
ABSTRACT: Sweet potato [Ipomoea batatas (L.) Lam.] has wide adaptability to different 

climatic conditions. However, its yield can be affected by prolonged periods of drought. 

Application of exogenous jasmonates can modulate several physiological and biochemical 

processes, improving plant tolerance to abiotic stress. This study sought to evaluate the role 

of exogenous application of methyl jasmonate (MeJA) in attenuating the adverse effects of 

drought stress by physiobiochemical analyses and their impact during the early initiation 

of tuberous roots. The experimental design was completely randomized and arranged in a 

2 × 2 factorial, comprised of two concentrations of a MeJA plant regulator [without (0 µmol·L-1) 

and with (13 µmol·L-1) application] and two water regimes (optimum and drought conditions, 

corresponding to a field capacity of 100 and 40%, respectively). Plants treated with MeJA 

showed a reduction in total leaf area and leaf dry biomass but increased adventitious root 

dry biomass. In addition, MeJA application in sweet potato plants affected photosynthetic 

performance and increased and antioxidant phenolic compounds, carotenoids, anthocyanins, 

and proline. The evaluated response mechanisms showed that the severity of drought was 

more prominent than the positive effects of MeJA, since the increases on antioxidant pigments 

and secondary metabolites were not sufficient to mitigate stress caused by drought, which 

was reflected in the reduced tuberous root production.
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INTRODUCTION

Ipomoea batatas (L.) Lam. (sweet potato) is a starchy tuberous root containing several vitamins, minerals, and proteins 
(Shigematsu et al. 2017), which is why it is one of the seven major food crops cultivated worldwide (Li et al. 2018). 
Recent research has reported that sweet potato, when included in the human diet, is beneficial for preventing many 
diseases (Esatbeyoglu et al. 2017), making it a functional food. This is due to high contents of polyphenolic compounds 
and carotenoids (Albishi et al. 2013; Esatbeyoglu et al. 2017; Wang et al. 2018).

Despite its rusticity, easy maintenance, short crop cycle, resistance to diseases and pests, wide adaptation to arid and 
dry regions, and high yield potential, sweet potato yield is affected in regions exposed to strict drought regimes (Mbinda 
et al. 2016; 2018), particularly during the establishment phase, including early vine development and storage root initiation 
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(Gajanayake et al. 2014). The formation of tuberous roots in sweet potatoes can begin within four weeks after planting the 
branch, depending on the cultivar and environmental conditions. In this phase it is ideal to have favorable conditions in 
terms of soil moisture and temperature (Gajanayake and Reddy 2016).

Jasmonic acid and its methyl ester methyl jasmonate (MeJA) are considered plant regulators that occur naturally in 
plants and control morphological, physiological, and biochemical processes (Ueda and Saniewski 2006; Norastehnia et al. 
2007). Both are involved in signal transduction pathways in plant responses to environmental stressors. The exogenous 
application of jasmonates can modulate several physiological responses that lead to increased resistance to abiotic stress 
(Walia et al. 2007). The application of plant regulators such as salicylic acid, MeJA, and abscisic acid in sweet potato increases 
the levels of antioxidant compounds, including phenolics, flavonoids, anthocyanins, and β-carotene (Ghasemzadeh et al. 
2016). Plants exhibiting increased synthesis of polyphenols under abiotic stress usually show better adaptability to limiting 
environments, since these compounds have antioxidative properties and are capable of scavenging free radicals, protecting 
plant cells from negative effects of oxidative stress (Sharma et al. 2016).

The hypothesis of this work is that the exogenous application of MeJA modulates the protection mechanisms against 
drought, increasing production of phenolic compounds in sweet potato leaves and roots. Thus, this study sought to evaluate 
the role of exogenous application of MeJA in attenuating the adverse effects of drought stress by physiobiochemical analyses 
and their impact during the early initiation of tuberous roots.

MATERIAL AND METHODS

Experimental site

The experiment was carried out at the University of Western São Paulo (UNOESTE), Presidente Prudente, State of São 
Paulo, Brazil (22°06’59” S and 51°27’12” W; 402 m above sea level). The experiment was conducted in a semicontrolled 
greenhouse environment (temperature and humidity), between November 2018 and January 2019.

Design and experimental treatments

The experimental design was completely randomized with 10 replications and arranged in a 2 × 2 factorial scheme, 
comprising two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] in 
combination with two water regimes (optimum and drought conditions, which correspond to field capacity at 100 and 40%, 
respectively). The plots were composed of 40 pots with one plant each. Twenty-four pots were used for photosynthetic, 
biochemical, biometric and yield evaluation. The remaining 16 pots were used to evaluate leaf water potential and discarded 
at the end of the experiment.

Cultivation conditions

A mixed soil of dystrophic ultisol (Santos et al. 2018) was used with a Carolina - XVI substrate, in the ratio 2:1, respectively. 
The Carolina - XVI substrate used was composed of peat, vermiculite, and limestone.

The soil was collected at a 0.0–0.2 m depth. It was crumbled, air-dried and sieved (4.0 mm) and shown the following 
chemical attributes: pH (CaCl2) 4.2, organic matter 3 g·dm-3, P (resin) 3 mg·dm-3, K 1.36 mmolc·dm-3, Ca 4.53 mmolc·dm-3, 
Mg 3.26 mmolc·dm-3, S 10.73 mg·dm-3, B 0.29 mg·dm-3, Cu 0.6 mg·dm-3, Fe 2.97 mg·dm-3, Mn 1.13 mg·dm-3, Zn 0.23 mg·dm-3, 
potential acidity (H + Al) 21.83 mmolc·dm-3, Al 7.97 mmolc·dm-3, sum of bases 9.15 mmolc·dm-3, cation exchange capacity 
30.98 mmolc·dm-3, and base saturation 29.5%. Based on the chemical analysis, soil liming was carried out to raise the 
base saturation to 70% (Quaggio et al. 1985), by the addition of 750 mg·dm-3 dolomitic limestone (36% CaCO3 and 
15.8% MgCO3). The soil containing carbonate salts was incubated for 30 days in pots at a humidity of 80% at field capacity 
to allow it to equilibrate.
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Experimental process

Fertilization was carried out with 1 mg·dm-3 of the formulation 4-30-10 (N-P-K). After 7 days, slips of sweet potato 
cultivar Beauregard (20 ± 1 cm) were transplanted to pots (one slip per pot) with a capacity of 8 dm3 at a depth of 10 cm, 
which were cultivated for a period of 5 weeks for adventitious root formation. Cover fertilization with 0.42 mg·dm-3 of the 
formulation 20-05-20 (N-P-K) was done in the 4th week.

After the initial acclimatization period, plants were standardized for length of the branch (approximately 40 ± 1 cm in 
length) and number of leaves (approximately 12 leaves per branch), selecting those with greater vigor and homogeneity of size.

MeJA application and water deficit imposition 

Before subjecting the plants to drought, field capacity of the soil [100% water mass (g) that the soil supports] was 
determined. The water deficit was imposed 37 days after slip transplantation, coincided with the tuberization start period. 
Plants remain in this condition for 9 days (Yooyongwech et al. 2013), that is, until 46 days after slip transplantation, with a 
daily replacement up to 40% of field capacity, based on Gajanayake and Reddy (2016). Under optimum water conditions, 
plants were watered daily to field capacity. During this period, the mass of each pot was measured once a day, in the morning, 
and the volume of water lost by evapotranspiration was restored.

Methyl jasmonate application (224.30 MW, Sigma) was performed at a concentration of 13 µmol·L-1 (Ghasemzadeh 
et al. 2016). Methyl jasmonate application was performed via manual foliar pulverization one day before and on the 5th day 
of water deficit imposition (50 mL of the solution per plant).

Measurements of gas exchange 

On the 3rd, 6th, and 9th day of water deficit imposition, gas exchange evaluations were carried out using a portable infrared 
gas analyzer (IRGA, Li-6400XTR, LiCor, EUA) by choosing two leaves from each plant between the sixth and ninth fully 
developed leaf of the branch. Evaluations were carried out on a clear day between 10:00 a.m. and 12:00 p.m. Photosynthetically 
active radiation (PAR) was standardized to an artificial saturating light of 1200 µmol·m-2·s-1 and the concentration of CO2 
was established at 380 ± 10 µmol·mol-1. The average relative humidity, the temperature and the vapor pressure deficit were 
50%, 26 ± 2 °C and 2.22 ± 0.47 kPa, respectively.

The net photosynthetic rate (A, µmol CO2·m
-2·s-1), stomatal conductance (gs, mol H2O·m-2·s-1), internal concentration 

of CO2 in the substomatic chamber (Ci, µmol CO2 mol·ar-1), transpiration rate (E, mmol H2O·m-2·s-1), water use efficiency 
[WUE, (A/E) μmol CO2·mmol-1 H2O], and instantaneous carboxylation efficiency [EiC, (A/Ci)mol·air-1] were obtained.

Measurements of leaf water potential (Ψw)

The evaluation days were the same as those described in gas exchange measurements. Two leaves from each plant were 
chosen between the sixth and ninth fully developed leaf of the branch and measurements were recorded at 12:00 p.m. 
Measurements were made in a pressure chamber (model 1000, PMS Instruments, USA), expressed in MPa (Scholander 
et al. 1965).

Material storage for biochemical analysis

46 days after slip transplantation, leaves were collected between the sixth and ninth fully developed leaf of the branch 
(counting down from the apex) of each plant and immediately immersed in liquid N2 for rapid freezing. The material was 
stored at −80 °C for further analysis.
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Analysis of photosynthetic and antioxidant pigments

Methods for determining chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Tchl), and carotenoid contents 
(CAR) were based on those described by Hiscox and Israelstam (1979). Fresh leaf tissue (0.1 g) was incubated in a water 
bath at 65 °C for 1 h containing 7 mL of DMSO. After that time, the samples were cooled in the dark until they reached 
room temperature. The readings were performed in a spectrophotometer at 663, 645 and 480 nm. Photosynthetic pigment 
content was calculated following the equation used by Arnon (1949) and expressed in µg·g-1 FW.

Anthocyanins were determined according to Francis (1982). Fresh leaf tissue (1 g) was macerated in a 95% ethanol 
extract solution acidified with 1.5 N HCl and stayed for 24 h at a temperature of 5 °C. The absorbance was read at 535 nm 
using a spectrophotometer (BEL Engineering, model UV-M51) and the resulted was expressed in µg·100-1 g FW.

For determination of the β-carotene content, fresh (leaves and roots) tissue (5 g) were ground and packed in a volumetric 
flask to protect from light. Then, 50 mL of a 2:1:1 hexane, acetone, and ethanol mixture was added to solubilize the carotenoids 
(Sadler et al. 1990). The samples were stirred for 30 min and 10 mL of distilled water was added. The solution was allowed 
to separate into a distinct polar layer (35 mL) and a nonpolar layer (25 mL). The absorbance was read at 450 nm using a 
spectrophotometer and expressed in µg·g-1 FW, calculated according to the equation by Craft and Soares Junior (1992).

Polyphenolic compounds and phenylalanine ammonia lyase enzyme activity (PAL, EC 4.3.1.5) assay

The ethanolic crude extracts obtained were performed according to the method by Simões et al. (2007). Total polyphenolic 
content of leaves (TPL) and roots (TPR) were determined according to the Folin–Ciocalteau reagent method. The samples 
(25 µL) were mixed with 125 µL of Folin–Ciocalteau reagent, 350 µL of 25% sodium carbonate solution and 2 mL of water 
(Stagos et al. 2012). The mixture was incubated for 1 h at room temperature. Absorbance was read at 765 nm and the result 
was expressed in µg·mL-1 of gallic acid equivalent (GAE). The total flavonoid content of leaves (TFL) and roots (TFR) was 
measured according to the method by Yao et al. (2013). The samples (100 µL) were mixed with 400 µL of ethanol 70%, 
50 µL of NaNO2 (5%), 50 µL of AlCl3 (10%), 300 µL of NaOH (1 mol·L-1) and 100 µL of water. The mixture was incubated 
for 15 minutes in the dark. Absorbance was read at 510 nm and the result was expressed in µg·mL-1 of rutin equivalent (RE).

The enzymatic activity of PAL (EC 4.3.1.5) was evaluated according to Hyodo et al. (1978). Phenylalanine ammonia lyase 
enzyme activity was assayed by following (E)-cinnamic acid formation at 290 nm in a spectrophotometer at 40 °C in buffer 
(0.5 M TRIS-EDTA, either pH 8.5) containing 30 µmol·L-1 L-phenylalanine. A molar extinction coefficient of 104 mmol·L-1·cm-1 
(Zucker 1965) was used for calculation. The results were expressed in Kat·sec-1·mg-1 protein. The protein content was 
determined, as described by Bradford (1976), using bovine serum albumin as a standard.

Malondialdehyde (MDA) and leaf proline content evaluation

Lipid peroxidation was determined by the production of 2-thiobarbituric acid (TBA)-reactive substances, especially 
MDA, according to Heath and Packer (1968). Fresh leaf tissue (0.25 g) was ground in liquid N2 with a pestle and mortar, 
to which 3 mL of 0.1% trichloroacetic acid (TCA) in 20% polyvinyl polypyrrolidone (PVPP) was added. After complete 
homogenization, the samples were centrifuged at 10,000 rpm for 10 min at 4 °C. 0.25 mL of supernatant was added to 1 mL 
20% TCA solution containing 0.5% thiobarbituric acid (TBA). The samples were kept in a dry bath at 95 °C for 30 min 
and then on ice for 20 min. Subsequently, the samples were centrifuged at 10,000 rpm for 5 min. Samples were read at two 
wavelengths, 535 and 600 nm and the resulted was expressed as nmol·g-1 FW.

Proline content in leaf tissues was measured via reaction with ninhydrin (Bates et al. 1973). Fresh leaf tissue (0.5 g) was 
ground in 5 mL of 3% sulphosalicylic acid and centrifuged at 13,000 rpm for 10 min at 4 °C. Two milliliters of supernatant 
was  incubated with equal volume of acid ninhydrin and glacial acetic acid at 100 °C for 1 h. The reaction mixture was extracted 
with 2 mL toluene and the chromophore containing toluene was aspirated, cooled to room temperature, and the absorbance 
was read at 520 nm with a spectrometer using L-proline as a standard. Proline content was expressed as µmol·g-1 FW.
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Partitioned biomass production

46 days after slip transplantation, plants were separated into the shoot (leaves and stems) and roots (adventitious and 
tuberous). Roots with a diameter equal to or greater than 5 mm were considered tuberous roots (Villordon et al. 2009). 
Total leaf area (TLA, cm2) was measured using a portable area meter (model LI - 3000A, LI-COR, USA). The number of 
tuberous roots (NTR) and diameter of the tuberous roots (DTR) was determined with a digital caliper and were expressed 
in mm. Subsequently, the material was placed in an oven with air circulation at 65 °C for 72 h to measure the leaf (LDB), 
steam (SDB), total shoot (TSDB), tuberous root (TUDB), adventitious root (ARDB), and total root (TRDB) dry biomass, 
expressed in g·plant-1.

Statistical analysis

In all considered datasets, normality of the data was analyzed using the Anderson–Darling test and homoscedasticity 
of the data was verified with Levenn’s test, both at 0.05 probability. Data were subjected to analysis of variance (ANOVA) 
using the F test (p ≤ 0.05). When significant, the traits were subjected to the Tukey’s test (p < 0.05). All statistical analysis 
of the data was performed using protocols developed in the R software (R Development Core Team 2019).

RESULTS

Gas exchange and leaf water potential

On the 3rd, 6th, and 9th day, all gas exchange traits and Ψw showed an isolated effect for drought (Table S1). On these 
same days, A and Ci showed an isolated effect for MeJA, while the E showed a significant effect only on the 6th and 9th day. 
Plants cultivated under drought showed reductions in A, gs, Ci, E, and Ψw on the 3rd, 6th, and 9th day (Table 1).

Plants treated with MeJA decreased A by 15, 22, and 30% and increased Ci by 15, 9, and 4%, on the 3rd, 6th, and 9th day, 
respectively. The gs and Ψw were unchanged in plants treated with MeJA on the 3rd, 6th, or 9th day. The same behavior was 
observed in E, but only on the 3rd day. On the 6th and 9th day, E showed a reduction of 18% (Table 1).

Table 1. Results for CO2 assimilation rate (A, µmol CO2·m
-2·s-1), stomatal conductance (gs, µmol CO2·m

-2·s-1), internal CO2 concentration in the 
substomatic chamber (Ci, µmol CO2·m

-2·air-1), transpiration rate (E, mmol H2O·m-2·s-1), and water potential (Ψw, MPa) evaluated on the 3rd, 6th, and 9th 
day in sweet potato ‘Beauregard’ treated with two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] 
in combination with two water regimes (optimum and drought conditions, which correspond to field capacity at 100 and 40%, respectively).

Days of stress Factors Levels A gs Ci E Ψw

3rd

Water regime
Optimum 23.71a 0.79a 373.28a 11.06a -0.55a

Drought 0.81b 0.02b 304.01b 0.63b -0.90b

MeJA
Without 13.23A 0.42 315.09B 5.98 -0.73

With 11.29B 0.39 362.20A 5.72 -0.71

6th

Water regime
Optimum 27.42a 0.78a 353.20a 9.10a -0.50a

Drought 2.56b 0.07b 298.35b 1.23b -0.94b

MeJA
Without 13.23A 0.42 315.09B 5.98 -0.73

With 11.29B 0.39 362.20A 5.72 -0.71

9th

Water regime
Optimum 22.18a 0.67a 315.06a 9.28a -0.52a

Drought 3.30b 0.05b 292.00b 0.89b -0.92b

MeJA
Without 15.00A 0.44 297.00B 5.58A -0.71

With 10.47B 0.27 310.06A 4.59B -0.73

Lowercase letters compare water regimes independent of MeJA, while uppercase letters compare the effect of MeJA independent of the water regime.
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An interaction for water regime and MeJA application was observed in EiC on the 3rd and 6th day and in WUE on 6th day 
(Table S1). Plants subjected to drought showed reductions in EiC on the 3rd, 6th, and 9th day. Water use efficiency decreased 
on the 3rd day, but on the 6th day the decrease was only observed in plants treated with MeJA. Conversely, WUE increased 
on the 9th day (Table 2).

In relation to MeJA application, on the 3rd, 6th, and 9th day, plants showed a reduction in EiC, except under drought on 
the 3rd day. Water use efficiency was unchanged in plants treated with MeJA on the 3rd day. This behavior was also observed 
in plants under optimum water conditions on the 6th day. Plants treated with MeJA and cultivated under drought showed 
a decrease in WUE on the 6th

. A decrease in WUE was also observed on the 9th day, however this effect was independent 
of water regime (Table 2).

Table 2. Result for instantaneous carboxylation efficiency (EiC, mol·air-1) and water use efficiency (WUE, μmol CO2·mmol-1 H2O) evaluated on the 3rd, 
6th, and 9th day in sweet potato ‘Beauregard’ treated with two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with (13 µmol·L-1) 
application] in combination with two water regimes (optimum and drought conditions, which correspond to field capacity at 100 and 40%, respectively).

Days of stress Water regime

EiC WUE

MeJA
Average

MeJA
Average

Without With Without With

3rd

Optimum 0.07Aa 0.06Ba 0.06 2.25 2.04 2.14a

Drought 0.00Ab 0.00Ab 0.00 1.04 1.16 1.10b

Average 0.04 0.03 1.65 1.60

6th

Optimum 0.09Aa 0.06Ba 0.07 3.03Aa 3.05Aa 3.04

Drought 0.01Ab 0.00Bb 0.01 2.85Aa 1.38Bb 2.11

Average 0.05 0.03 2.94 2.21

9th

Optimum 0.08 0.05 0.07a 2.57 2.27 2.42b

Drought 0.02 0.00 0.01b 4.70 2.67 3.68a

Average 0.05A 0.03B 3.63A 2.47B

Lowercase letters compare the effect of MeJA between different water regimes (columns), while uppercase letters compare the effect of MeJA on the same 
water regime (rows).

Photosynthetic and antioxidant pigments

All traits (Chl a, Chl b, Tchl, and CAR) presented in Fig. 1 showed an interaction between water regime and MeJA 
application (Table S2). Plants cultivated under drought presented marked reductions in Chl a, Chl b, Tchl, and CAR (Fig. 1).

Plants treated with MeJA showed reduced Chl a (9 and 11%), Tchl (6 and 9%), and CAR (29 and 3%), when cultivated 
under optimum water conditions or drought, respectively (Figs. 1a and 1c-d). The Chl b was less sensitive and reduced 
only under drought, decreasing by 3% (Fig. 1b). 

When comparing the behavior of anthocyanins and β-carotene between water regimes, it was observed that plants 
under drought showed the lowest TA content (Fig. 2a). Conversely, Lβ-car and Rβ-car increased in this condition of water 
supply, with the exception of Lβ-car in plants not treated with MeJA (Figs. 2b-c).

Plants treated with MeJA increased TA by 9% and 10% and Rβ-car by 110 and 9%, when cultivated under optimum 
water conditions and drought, respectively (Figs. 2a and 2c). The same behavior was observed on Lβ-car in plants cultivated 
under drought, registering an increase of 12% (Fig. 2b). However, plants cultivated under optimum water conditions showed 
the opposite behavior, that is, Lβ-car was reduced by 13% when MeJA was applied (Fig. 2b).

Phenolic compounds and oxidative stress 

All traits (TPL, TPR, TFL, TFR, PAL, MDA, and proline) presented in Figs. 3 and 4 showed an interaction between 
the water regime and application of MeJA (Table S3. Supplementary material). Plants cultivated under drought showed 
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the highest content of TPL, TPR, TFL, and TFR. MeJA application increased the content of these traits, in both water regimes 
(Figs. 3a-d). Phenylalanine ammonia lyase enzyme activity showed this same behavior, except for plants treated with MeJA 
when cultivated under optimum water conditions (Fig. 3e).

Plants cultivated under drought showed the highest MDA content (Fig. 4a). Malondialdehyde was lower in plants treated 
with MeJA, in optimum conditions (-50%) and under drought stress (-54%). Plants cultivated under drought conditions 
and treated with MeJA had an increased proline content (Fig. 4b).

Bb

(a)

(c)

(e)

(b)

(d)

Ab

Aa

Bb

Ab
Ba

Aa

Ba

225

200

175

150

125

100

75

50

25

90

80

70

60

50

40

30

20

10

250

225

200

175

65
60
55

100

75

50

25

30

25

20

15

10

5

40

35

30

15

10

5

TP
L 

(μ
g·

m
L-1

 G
A

E)

TP
R

 (μ
g·

m
L-1

 G
A

E)

TF
L 

(μ
g·

m
L-1

 R
E)

PA
L 

(K
at

.s
ec

-1
·m

g-1
 p

ro
te

in
)

TF
R

 (μ
g·

m
L-1

 R
E)

Aa

Ba

Bb
Ab

Aa

Aa

Ba

Ba

Ab

Ab

Bb

Ab

Optimum Drought

Optimum Drought

Optimum Drought

Optimum Drought

Optimum Drought

Water regime

Water regime

Water regime

Water regime

Water regime

Without MeJA
With MeJA

Figure 3. Total polyphenolic in leaf (TPL, A), total polyphenolic in root (TPR, B), total flavonoid in leaf (TFL, C), total flavonoid in root 
(TFR, D) and activity of the enzyme phenylalanine ammonia lyase (PAL, E) on the 9th day in sweet potato ‘Beauregard’ treated with two 
concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] in combination with two water regimes 
(optimum and drought conditions, which correspond to field capacity at 100 and 40%, respectively). Lowercase letters compare the 
effect of MeJA between the water regimes, while uppercase letters compare the MeJA effect on the same water regime. Vertical bars 
represent the standard error.
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Partitioned biomass production

The TLA and LDB parameters showed an isolated effect for water regime and MeJA application. The NTU, DTU, SDB, 
TSDB, TUDB, and TRDB parameters showed an isolated effect for water regime and an effect for MeJA application was 
detected on ARDB (Table S4). Plants cultivated under drought showed reductions in TLA, NTU, and DTU. Plants treated 
with MeJA reduced LA by 6%. (Table 3).

Plants cultivated under drought showed reductions in all assessed dry biomass traits (LDB, SDB, TSDB, TUDB, 
and TRDB). Plants treated with MeJA showed a reduction of 12% in LDB; in contrast, there was an increase of 12% 
in ARDB (Table 4).
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Figure 4. Malondialdehyde (MDA, A) and proline (B) on the 9th day in sweet potato ‘Beauregard’ treated with two concentrations of a MeJA plant 
regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] in combination with two water regimes (optimum and drought conditions, 
which correspond to field capacity at 100 and 40%, respectively). Lowercase letters compare the effect of MeJA between the water regimes, 
while uppercase letters compare the MeJA effect on the same water regime. Vertical bars represent the standard error.

Table 3. Result for total leaf area (TLA, cm2), number of tuberous root (NTU, unity·plant-1) and diameter of tuberous root (DTU, cm) evaluated 
on the 9th day in sweet potato ‘Beauregard’ treated with two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with 
(13 µmol·L-1) application] in combination with two water regimes (optimum and drought conditions, which correspond to field capacity at 
100 and 40%, respectively).

Factors Levels TLA NTU DTU

Water regime
Optimum 5813.82a 19.75a 1.45a

Drought 2400.46b 17.45b 1.19b

MeJA
Without 4223.99A 19.15A 1.35A

With 3990.29B 18.05A 1.30A

Lowercase letters compare water regimes independent of MeJA, while uppercase letters compare the effect of MeJA independent of the water regime.

Table 4. Tukey’s test result for leaf (LDB, g·plant-1), steam (SDB, g·plant-1) total shoot (TSDB, g·plant-1), tuberous root (TUDB, g·plant-1), 
adventitious root (ARDB, g·plant-1) and total root dry biomass (TRDB, g·plant-1) evaluated on the 9th day in sweet potato ‘Beauregard’ treated 
with two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] in combination with two water 
regimes (optimum and drought conditions, which correspond to field capacity at 100 and 40%, respectively).

Factors Levels LDB SDB TSDB TUDB ARDB TRDB

Water regime
Optimum 18.50a 25.70a 44.2a 67.36a 33.43a 100.80a

Drought 9.50b 17.40b 26.9b 48.64b 35.45a 84.10b

MeJA
Without 14.90A 22.30A 37.90A 61.05A 31.23B 92.20A

With 13.10B 20.80A 33.90A 54.96A 37.64A 92.60A

Lowercase letters compare water regimes independent of MeJA, while uppercase letters compare the effect of MeJA independent of the water regime.



328

C. H. P. Yoshida et al.

Bragantia, Campinas, v. 79, n. 3, p.319-334, 2020

DISCUSSION

Gas exchanges and water potential

In plants treated with MeJA, reductions were observed in A, however gs was not altered, which shows that the reduction 
in A was due to cumulative limitations in carboxylation reactions (i.e., biochemical limitations), as verified by the lower 
EiC (Tables 1 and 2). According to Jung (2004) and Springer et al. (2015), jasmonic acid and MeJA applied exogenously led 
to decreased expression of genes related to photosynthesis, such as the gene encoding the small subunit of ribulose-1.5-
bisphosphate carboxylase/oxygenase (Rubisco). The reduction in translation and increase in the degradation of Rubisco 
were accompanied by a rapid loss of chlorophyll in barley leaves (Weidhase et al. 1987). There was also a reduction in WUE 
on the 9th day of water deficit imposition, which is due to a substantial reduction in A (Tables 1 and 2).

Traits A, gs, Ci, and E showed decreases under drought. The decrease in gs is an adaptive behavior of the plant to prevent 
dehydration of the leaf tissue, which negatively impacted A, Ci and E (Table 2). Even under stomatal limitation, the Ψw 
continued to maintain dehydration levels, indicating that the water status of sweet potato plants cultivated under drought 
was affected. Similar results were observed by Gajanayake and Reddy (2016). These authors, studying irrigation depths 
based on the replacement of water lost by evapotranspiration (100, 60, 40, and 20%), verified reductions in A, gs, and E in 
sweet potato ‘Beauregard’. Plants exposed to drought also showed a reduction in EiC (Table 3). Thus, the decrease observed 
in A is linked to stomatal and biochemical limitations (Tables 2 and 3).

Photosynthetic pigments

The photosystems in plants are composed of a core complex (Chl a and β-carotene) and a peripheral antenna system 
(Chls a and b and carotenoids) (Wientjes et al. 2017). In the present study, drought decreased the pigments content (Fig. 1). 
Drought stress-induced decrease in chlorophyll content has been reported in several plants (Jeyaramraja et al. 2005; Loutfy 
et al. 2012).

Plants treated with MeJA under both water regimes showed reductions in chlorophyll and carotenoids contents (Fig. 1), 
which possibly are not related to oxidative stress, since MDA was reduced, indicating greater cell integrity (Fig. 4a). 
Such results indicate that the degradation of photosynthetic pigments was due to the direct action of MeJA. This response is 
in agreement with those observed in Arabidopsis thaliana, where MeJA application caused a symptom similar to senescence, 
due to the great decline in photosynthesis and chlorophyll and a strong increase in anthocyanins and activity of antioxidant 
enzymes (Jung 2004).

The lower content of chlorophylls and carotenoids impairs the use and dissipation of light energy, which can result 
in reduced photosynthesis (Divya et al. 2018; Lapaz et al. 2019). Therefore, reduction in chlorophyll content may have 
contributed to the lower A observed in this study (Table 1 and Fig. 1).

Antioxidant pigments and phenolic compounds

Methyl jasmonate application increased anthocyanin content under both water regimes (Fig. 2a), which corroborates 
results previously found in sweet potatoes (Ghasemzadeh et al. 2016) and Arabidopsis thaliana (Jung 2004). In a research 
carried out by Wang et al. (2013), the accumulation of anthocyanins in leaves, stems, and roots in sweet potato plants was 
found to play a fundamental antioxidant role in the suppression of reactive oxygen species (ROS) in plants under different 
abiotic stresses, which corroborates the results of this study (Figs. 2a and 4a), since the application of MeJA reduced MDA 
(Fig. 4a). Conversely, plants exposed to drought without application of MeJA were still under oxidative stress based on the 
increase in MDA (Fig. 2a), despite the increase antioxidant pigments and phenolic compounds (Figs. 3 and 4).

Beta-carotene is a nonenzymatic antioxidant produced by a wide range of plant species under stress conditions (Soares 
et al. 2019), capable of scavenging free radicals that damage cellular organelles (Story et al. 2010). Drought stress and MeJA 
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application increased the Lβ-car and the Rβ-car (Figs. 2a-b). Similar results were obtained with exogenous application of 
MeJA in Moringa oleifera (Saini et al. 2014). The increase in Lβ-car (Fig. 2a) may be related to a protection mechanism 
against photodamage in photosystem II (Telfer 2005) mediated by MeJA in sweet potato plants. Kang et al. (2017) verified 
that transgenic sweet potato plants exhibited increased tolerance to methyl viologen-mediated oxidative stress and resistance 
to abiotic stressors, such as salt stress, demonstrating that β-carotene plays an essential role in ROS scavenging systems and 
in protecting the photosynthetic machinery under conditions of oxidative and/or salt stress.

Drought regulates many key genes encoding enzymes of the phenylpropanoid pathway, such as PAL and chalcone synthase, 
which results in stimulated biosynthesis of phenolic compounds (Sharma et al. 2016). These compounds have antioxidative 
properties due their capacity to interact with ROS, but also due to their ability to serve as substrate for different peroxidases 
(Soares et al. 2019), hence plant cells are protected from the negative effects of oxidative stress (Wu et al. 2012). In this 
context, the PAL enzyme plays a crucial role at the interface between primary and secondary plant metabolism, catalyzing 
the first step in the biosynthetic pathway of different phenolic compounds (Ghasemzadeh et al. 2016; Sharma et al. 2016). 
Plants treated with MeJA showed higher PAL activity (Fig. 3e), favoring the production of nonenzymatic antioxidants, such 
as phenolic compounds, flavonoids, and anthocyanins, especially in plants exposed to drought (Figs. 3a-d), which reflected 
in lower MDA (Fig. 4a). The effects of drought on the antioxidant system of sweet potato leaves revealed a higher flavonoid 
content in a tolerant cultivar (Lin et al. 2006).

Proline

Proline is a small neutral amino acid and it is synthesized quickly from the glutamate and/or ornithine pathway in plant 
cells (Mbinda et al. 2016; Yooyongwech et al. 2013). Proline is able to neutralize, remove and/or transform ROS, allowing the 
management and sensing of ROS homeostasis and cellular redox balance (Soares et al. 2019). Plants exposed to drought and 
not treated with MeJA increased proline content in the leaf tissue, however, this effect was potentiated with MeJA application 
in both water regimes (Fig. 4b) and resulted in lower MDA (Fig. 4a). Previous studies have shown similar results; for example, 
Anjum et al. (2011) and Mahmood et al. (2012), studying the joint effects of drought and MeJA application on soybeans and 
bananas, respectively, verified an increase in proline and a reduction in lipid peroxidation in both control and stressed plants.

Partitioned biomass production

Plants exposed to drought reduced partitioned dry biomass production (Tables 3 and 4). This reduction can be explained 
by the reduction in A (Table 1) and possibly due to the reduced mobilization of nutrients caused by the drop in E (Table 1). 
Similar results were found by Yooyongwech et al. (2013) studying 15 sweet potato cultivars.

There was no positive effect of MeJA on dry biomass production, with the exception of ARDB (Table 4). Conversely, MeJA 
application to cauliflower seedlings significantly increased photosynthesis and chlorophyll content and promoted biomass 
production under water deficit stress (Wu et al. 2012). In this study, plants treated with MeJA reduced TLA and LDB, but 
increased ARDB (Tables 3 and 4), suggesting that the assimilated carbon was translocated for the production of adventitious 
roots, which resulted in less leaf expansion. It may be that, in a less severe drought condition than the one evaluated in this 
study, the stimulus to form adventitious roots (Table 4) in response to MeJA may be a collaborative mechanism to optimize 
water absorption. Application of jasmonic acid in pea cuttings increased the formation of adventitious roots in seedlings 
competent for rooting (Rasmussen et al. 2015). According to Fattorini et al. (2009), jasmonic acid and indolbutyric acid 
are involved in the success of tobacco rhizogenesis and xylogenesis.

CONCLUSION

Methyl jasmonate application in sweet potato plants affected photosynthetic performance, however it increased the 
production of antioxidant pigments, phenolic compounds (except Lβ-car under optimum water conditions), and proline.
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The evaluated response mechanisms showed that the severity of drought was more prominent than the positive effects of 
MeJA, since the increases on antioxidant pigments and secondary metabolites were not sufficient to mitigate stress caused 
by drought, which was reflected in the reduced tuberous root production.
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SUPPLEMENTARY MATERIAL

Table S1. Summary of analysis of variance (ANOVA) for CO2 assimilation rate (A), stomatal conductance (gs), internal concentration of 
CO2 in the substomatic chamber (Ci), transpiration rate (E), instantaneous carboxylation efficiency (EiC), water use efficiency (WUE), and 
leaf water potential (Ψw) evaluated on the 3rd, 6th, and 9th day in sweet potato ‘Beauregard’ treated with two concentrations of a MeJA plant 
regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] in combination with two water regimes (normal and drought conditions, 
which correspond to field capacity at 100 and 40%, respectively).

Stress days Source of variation A gs Ci E EiC WUE Ψw

3rd

Water regimes *** *** *** *** *** ** *

MeJA * ns *** ns ** ns ns

Interaction ns ns ns ns * ns ns

6th

Water regimes *** *** *** *** *** *** ***

MeJA *** ns ** *** *** * ns

Interaction ns ns ns ns * * ns

9th

Water regimes *** *** *** *** *** * *

MeJA *** ns *** ** *** * ns

Interaction ns ns ns ns ns ns ns

Significance by factorial analysis: ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.

Table S2. Summary of analysis of variance (ANOVA) for chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Tchl), carotenoids (CAR), 
total anthocyanin (TA), leaf β-carotene (Lβ-car), and root β-carotene (Rβ-car) evaluated on the 9th day in sweet potato ‘Beauregard’ treated 
with two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] in combination with two water 
regimes (normal and drought conditions, which correspond to field capacity at 100 and 40%, respectively).

Source of variation Chl a Chl b Tchl CAR TA Lβ-car Rβ-car

Water regimes *** *** *** *** *** *** ***

MeJA *** *** *** *** *** ns ***

Interaction *** *** *** *** *** *** ***

Significance by factorial analysis: ns, not significant; ***, p < 0.001.

Table S3. Summary of analysis of variance (ANOVA) for total phenolic in leaf (TPL) and root (TPR), total flavonoid in leaf (TFL) and root (TFR) 
activity of the enzyme phenylalanine ammonia lyase (PAL), malondialdehyde (MDA), and proline evaluated on the 9th day in sweet potato 
‘Beauregard’ treated with two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and with (13 µmol·L-1) application] in combination 
with two water regimes (normal and drought conditions, which correspond to field capacity at 100 and 40%, respectively).

Source of variation TPL TPR TFL TFR PAL MDA Proline

Water regimes *** *** *** *** *** *** ***

MeJA *** *** *** *** *** *** ***

Interaction *** *** *** *** *** *** ***

Significance by factorial analysis: ***, p < 0.001.

Table S4. Summary of analysis of variance (ANOVA) for total leaf area (TLA), number of tuberous root (NTU), diameter of tuberous root 
(DTU), leaf (LDB), steam (SDB) total shoot (TSDB), tuberous root (TUDB), adventitious root (ARDB), and total root dry biomass (TRDB) 
evaluated on the 9th day in sweet potato ‘Beauregard’ treated with two concentrations of a MeJA plant regulator [without (0 µmol·L-1) and 
with (13 µmol·L-1) application] in combination with two water regimes (normal and drought conditions, which correspond to field capacity 
at 100 and 40%, respectively).

Source of variation TLA NTU DTU LDB SDB TSDB TUDB ARDB TRDB

Water regimes *** * *** *** *** *** *** ns ***

MeJA * ns ns ** ns ns ns ** ns

Interaction ns ns ns ns ns ns ns ns ns

Significance by factorial analysis: ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.


