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ABSTRACT

The application of geostatistics to data obtained from geochemical prospecting process can provide 
useful information for evaluating mineralization potential. The objective of this study was to evaluate the spatial 
distribution of Au, As and Sb contents over a large area of the Coruña province, Spain. A geochemical survey 
was carried out from which a data set with 323 samples was collected. Macroelements and trace elements were 
determined by routine analytical techniques. The spatial variability was assessed using semivariogram and cross-
semivariogram as well as indicator semivariogram analysis. Frequency distributions of the studied elements 
departed from normal, as indicated by skewness and kurtosis coefficients. Coefficients of variation ranked as 
follows: Sb < As < Au. Significant correlation coefficients between Au, Sb and As were found, even though the 
correlation values were low. Spherical models with nugget effects ranging from 50% (As) to 57.8% (Au) were 
fitted to the experimental semivariograms. Cross semivariograms of Au versus Sb and As showed smaller nugget 
variance than individual semivariograms. Indicator semivariograms were calculated taken mean, median, and 
different percentiles as threshold values. Ordinary kriging, cokriging, and indicator kriging were performed to 
generate geochemical maps. The method has succeeded in effectively extracting useful information, and improving 
the analysis of the metallogenic and ore-controlling factors, thereby playing an important role in qualitative and 
quantitative predictions. 

Key words: geochemical survey, geostatistics, kriging, indicator kriging, cokriging.

RESUMO

Análises geoestatísticas de uma série de dados geoquímicos

A aplicação da geoestatística para o tratamento de dados de prospecção pode proporcionar 
informações úteis para a avaliação do potencial de mineralização. O objetivo deste estudo foi 
avaliar a distribuição espacial dos conteúdos de Au, As e Sb sobre uma grande área da província de 
Coruña, Espanha. Foi efetuada uma prospeção geoquímica obtendo-se um conjunto de 323 amostras. 
Determinou-se o conteúdo de macroelementos e elementos traço, por técnicas de análises de rotina. A 
variabilidade espacial foi avaliada mediante semivariogramas ordinários, semivariogramas cruzados 
e semivariogramas indicadores. Os coeficientes de assimetria e curtose, permitiram comprovar que as 
distribuições de frequência estudadas não se ajustam a uma distribuição normal. Os coeficientes de 
variação aumentam na ordem: Sb < As < Au. Foram observados coeficientes de correlação significativos 
entre Au, Sb e As, aínda que baixos. Foram ajustados modelos esféricos aos semivariogramas cujos 
valores de efeito pepita variaram entre 50% (As) e 57,8% (Au). Os semivariogramas cruzados de 
Au versus Sb e As proporcionaram menores efeitos pepita do que os semivariogramas individuais. 
Calcularam-se semivariogramas indicadores tomando média, mediana e distintos percentis, como 
referência. Foram obtidos mapas geoquímicos usando krigagem, krigagem indicatriz e cokrigagem para 
delimitar as anomalias geoquímicas. Os métodos empregados permitiram extrair informações de 
forma eficiente e melhorar análise dos fatores que controlam a mineralização e contribuindo assim para 
predições qualitativas e quantitativas.
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1. INTRODUCTION

A geochemical study in mining exploration 
consists of two particular stages. The first involves 
collecting and analyzing various types of geological 
materials, such as soils, stream sediments and rocks. The 
second step, concerns the treatment and interpretation 
of available numerical information by plotting the 
geochemical values on maps, and interpretation of 
the results. After discovery of the mineral deposit, 
geochemical sampling plays a key role in the delineation 
of the mineralization process. Sometimes mineralization 
can be extremely subtle, if not impossible to recognize 
in hand specimen. Without the use of geochemical 
sampling methods, many known ore deposits would 
probably not have been discovered. Historically these 
methods have been some of the most productive among 
any other methods used in mineral exploration.

The collected materials may be analyzed for any 
number of elements. Which elements are chosen for 
analysis depends on budget, the geology of the area, and 
the commodity which is being sought. Often there are 
specific elements or suites of elements which are known 
to be associated with specific types of mineralization. 
Therefore it is possible to evaluate the potential for 
the existence of certain types of mineralization by 
evaluating which elements are associated in a given 
area. The specific features of geochemical exploration 
studies are the treatment of a huge amount of data, the 
imprecision of this data, the multivariate character, and 
especially, the spatial dependence of variables. This latter 
characteristic gives these variables their regionalized 
behavior (Journel and Huijbregts, 1978), as the basis of 
geostatistical methods. 

Geostatistical interpolation (kriging) provides 
the best linear unbiased prediction for spatially 
dependent properties (Journel and Huijbregts, 1978; 
Vieira et al., 1997). Kriging has been frequently used 
for the spatial interpolation of mineral deposits (Sousa, 
1989; Jiménez Espinosa and Chica Olmo, 1999; Reis et 
al., 2003; 2004). However, the great variability on ore 
concentration in conjunction with sparse sampling 
may mask the spatial dependence (Journel, 1983). 
An important problem associated with the analysis 
of the geochemical information is the presence of 
skewed distributions with high coefficient of variation. 
Another problem is that values below detection 
limit are grouped at detection limit. Experimental 
semivariograms become extremely sensitive to high 
and low values, and may be practically useless in some 
cases. In these situations, two traditional solutions are 
proposed: (i) trim off the extreme values, based on 
geological or probabilistic criteria; or, (ii) transform the 
data by means of a smoothing function or the natural 
logarithms. The first approach is very simplistic 

and not acceptable when these data carry the most 
valuable structural information, not to mention their 
economic weight. Log-transformations are non-linear, 
and that calls for non-linear estimation techniques (i.e., 
disjunctive kriging), which require a hypothesis about 
the distribution. The lognormal kriging estimator 
provides an approximately unbiased estimator, but 
error estimations are often exaggerated and it only 
works well when the transformed data are a Gaussian 
random function. Although logarithmic transformation 
is one approach which has been frequently used for 
highly skewed data (Cambardella et al., 1994; Van 
Meirvenne et al., 1996), real data sets, unfortunately 
may not meet the severe requirements for using this 
technique.

The indicator transformation is also an alternative 
for dealing with the data, which have a positively 
skewed distribution with a few extreme values. 
This method can transform any data set having an 
asymmetric distribution into the normal scores, which 
have a standard normal distribution. Then, the kriging 
estimation can be performed in the normal-scored space 
(Goovaerts, 1997; Chilès and Delfiner, 1999).

Multi element surveys are routinely performed 
owing to the fact that geochemical variables are 
frequently associated with each other. Significant 
correlations between variables allow joint estimation of 
values by corregionalization. Therefore, if large nugget 
effect happens for individual semivariograms, cokriging 
may be a method of analysis particularly useful (Chilès 
and Delfiner, 1999; Vieira, 2000).

The west of La Coruña province, Galicia (NW 
Spain) is an area of mining interest because of the 
presence of Au mineralization (Porter and Álvarez 
Morán, 1992). After geochemical exploration surveys, 
Au data presents significant problems for numerical 
treatment. Arsenic has been used to evaluate the 
metallogenetic importance of this zone. In other 
words, As can be considered a pathfinder of Au in 
this zone, as the two are genetically related (Jiménez 
Espinosa and Chica Olmo, 1999). The objective of this 
study was to evaluate the spatial distribution of Au, 
As and Sb contents over a large area of the Coruña 
province, Spain.

2. MATERIAL AND METHODS

Sampling and analysis

The study area is located in La Coruña province, 
Galicia, NW of Spain, a zone of mining interest due to 
concentrations of Au. The discovered mineralization is 
characterized by slightly different geological settings and 
mineralogical assemblages. In this area Au is associated 
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to arsenopyrite (Porter and Álvarez Morán, 1992). A 
large number of elements (e.g. As, Sb, Bi, Pb. Cu, Ag, 
Cd, Se and Te) are enriched in Au bearing deposits.

Geologically this area is located in the Iberian 
Massif and more specifically in the Galicia Tras os Montes 
Zone. Concerning the local geology, the study area 
comprises predominantly acid rocks, mainly alkaline 
and calcalkaline granites, gneiss and migmatites. The 
most significant structural feature of this zone is the 
presence of a mylonitic band, with an approximate NE-
SW orientation.

The data set comprises 323 samples taken below 
the A horizon at the 30-40 cm depth, as it is traditionally 
done in geochemical surveys within the temperate 
climatic zone. Therefore, samples were collected 
preferentially in the B horizon. Occasionally, in places 
where the B horizon was not present, samples were 
collected in the BC or C horizon. Samples were taken 
in a rectilinear grid at equal distances of 40 m and 
along evenly spaced lines of 70 m (Figure 1). The lines 
were perpendicular to the NE-SW trending tectonic 
structures.

Samples were air dried and sieved. Eighteen 
chemical elements were analyzed for each sample, 
generating a data matrix of 323 rows and 18 columns. 

14 
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Figure 1. Sampling scheme for the study data set with 323 
points.

The sample digestion method depended on the element 
being targeted. Aqua regia was used for Au and Ag, 
while a hydrofluoric-perchloric (HF-HClO4) acid attack 
was performed for As, Sb and Se. For the remaining 
elements a hydrofluoric-perchloric-nitric (HF-HClO4-
N03H) digestion was used (Lecomte and Sondag, 1980; 
Reis et al., 2004). For this study Au was analyzed and also 
As and Sb were retained because these two elements are 
considered the most useful indicators of the presence 
of gold, usually referred to as pathfinder elements. 
Gold was analyzed by Inductively-coupled Plasma-
Atomic Emission Spectroscopy (ICP-AS). The analytical 
equipment was atomic absorption spectrometry-hybride 
generation for As and Sb. The detection limit was 5 ppm 
for As and Sb and 2 ppm for Au.

Statistical and Geostatistical analysis

The preliminary analysis was performed by 
calculation of the main statistical moments (mean, 
minimum value, maximum value, standard deviation, 
coefficient of variation, skewness and kurtosis). The 
linear correlation coefficient between Au, As and Sb also 
was calculated.

The spatial variability was assessed using 
semivariogram and cross-semivariogram analysis and 
maps obtained with kriging and cokriging estimation 
(Vieira, 2000). Semivariograms were calculated using 
the equation,

2

� (1)

where γ*(h) is experimental semivariance, N(h) is 
the number pairs of values Z(xi), Z(xi+h) separated by a 
distance h. 

Experimental semivariograms were fitted by 
theoretical models. The initial selection was made on 
the basis of visual observation followed by an automatic 
(least-squares) estimation of semivariogram parameters, 
until the fitted model becomes theoretically consistent. 
Cross-validation was used to assess the precision of the 
interpolation method (Vieira, 2000).

Cross-semivariograms were analysed for the 
pairs of variables which showed significant correlation. 
Calculations were performed by means of the equation,

� (2)

where γlm(h) is experimental cross semivariance, 
N(h) is the number pairs of measured values for the 
variable Zl, Zl(xl), Zl(xi+h), and Zm, Zm(xl), Zm(xi+h) 
separated by a distance h, in both cases.
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Element Mean Variance C.V. Minimum Maximum Skewness Kurtosis
Au 24.81 2057 182.8 2 360 4.371 23.15
As 609.1 383500 101.7 12 4076 1.916 4.927
Sb 6.796 11.18 49.21 5 35 3.277 17.76

Table 1. Summary statistics of the variables studied

The indicator kriging is a nonparametric 
distribution free estimation method. It is based on the 
transformation of raw data as a function of an indicator. 
It results on a new data set consisting of only “zeros” 
and “ones”, namely indicator variables, after the 
establishment of a series of cut-offs, zk, of the continuous 
function z(xi). Therefore, the indicator function is defined 
as a step function of z:

� (3)

The kriging and the cokriging techniques were 
used to estimate the values for unsampled points with 
minimum variance and the indicator kriging allows 
estimating probabilities of occurrence of the studied 
element above a threshold (Vieira, 2000). Maps of spatial 
variability were constructed using the software SURFER 
7.0 (Golden Software, 1999).

3. RESULTS AND DISCUSSION

Table 1 shows a statistical summary for Au, As 
and Sb. Frequency distributions of these three elements 
considering the percentage of samples per class is 
presented in Figure 2. 

Concentrations of Au, As and Sb, showed an 
important amount of variability and all three were 
strongly positive skewed, as a few extreme values appear 
in the data set. Moreover, most of the Au and Sb samples 
showed very low values that lie close to the detection 
limit. Coefficients of variation were 182.8, 101.7 and 49.2 
for Au, As and Sb, respectively. This results in difficulties 
in the application of current geostatistical techniques. 

Gold concentration range was between the 
detection limit, 2 ppm, and a maximum of 360 ppm. 
Similarly, Sb ranged from 5 to 35 ppm. Arsenic exhibits 
higher mean values than Au and Sb, with a range of 
concentrations between 12 and 4076 ppm. Arsenic 
can be considered as a pathfinder of Au, therefore 
it can be considered appropriate at a first sight as a 
secondary variable in the geostatistical analysis of Au. 
However in our study case the correlation coefficients 
between Au and As was low (R2=0.10), even though it 
is was significant (P<0.05) allowing corregionalization. 
Jiménez Espinosa and Chica Olmo (1999) found a higher 
correlation coefficient (R2=0.76) between Au and As 
in a neighboring deposit of the study mining district. 

Correlation coefficient between Au and Sb was a little 
higher (R2=0.14), but the linear dependence between 
these elements also was weak. Both As and Sb were 
used as auxiliary variables for geoestatistical analysis.

The patterns of spatial variability for Au, As 
and Sb were assessed by semivariogram, indicator 
semivariograms and cross-semivariogram analysis. 
Figure 3 shows the experimental semivariograms 
together with models fitted to them and Table 2 lists 
parameters of these models. Semivariograms could 
be fitted quite well over the spatial scale of interest by 
spherical models with a nugget and a spatial component. 
The nugget effect was rather high with values of the 
dependence ratio, C0/(C0+C1), of 55.97 % for Au, 50 
% for As and 55.44 % for Sb, which indicate moderate 
spatial dependence (Cambardella et al., 1994). Therefore 
at small distances the three studied elements exhibits 
a rather low degree of continuity and the patterns of 
spatial variability at this scale is not very different. The 
range of spatial dependence was between 271.9 m (Au) 
and 515.4 m (Sb).

The individual semivariograms for Au, As and 
Sb could be fitted quite well. For example, regression 
coefficients (R2) between experimental and modelled 
data points were 0.996, 0.994 and 0.996 for Au, As and 
Sb, respectively. The goodness of fit was evidenced by 
the commonly used parameters of cross-validation, 
such as mean error and root mean square error (data 
not shown).

Scatter plots of the three studied elements show 
that locally extreme values are surrounded by much 
smaller ones. In this situation, there will be huge 
spatial variation among observations over a short 
distance, and the fitted semivariogram model usually 
has a large nugget effect. The large nugget effect means 
the variable is not very regular and is discontinuous 
from point to point. The higher is the nugget effect, 
the lower the spatial dependence. Kriging estimations 
using semivariograms with large nugget effect exhibit 
high kriging estimation errors and as the nugget effect 
increases and approaches pure nugget effect any map 
generated by using the kriging process will not be very 
meaningful.

Indicator semivariograms were calculated 
taking the mean, the median and different percentiles 
as threshold values. The most reliable results were 
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Table 2. Fitted semivariogram models with their parameters
Element Model C0 C1 C0/(C0+C1) a (m) r2

Au Spherical 1305.13 1026.75 55.97 271.9 0.996
As Spherical 200000 200000 50.00 463.0 0.994
Sb Spherical 6.83 5.49 55.44 515.4 0.996
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Figure 2. Frequency distributions for Au (a), As (b) and Sb (c).
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Figure 3. Experimental semivariograms and fitted models for 
Au (a), As (b) and Sb(c).

obtained with the 75th percentile. Figure 4 shows the 
indicator semivariogram for Au (IAu75) using this cut-
off. Semivariogram IAu75 was best fitted by a spherical 
model with a range of 362.6 m (Table 3). However the 
nugget effect of this indicator semivariogram (70.28% 
of the sill value) was even higher than those of the 
semivariogram of the raw data sets (55.97% of the sill 
value). Semivariogram ISb75 was also fitted by a spherical 
model and in this case the nugget effect was somewhat 
lower, 41.21% of the sill value.

Patterns of spatial variability revealed by the 
indicator semivariograms of the three studied elements 
were rather close to those of individual semivariograms 
obtained from the raw data sets. Thus, both individual 
and indicator semivariograms of Au, As and Sb show 

that continuity patterns at small distances are not very 
different, suggesting a high spatial variation at small 
distances. 

Common practice has shown that cross 
semivariograms present smaller nugget variance than 
individual direct semivariograms (Vieira et al., 1997; 
Paz González et al., 2001). In order to investigate if 
coregionalisation could improve the description of 
spatial continuity and reduce the estimation errors of the 
kriging variance, cross-semivariograms for Au versus As 
and Au versus Sb were constructed. Figure 4 shows these 
experimental cross semivariograms with corresponding 
fitted models and the respective parameters are listed 
in Table 4. The cross semivariogram Au x As was best 
fitted by a gaussian model with a dependence ratio of 
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Figure 4. Experimental indicator semivariogram and fitted 
model for Au (a) and experimental cross semivariograms 
and fitted models for Au vs As (b) and Au vs Sb (c).
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39.88% and a range of 366 m. The cross semivariogram 
Au x Sb was best fitted by an exponential model with 
only 2.61% dependence ratio and a range of 251.3 m. 
Thus, the reduction in the value of the nugget variance 
was higher in the case of Au versus Sb than in the case 
of Au versus As. 

Therefore, cokriging clearly improved the spatial 
continuity at small distances. Because the nugget 
variances in the cross semivariograms were significantly 
reduced, mainly in the case of Au x Sb, this nugget value 
perhaps better describes laboratory analytical errors 
rather than variability occurring within the shortest 
sampling interval (Paz González et al., 2001). This is 
consistent with the fact that analytical values below 
detection limit are grouped at detection limit.

Once spatial continuity was modeled, ordinary 
kriging, indicator kriging and cokriging were 
performed to generate geochemical maps. Kriging 
maps for Au, As and Sb are shown in figure 5. Gold 
distribution is characterized by two mineralization 
zones within the study area where maximum values 
occur. These zones are well delineated and they are 
located near the top and near the bottom of the contour 
map in figure 5. However, kriging contour maps 
also show that there is not a total correspondence 
between areas with maximum values of Au, As and 
Sb. Actually, the micro-region on the bottom of the 
Au kriging map (Figure 5) does not appear in the 
kriging maps for As and Sb. The similitudes in the 
micro region with maximum values near the top of 
the map in Au, As and Sb, are more conspicuous. Thus 
the three kriging maps also show clear differences, 
suggesting variability in the mineralization processes 
of Au, As and Sb at the study scale. Because processes 
inducing spatial variation during mineralization 
are superimposed, the individual effect of factors 
affecting the distribution of Au, As and Sb is not 
always evident. 

Indicator kriging also was used as an alternative 
in analyzing and interpreting geochemical data. Au 
map obtained by indicator kriging is shown in Figure  6. 
Contour kriging maps clearly delineate the two zones 
with Au mineralization within the study area.

Table 3. Fitted indicator semivariogram models with their parameters
Variable Model C0 C1 C0/(C0+C1) a (m) r2

I Au 75th percentile Spherical 0.123 0.052 70.28 362.6 0.996
I Sb 75th percentile Spherical 0.068 0.097 41.21 500.0 0.995

Variables Model C0 C1 C0/(C0+C1) a (m) r2

Au vs As Gaussian 4729.9 7130.1 39.88 366.0 0.836
Au vs Sb Exponential 4.5 67.8 2.61 251.4 0.708

Table 4. Fitted cross-semivariogram models with their parameters

Figure 5. Kriging maps of Au (a), As (b) and Sb (c).
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Figure 6. Indicator Kriging map of Au. 

Figure 7. Cokriging maps of Au vs. As (a) and Au vs. Sb (b). 

Next, kriging and cokriging maps for Au are 
compared, in order to test the possible advantages 
in using coregionalization for estimation purposes. 
Figure 7 shows the maps of Au estimations obtained 
with cokriging using both As and Sb as the secondary 
variable. Basically, kriging (Figure 5) and cokiging 
maps (Figure 7) for Au present the same results, with 
a little more detail on the cokriged map, owing to the 
contribution of the variability of As or Sb, and in spite 

of the low correlation coefficient of the concentration 
of Au with these two elements. Thus, cokriging and 
ordinary kriging estimations were somewhat alike. 
The limited improvement obtained by cokriging 
is related with the smaller nugget effect of cross-
semivariograms when compared with individual 
semivariograms.

Semivariogram analysis and kriging maps 
illustrate possible environmental processes operating 
within the plot and allowed inferences to be made about 
factors controlling the spatial distribution of Au, As 
and Sb. Kriging maps provide additional evidence that 
different processes controls the contents of Au, As and 
Sb within the study area. Therefore, the geostatistical 
approach has demonstrated to be a highly effective 
method to separate the studied plot into homogeneous 
small zones characterized by similitude and differences 
in the mineralization processes.

4. CONCLUSIONS

1. Au, As and Sb are not normally distributed 
owing to their mineralization processes for high values 
and the analytical detection limit for low values.

2. Semivariogram, cross-semivariogram and 
indicator semivariogram analysis were equivalent for the 
spatial variability assessment all with high nugget effect 
values reflecting the nature of the spatial continuity. 

3. Kriging, cokriging and indicator kriging were 
equivalent for mapping Au, As and Sb variability and 
to identify micro regions with distinct values for all of 
the study variables. A combination of both ordinary and 
indicator kriging seem to be the ideal for delineating 
geochemical anomalies.
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