de 26%, o determinado por N_2 baixou para 22%. O efeito linear do fósforo foi altamente significativo, ao passo que o componente quadrático só alcançou significância ao nível de 5%. Os aumentos provocados por P_1 e P_2 elevaram-se a 102% e 110%, respectivamente.

As interações duplas não foram significativas.

No pêso das fôlhas úteis, a reação aos elementos estudados não diferiu estatisticamente, em cada corte, da observada no conjunto dos três cortes. Nesse conjunto, o coeficiente de variação foi elevado, pois atingiu 34%.

O efeito do potássio foi pràticamente nulo, e o do nitrogênio, não significativo, de apenas +2,00 t/ha (+13%), com a dose 1, e +2,52 t/ha (+16%), com a dose 2. O do fósforo, porém, atingiu, respectivamente, +9,74 e +10,83 t/ha (+91 e +102%), com as doses 1 e 2, e tanto o componente linear como o quadrático foram altamente significativos.

As interações duplas não alcançaram significância.

Do quadro 1 deduz-se que o número de fôlhas úteis cresceu do primeiro corte para o terceiro, ao passo que seu pêso aumentou muito do primeiro para o segundo, mas baixou apreciàvelmente quando se passou do segundo para o terceiro. Em média de todos os tratamentos e em toneladas por hectare, a produção de fôlhas foi de 4,11 no primeiro corte, 7,45 no segundo, e, 5,95 no terceiro. Nessas condições, o pêso médio por fôlha, que foi de 28 g no primeiro corte e de 27 g no segundo, caiu para 20 g no terceiro.

Essa queda é atribuída, em parte, à sêca, que retardou a brotação e o desenvolvimento das plantas nos meses que se seguiram ao segundo corte. Em parte, porém, ela resultou da crescente deficiência de nutrientes, principalmente de fósforo. Dando o valor 100 ao pêso das fôlhas no segundo corte, os índices referentes ao terceiro corte, nos tratamentos que receberam P_9 , P_1 e P_2 , corresponderam a, respectivamente, 67, 84 e 83. A adição de nitrogênio teve pequena influência nesse sentido, pois os índices de N_0 , N_1 e N_2 foram 78, 82 e 80. Quer isso dizer que o fósforo e o nitrogênio, sobretudo o primeiro elemento, contribuiram para atenuar a queda de produção que se observou quando se passou do segundo corte para o terceiro.

Viu-se, linhas atrás, que a produção de fôlhas úteis, em média de todos os tratamentos, cresceu de 4,11 t/ha, no primeiro corte, para 5,95 t/ha, no terceiro. É interessante registrar que o fósforo foi o principal responsável por êsse aumento. Dando o valor 100 às produções obtidas no primeiro corte, os índices referentes ao terceiro, nos tratamentos que receberam P_0 , P_1 e P_2 , seriam, respectivamente, 106, 153 e 161.

Produção de fibras — A produção de fibras brutas, determinada sòmente no segundo corte, consta do quadro 2.

Na análise estatística dos resultados, o coeficiente de variação foi de 21%. A adição de potássio pràticamente não modificou a produção, ao passo que a de fósforo e a de nitrogênio provocaram aumentos significativos. Os efeitos linear e quadrático do fósforo foram significativos ao nível de 1% de probabilidade, e os aumentos proporcionados por P_1 e P_2 se elevaram a, respectivamente, 1.52 e 1.54 t/ha (120% e 121%). Também significativos, mas ao nível de 5%, foram os efeitos linear e quadrático do nitrogênio. Enquanto o aumento devido a N_1 correspondeu a 0.39 t/ha (19%), o referente a N_2 baixou para 0.28 t/ha (14%).

As interações duplas não alcançaram significância. Notou-se, porém, que as doses intermediárias de nitrogênio e fósforo se beneficiaram mutuamente. A resposta a N_1 , que foi de +16% na ausência do fósforo, atingiu +32% na presença de P_1 ; correspondentemente, as respostas ao fósforo na ausência e na presença de N_1 foram de, respectivamente, +101% e +127%.

Em média de todos os tratamentos, a proporção de fibras brutas sêcas ao ar, sôbre o pêso das fôlhas úteis recém-colhidas, correspondeu a cêrca de 30%. Essa elevada porcentagem apro-

Quadro 2. — Produção de fibras brutas sêcas ao ar, em toneladas por hectare, obtida no segundo corte da experiência fatorial de adubação de fórmio realizada em Cabreúva

		Nivel de P				
Nível de N	Nível de K	0	0 1 2		Média	
)	0	1,57	1,94	2,69	2,0	
, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	1,08	2,25	2,20	1,8	
	2	0,89	2 92	3,09	2,3	
	Média	1,18	2,37	2,66	2,0	
	0	1,13	3,03	3,0	2 ,4	
	1	1,55	3,00	2 99	2,5	
	2	1,44	3,32	2,€0	2,4	
	Média	1,37	3 12	2 88	2,4	
	0	1.25	3 00	2.73	2,3	
	1	0,81	3 11	2 88	2,2	
	2	1,73	2,53	3,08	2,4	
	Média	2,26	2.88	2.90	2,3	
lédia Geral	1,27	2,79	2,81			

ximou-se do dôbro da normalmente obtida. No presente caso, o material se destinava à fabricação de solados de alpargatas, razão por que a desfibradora foi regulada para aumentar o rendimento, pois não havia necessidade de apurar a qualidade das fibras.

Em tais condições, o efeito do potássio foi nulo, e o nitrogênio só aumentou o rendimento, de 30,2 para 32,3%, quando se empregou a dose 1. A influência do fósforo, porém, foi apreciável: em média dos tratamentos que receberam P_0 , P_1 e P_2 , os rendimentos observados foram de, respectivamente, 27,5%, 32,6% e 30.6%.

4 -- CONCLUSÕES

Dos resultados da experiência relatada, na qual foram estudados, em esquema fatorial 3³, os efeitos de doses crescentes de nitrogênio, fósforo e potássio sôbre a produção do fórmio em solo de baixada, cultivado e adubado pela primeira vez, podem-se tirar as seguintes conclusões gerais:

- a) No conjunto dos três cortes efetuados no decorrer dos quatro anos em que foi conduzida a experiência, o potássio não influiu sôbre a produção de fôlhas úteis (com mais de 50 cm de comprimento). Os aumentos, não significativos, provocados pelas doses de 50 e 100 kg/ha de N corresponderam a, respectivamente, 13 e 16 por cento. Os proporcionados por 75 e 150 kg/ha de P_2O_5 , porém, foram altamente significativos e atingiram, respectivamente, 91 e 102 por cento.
- b) Na produção de fibras brutas, determinada somente no segundo corte, o efeito do potássio também foi pràticamente nulo, ao passo que o do nitrogênio e o do fósforo foram positivos e significativos. O aumento provocado pela dose menor de nitrogênio correspondeu a 19%, mas o devido à dose maior baixou para 14%. Todavia, os proporcionados por essas doses de fósforo elevaram-se a 120 e 121 por cento, respectivamente.
- c) Em relação ao pêso das fôlhas úteis recém-colhidas, a porcentagem de fibras brutas sêcas ao ar não foi alterada pela adubação potássica, e melhorou um pouco com a adição da dose menor de nitrogênio, mas sofreu apreciável aumento em consequência da adubação fosfatada, sobretudo quando se empregou a menor dose.

EFFECTS OF INCREASING DOSES OF NITROGEN, PHOSPHORUS AND POTASSIUM ON THE YIELD OF PHORMIUM TENAX FORSTER

SUMMARY

In a fertilizer experiment conducted during four years on a low-land soil of the State of São Paulo, phosphorus increased considerably the yields of leaves and fibres of **Phormium tenax**. The increases due to nitrogen were relatively small and the addition of potassium did not influence the yields.

LITERATURA CITADA

- MEDINA, J. C. Plantas fibrosas da flora mundial. São Paulo, Indústria Gráfica Siqueira, 1959. 913p.
- 2. RIGG, T. & WATSON, J. Phormium tenax manurial and cultural experiments at Westport. N.Z.J. Sci. Tech. 27:336-342, 1945.