
ABSTRACT: The frequency of extreme weather events has increased in almost all regions of the world. In this context, it is vital to understand 

how the location, scale, and shape of their frequency distributions are changing over time. This study used the flexibility of neural networks 

to model changes in the probability of daily extremes of maximum (Tmax) and minimum (Tmin) air temperature data in Campinas, Brazil — 

one of South America’s longest meteorological records spanning from 1890 to 2022. Based on the Extremal Types Theorem, we employed 

a conditional density network to model the parameters of the generalized extreme value distribution (GEV-CDN) as functions of time. Our 

findings indicate that a GEV-based model, where the location and scale parameters vary over time, best described the variations in the 

Tmin series. However, a GEV-based model with only the location parameter varying over time best described the variations in the Tmax 

series. From an agrometeorological perspective, these results suggest that the probability of Tmax values leading to crop failures is rapidly 

increasing. The findings indicate a decrease in the probability of agronomic frost events in Campinas over the past 133 years, but the rate 

of this decrease has slowed in recent years. This result, combined with the negative value of the GEV’s shape parameter, suggests that it 

is unlikely that Campinas may become an agronomic-frost-free region. To facilitate visualization of the changes in the probability of Tmax 

and Tmin values from 1890 to 2022, we have developed an internet application available at https://climatology-iac.shinyapps.io/Shinny/.
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INTRODUCTION

It is widely acknowledged that the frequency and intensity of extreme weather events have increased in almost all regions 
of the world (IPCC 2022), leading to unprecedented floods, heat waves, droughts, and frosts. In this regard, studies that 
have assessed trends in extreme air temperatures across the globe have observed changes consistent with increasing surface 
temperatures (Dunn et al. 2020; IPCC 2021). Additionally, changes in daily minimum temperatures are generally stronger 
than those observed in daily maximum temperatures (Dunn et al. 2020). In southeastern Brazil, authors such as Soares  
et al. (2016) and de Abreu et al. (2019) also detected trends toward warmer conditions. Climate change is often considered 
the primary cause of these increases, as it alters the frequency distribution of various climate variables and affects the 
likelihood of rare events occurring (IPCC 2021; Robin and Ribes 2020). Although the underlying mechanisms responsible 
for such changes are not fully understood, they are projected to continue into the future (IPCC 2022; Kharin et al. 2013), 
presenting an ongoing challenge to public safety, life, and the economy (Vörösmarty et al. 2013). In this context, one of 
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the primary challenges for studies that apply statistical methods to analyze extreme atmospheric events is to comprehend 
whether and how the location, scale, and shape of their frequency distributions are changing over time (Marengo et al. 2010). 

Given the complexity of atmospheric dynamics, addressing this challenge requires highly flexible statistical models that 
can account for non-stationarities in model parameters (Coles 2001). From a climatological perspective, such non-stationary 
statistical models are expected to describe how the occurrence of extreme weather events is changing under current transient 
climate conditions in probabilistic terms (Blain et al. 2022). Although several probability functions can be used for this purpose, 
the generalized extreme value distribution (GEV) is the most common choice (Blain 2011; Coles 2001; Fontolan et al. 2019; 
Kharin et al. 2013, 2018; Litell et al. 2022; Robin and Ribes 2020; Xavier et al. 2019 a,b). The Extremal Types Theorem (ETT) 
often supports the use of the GEV distribution (Coles 2001; Wilks 2011). In addition, even when the assumptions of this 
theorem are not meet, the GEV distribution is frequently a highly suitable choice (Wilks 2011).

Because of this widespread use and the significant impact of climate change on the probability of weather extremes, the 
GEV distribution has long been adapted to explicitly allow for no stationarities in its parameters (Cannon 2010; Coles 2001;  
El Adlouni et al. 2007; Kharin and Zwiers 2004; Wang et al. 2004). In these studies, versions of the GEV were developed 
in which its parameters could be specified as functions of distinct covariates, such as time or other geophysical indices. 
However, the method proposed by Cannon (2010) is the only one that does not require a priori specification of the form 
of the relationship among the GEV parameters and their covariates. Specifically, the method proposed in the latter study 
models the relationship among the GEV parameters and covariates using a conditional density network (CDN), which is a 
probabilistic extension of the multilayer perceptron neural network. This method is referred to as GEV-CDN.

Due to its high flexibility, the GEV-CDN is capable of providing a deep understanding of how the location, scale, and shape 
parameters of the GEV are changing over time. This capability is particularly useful when the GEV-CDN is applied to long 
meteorological series, which allow placing the current extreme weather events in a historical regional perspective (MacDonald 
and Phillips 2006). Applying the GEV-CDN to these long-running meteorological series allows a detailed assessment on how 
climate change is affecting the frequency and intensity of extreme events that are rare by definition. 

Regarding long-running air temperature series, the Agronomic Institute (IAC/APTA/SAA) has one of the oldest weather stations 
in South America, with daily records of maximum (Tmax) and minimum (Tmin) air temperatures dating back to 1890. This station 
is located at the institute’s experimental farm in Campinas, State of São Paulo, Brazil and has virtually no missing data (further 
details are provided in the next section). Thus, this 133-year air temperature series presents an invaluable opportunity to test the 
hypothesis that the frequency and intensity of daily extremes for Tmax and Tmin in Campinas-SP are changing over time. Moreover, 
the use of highly flexible models to evaluate this hypothesis potentially allows for a detailed description of how the location, scale, 
and shape of the frequency distribution of Tmax and Tmin have changed over this 133-year period (1890-2022). Therefore, the aim 
of this study was to use the great flexibility of neural network architecture to model changes in the probability of daily extremes of 
Tmax and Tmin in Campinas-SP over the last 133 years under the framework of the non-stationary GEV distribution (GEV-CDN).

DATA AND METHODS

Data

Daily maximum and minimum air temperature data from the weather station of Campinas, State of São Paulo-Brazil 
(22º54’S; 47º05’W; 669m; 1890-2022) were used in this study. As previously described, the weather station (Fig. 1a) is 
situated at the Agronomic Institute’s experimental farm. Since 1890, it has been relocated only once (Mello et al., 1994). The 
distance between its initial location (22º53’S; 47º05’W; 663m; 1890-1956) and its current location (22º54’S; 47º05’W; 669m; 
1957-2022) is approximately 3 km, and these two meteorological series can be considered homogeneous (Mello et al. 1994). 
According to Conrad and Pollak (1950), two climate series are considered homogeneous when variations are caused only 
by changes in weather conditions. Mello et al. (1994) pointed out that these two series can be regarded as homogeneous. 
Because of this routine use, any missing records are replaced by data extracted manually from thermographs situated at 
the same site (Blain et al. 2018). The percentage of missing records is lower than 2%. 
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Figure 1. (a) Weather station of Campinas, State of São Paulo-Brazil (red dot); daily maximum (b) and minimum (c) air temperature data 
(block maxima approach).

Source: (a) Google Earth - https://www.google.com.br/earth/; (b) and (c) Elaborated by the authors.

As previously described, the Extremal Types Theorem postulates that the extremes of n independent data from a particular 
distribution approach the GEV probability function as n increases (Coles 2001;Wilks 2011). A typical example of extreme-
value data is the collection of annual maximums, or block maximum in which the largest data observed within each year 
(block) is selected. This approach allows the application of the Extremal Types Theorem, since the time spans between two 
consecutive extreme-value data are often long. This results in a series with independent data. This approach can also be 
applied to collections of block minima (e.g., Tmin data), provided that a simple sign transformation Tmin-Tmin is applied 
(Coles 2001; Wilks 2011). The block maxima and minima series of Campinas are depicted in Fig. 1 b,c. We also made this 
data available at <https://github.com/AgronomicInstitute/Weather_Campinas>.

Methods

The entire range of possible limit distributions given by the Extremal Types Theorem are the Gumbel, Frechet and 
Weibull distributions. These three probability functions have distinct forms of tails decay, which lead to quite different 
representation of extreme value behaviors. The GEV’s distribution (Eq. 1) combines these three functions into a single 
equation, in which the data themselves specifies the most appropriate type of tail decay (Gumbel, Frechet or Weibull) 
through the value of the shape parameter.  

https://github.com/AgronomicInstitute/Weather_Campinas
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where μ, α, and k are the location, scale and shape parameters. 
The parameters of the GEV distribution are often estimated through the L-moments (Hosking 1990; Stedinger et al. 

1993) or maximum likelihood method (ML). As described in the first section, the ML has been continually adapted to allow 
for nonstationarities in the GEV’s parameters (Cannon 2010; Coles 2001; El Adlouni et al. 2007; Kharin and Zwiers 2004; 
Wang et al. 2004). Despite this advantage over the L-moments, the ML method can lead to physically unrealistic values for 
the GEV’s shape parameter (Coles and Dixon 1999; Martins and Stedinger 2000). Martins and Stedinger (2000) overcame 
this difficulty by developing the generalized maximum likelihood estimation method (GML), which imposes a restrictive 
penalty on GEV’s shape parameter estimations. This penalty is based on the beta distribution (Eq. 2). As in Cannon (2010), 
we set c1 and c2 (Eq. 2) to 2 and 3.3, leading to a beta distribution with 90% of its probability mass concentrated between 
-0.4 and 0.2.  

					     𝜋𝜋(")
($) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘 + 0.5, 𝑐𝑐%, 𝑐𝑐&)           � (2)

Considering that climate change alters the frequency distribution of various climatic variables and affects the probability 
of occurrence of rare events (Robin and Ribes 2020; IPCC 2021), the GEV distribution has been adapted to explicitly allow 
for no stationarities in its parameters (Cannon 2010; Coles 2001; El Adlouni et al. 2007; Kharin and Zwiers 2004; Wang  
et al. 2004). In this study, we performed such adaptation using the GEV-CDN to model the GEV’s parameters as functions 
of time. More specifically, we proposed 10 candidate models (Fig. 2) with increasing degrees of flexibility. The degree of 
flexibility of a GEV-CDN model can be specified by adjusting three aspects of the CDN.
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Figure 2. Neural network architectures of the 10 candidates GEV-based models (GEV-CDN) considered in this study (μ, α, and k are the 
location, scale and shape parameters, respectively, of the GEV distribution and t is the time covariate).

Source: Elaborated by the authors.
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(1) Choosing a hidden-layer activation function [m(.); Eqs. 3, 4 and 5). If m(.) is chosen to be the hyperbolic tangent 
function tanh(.), the relationship between the GEV parameter and its covariate is nonlinear. If m(.) is chosen to be the 
identity function, the relationship between the GEV parameter and its covariate is linear. 

(2) Connecting or disconnecting weights leading to output-layer nodes. Once a weight is disconnected, the parameter 
remains constant over time. 

(3) Adjusting the number (J) of hidden-layer nodes. Increasing the number of hidden-layer nodes increases the model’s 
flexibility.
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As described above, we fit 10 increasingly complex candidate models (Fig. 2) to the Tmax and Tmin series in order 
to evaluate a wide range of possible relationships between the GEV’s parameters and the time and the GEV’s parameters 
and the annual global air temperature. The simplest candidate model (model 1; Fig. 2) assumes that the GEV parameters 
do not vary over time. In order words, model 1 is the stationary GEV model with no covariate. Model 2 assumes that 
the network outputs o1 is a linear function of the covariate. Model 3 assumes that the network outputs o1 and o2 are 
linear functions of the covariate, model 4 assumes that the network outputs o1, o2, and o3 are linear functions of the 
covariate. For models 2 to 4, m(.) was taken to be the identity function. Models 5 to 7 have one hidden-layer node and 
are respectively similar to models 2 to 4, apart from the fact that m(.) was taken to be the hyperbolic tangent function. 
Thus, models 5 to 7 allows for nonlinear relationships between the GEV parameters and their covariate. Models 8 to 
10 are similar to models 5 to 7, apart from the fact that they have 2 hidden-layer nodes. In other words, they are highly 
flexible models able to describe a wide range of relationships between the GEV parameters and their covariate. As pointed 
out by Christiansen (2005), a neural network with two hidden-layer nodes can model a Z-shaped continuous curve. 
Therefore, we assumed that testing other candidate models with more than two hidden-layer nodes would increase the 
probability of overfitting and lead to no improvement in the understanding of how the GEV parameters are changing 
over time or as function of the global air temperature.

After fitting all the candidate models depicted in Fig. 2 to the Tmax and Tmin series of Campinas, the selection of “the 
most suitable model” for each of these variables becomes a key step for understanding how the location, scale, and shape of 
the GEV distributions have changed over the 133-year period (1890-2022). From an agrometeorological perspective, this 
selection process is expected to describe if and how the probability of the Tmax and Tmin events have changed over the last 
133 years in Campinas-SP and if these changes are significantly correlated with the global air temperature. As pointed out 
by authors such as Cannon (2010); Coles (2001); El Adlouni et al. (2007) and Xavier et al. (2019a), this selection process 
should be based on the principle of parsimony, which seeks to choose the most parsimonious candidate model. In other 
words, this principle attempts to select the simplest model that explains as much of the variation in the data as possible 
(Coles 2001). More specifically, when the difference between two models is not evident it is preferable to use the simplest 
one (El Adlouni et al. 2007). 
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Several selection criteria are available in the literature. The Akaike information criterion (AIC), second-order Akaike 
information criterion (AICc; also known as corrected AIC for small sample sizes) and the Bayesian information criterion 
(BIC) are undoubtedly the most used (Cannon 2010; Coles 2001; Kharin et al. 2018; Strupczewski et al. 2001a,b; Sugahara 
et al. 2009; Villarini et al. 2009, 2010). In this study we adopted the AIC and AICc, because the BIC tends to select models 
that are too simple (i.e., underfitted) (Burnham and Anderson 2004) and may perform poorly when the dispersion of the 
series varies on time Xavier et al. (2019a) and Blain et al. (2022). The AIC and AICc selection criteria are derived from  
the Information-Theoretic approach (Burnham and Anderson 2004; Eqs. 6 and 7). 

					       𝐴𝐴𝐴𝐴𝐴𝐴	 = −2𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀𝑀𝑀) + 2𝑐𝑐  � (6)

Where log (ML) is the maximized log likelihood function under the proposed model and c is the number of parameters 
in a given model. When the ratio between sample size (n) and number of model’s parameters (c) is less than 40, the use of 
AICc instead of AIC has been suggested (Burnham and Anderson 2004; Fabozzi et al. 2014).

				       𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴	 = −2𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀𝑀𝑀) + 2𝑐𝑐 +	
2𝑐𝑐(𝑐𝑐 + 1)
𝑛𝑛 − 𝑐𝑐 − 1   � (7)

As previously described, the candidate GEV-model that presents the lowest AIC and/or AICc value may be regarded 
as the best candidate model according to each of these selection criteria. The strength of evidence for each GEV-model 
depicted in Fig. 2 can also be evaluated by other two alternative methods: the ∆AIC and the ∆AICc. Although in principle 
the best model is the one that presents the lowest AIC or AICc value (Blain et al. 2022), other GEV-models with AIC or 
AICc values close to these lowest values may also be taken as suitable candidates (Blain et al. 2022; Burnham and Anderson 
2004; Felici et al. 2007). In this context, the ΔAIC or ΔAICc of a candidate model is simply the difference between its AIC 
or AICc and the lowest AIC or AICc obtained among all models. As pointed out by Burnham and Anderson (2004), the 
models with ΔAIC or ΔAICc equal to or lower than 2 presents substantial evidence supporting its selection. Accordingly, 
in the cases in which two nested GEV-models presented ΔAIC≤2 or ΔAICc≤2, we applied the likelihood ratio test (LRT; 
Eq. 5) to select the best model. The null hypothesis of the LRT assumes no difference between two nested models. Under 
this hypothesis, the LRT statistic is distributed according to a chi-square distribution with degrees-of-freedom equal to 
the difference between the number of each model’s parameters. We performed the LRT test at the 5% significance level. 
In other words, LRT statistics (Eq. 8) with p-values equal to or lower than 0.05 led to the selection of the model with the 
higher number of parameters (Mj); otherwise, Mi was selected.

				    𝐿𝐿𝐿𝐿𝐿𝐿 = %𝑙𝑙𝑙𝑙𝑙𝑙)𝑀𝑀𝑀𝑀!+ − 𝑙𝑙𝑙𝑙𝑙𝑙(𝑀𝑀𝑀𝑀")/		𝑓𝑓𝑓𝑓𝑓𝑓	𝑀𝑀"	∁	𝑀𝑀!    � (8)

where log(ML) is the maximized log likelihood function.
After selecting a candidate model for the Tmax and Tmin series, we applied the bagging predictors method (Breiman 

1996) to estimate the values of each GEV-parameter. Specifically, while the AIC, AICc and LRT were used to define the 
number of hidden-layer nodes and which GEV-parameter are allowed to vary on time, the bagging predictors method was 
applied to fit an ensemble of the selected GEV-model using bootstrap aggregation (bagging). The number of ensembles 
GEV-models were set to 100. Because this ensemble is formed by constructing bootstrap replicates of the learning set 
which are then used as new learning sets (Breiman 1996), the bagging predictors method potently improves accuracy of 
the GEV-parameter estimates.

We calculated confidence intervals for the GEV’s parameters through a residual bootstrap-based method suggested by 
studies such as Khaliq et al. (2006). This procedure is described as follow. Step 1: we transformed the residuals (ε(t); Eq. 
9) from the selected GEV-model into identically distributed data. Step 2: the data series formed by the ε(t) values were 
resampled with replacement leading to bootstrapped ε*(t) series (this step was repeated 10000, resulting in 10000 ε*(t) series).  
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Step 3: we applied Eq. 10 to each ε*(t) series to rescale the residuals [yb(t)]. Step 4: we fitted the selected GEV-model is fitted 
each y*(t) sample. This resulted in a matrix with 1000 rows. The number of columns of this matrix is equal to the number 
of parameters of the selected GEV-model. Step 5. We calculated the 90% confidence interval for each parameter extracting 
the 5th and 95th percentiles of each column. 

				              𝜀𝜀(𝑡𝑡) = &1 − 𝑘𝑘(𝑡𝑡)
[𝑦𝑦(𝑡𝑡) − 𝜇𝜇(𝑡𝑡)]

𝛼𝛼(𝑡𝑡) /
("#)

  � (9)

					     𝑦𝑦! = 𝜇𝜇(𝑡𝑡) − 𝛼𝛼(𝑡𝑡)
𝜀𝜀(!)(𝑡𝑡) − 1

𝑘𝑘(𝑡𝑡)    � (10)

Finally, we also developed an internet application https://climatology-iac.shinyapps.io/Shinny/ that allows visualizing 
how the cumulative probabilities of several Tmax and Tmin values changed in Campinas from 1890 to 2022. This application 
was developed using the R Shiny package (Chang et al. 2023). 

RESULTS AND DISCUSSION

Before evaluating the results found in this study, it has to be emphasized that the nonstationary approach presented in 
section Methods is also a powerful parametric trend test (Blain 2011; 2022; Delgado et al. 2010; Kharin et al. 2013; Pujol et al. 
2007; Sugahara et al. 2009; Xavier et al. 2019a). Different from nonparametric methods, such as the Mann-Kendall trend test 
(Kendall & Stuart 1967; Mann 1945), the nonstationary approach applied in this study is able to detect and describe changes 
in the probabilistic structure of the Tmax and Tmin series (Blain et al. 2022). More specifically, consider the 10 increasingly 
complex candidate models proposed in this study. If the stationary model (model 1: a GEV model with parameters constant 
over time) is selected as the one that best explains the variation in the data, we should conclude that there is no evident sign 
of climate change in this 133-year data sample (Pujol et al. 2007). Otherwise, if a nonstationary model is selected (models 
2 to 10: GEV models with time-varying parameter) we may conclude that that there are signs of climate change in the data 
sample. As described in the next sections, when the covariate was time, the best GEV-models for Tmax (model 2) and Tmin 
(model 9) are nonstationary functions in which the location (Tmax) and both location and scale parameters (Tmin) vary as 
function of time. Considering the wide range of candidate models proposed in this study, this nonstationary approach also 
enabled a broad understanding of the trend isolating its effect on the location (central tendency), scale (dispersion) and shape 
(tail behavior) of the air temperature frequency-distributions. These results are presented below. 

Selecting the best GEV-models

Regarding the minimum air temperature, the AICc and ΔAICc indicated that models 9 and 3 (Table 1, in blue) can be 
used to explain the variation in the Tmin in Campinas-SP over the last 133 years (1890-2022). The AIC and ΔAIC ranked 
models 3, 9 and 6 as the best, second-best and third-best candidates for this Tmin series (Table 1, in blue). These results, 
derived from the AIC and AICc, are consistent with each other since these three nested models allow the GEV-location 
and GEV-scale parameters to vary on time (Cannon, 2010). The disagreement among these 3 models is related to the form 
(linear or nonlinear) of these changes.

Considering the results of Table 1, we applied the LRT test to select among models 3, 6 and 9 as follow: models 3 and 6 
are those with the lower number of parameters, therefore we first applied the LRT to select between these two candidates. 
The log(ML) of each model is 40.74 and 41.99, respectively, and the difference between the number of parameters is 2. The 
p-value of the resulting LRT statistic was 0.29, what indicated that the higher complexity of candidate 6 led to no significant 

https://climatology-iac.shinyapps.io/Shinny/
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improvement in respect to candidate 3. Thus, we initially selected model 3. The LRT test was applied again to select from 
models 9 and 3. The log(ML) of model 9 is 47.42 and the difference between the number of parameters is 6. The p-value of 
the LRT statistic was lower than the adopted significant level (p-value=0.037). As an extra verification, we applied the LRT 
test to models 9 and 6. The resulting p-value was 0.027. Therefore, we select model 9 as the candidate that best explains the 
variation in the Tmin in Campinas-SP (1890 to 2022) as a function of time. Accordingly, we may conclude that the central 
tendency and the dispersion of the Tmin series has increased in a nonlinear way since 1890 (Blain 2011; Cannon 2010; 
Coles 2001; El Adlouni et al. 2007; Wilks 2011).

Table 1. Second-order Akaike information criterion (AICc), Akaike information criterion (AIC), and their corresponding delta method (ΔAICc 
and ΔAIC) applied to nonstationary GEV-based models fitted to daily extremes for the minimum air temperature in Campinas (SP), Brazil 
(1890-2022).

Candidate AICc AIC ΔAICc ΔAIC

model 1 -40.81 -41.00 31.90 30.19

model 2 -67.89 -68.21 4.69 3.10

model 3 -71.00 -71.47 1.43* 0.00*

model 4 -68.82 -69.49 3.41 2.17

model 5 -63.66 -64.33 8.57 7.33

model 6 -69.03 -69.93 2.97 1.96*

model 7 -66.76 -67.92 4.98 4.24

model 8 -64.96 -66.42 6.48 6.04

model 9 -70.72 -72.90 0.00* 0.28*

model 10 -67.75 -70.80 2.09 3.25

* Suitable models, according to each method.Source: Elaborated by the authors.

Regarding the maximum air temperature, the AIC, AICc, ΔAIC, and ΔAICc criteria selected model 8 as the best candidate 
to explain the variation in the Tmax in Campinas-SP as function of time (Table 2, in blue). Model 8 is a nonstationary function 
in which only the GEV-location parameter varies on time. Since the hidden-layer activation function of this model is the 
hyperbolic tangent function, we may conclude that the central tendency of this Tmax series has increased in a nonlinear 
way since 1890 (Blain 2011; Cannon 2010; Coles 2001; El Adlouni et al. 2007; Wilks 2011). 

Table 2. Second-order Akaike information criterion (AICc), Akaike information criterion (AIC), and their corresponding delta method (ΔAICc and 
ΔAIC) applied to nonstationary GEV-based models fitted to daily extremes for the maximum air temperature in Campinas-SP, Brazil (1890-2022).

Candidate AICc AIC ΔAICc ΔAIC

model 1 -86.08 -86.27 34.45 33.17

model 2 -109.05 -109.37 11.35 10.20

model 3 -107.80 -108.28 12.44 11.45

model 4 -106.35 -107.02 13.70 12.90

model 5 -109.30 -109.96 10.76 9.96

model 6 -107.83 -108.73 11.99 11.42

model 7 -106.26 -107.42 13.29 12.99

model 8 -119.25 -120.72 0.00* 0.00*

model 9 -115.27 -117.45 3.27 3.98

model 10 -110.85 -113.90 6.81 8.41

* Suitable models, according to each method.

Figure 3 depicts the temporal changes in the GEV-parameters for Tmin and Tmax series in Campinas-SP from 1890 to 
2022. As previously described, the parameters estimates were calculated though the bagging predictors method, considering 
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a GEV-based model with two hidden-layer nodes in which both location and scale parameters are allowed to vary on time 
(for Tmin) and another GEV-based model with two hidden-layer nodes in which only the location parameter is allowed 
to vary on time.
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(a) GEV-location parameter: Tmin series (sign reversed) (d) GEV-location parameter: Tmax series

(e) GEV-scale parameter: Tmin series

(f) GEV-shape parameter: Tmin series

(b) GEV-scale parameter: Tmin series

(c) GEV-shape parameter: Tmin series

Figure 3. Location, Scale and Shape parameters of two nonstationary GEV-based models fitted to daily extremes for the minimum (a to c) 
and maximum (d to f) air temperature series in Campinas-SP, Brazil (1890-2022). The dotted lines are the confidante intervals.

Source: Elaborated by the authors.

The results depicted in Tables 1 and 2 and Fig. 3 indicates significant signs of long-term trends in both Tmax and Tmin 
series of Campinas (1890-2022) with different temporal patterns in trends of these two series. Although both series presented 
trends to warmer conditions – described by the increasing values of the GEV-location parameters – the Tmin series showed 
a GEV-scale parameter that also increased over the last 133 years. In other words, while only the central tendency of the 
Tmax data increased over time, both the central tendency and dispersion of the Tmin data increased between 1890 and 
2022. From a meteorological perspective, this suggests that distinct responses to forcing mechanisms or feedback processes, 
such as urbanization, land use changes, cloud feedback, and increases in atmospheric concentrations of greenhouse gases, 
must be present to produce these different behaviors (Cordeiro et al. 2011). Despite these different signatures regarding 
the scale GEV-parameter, none of the models found suitable by the selection criteria (Tables 1 and 2) have a time-varying 
GEV-shape parameter. This result concurs with the statement that the latter GEV-parameter is unlikely to be affected by 
climate change (although the scale may) as it is invariant temporally with latitude (Wilson and Toumi 2005). In addition, 



10

L. B. Pereira et al.

Bragantia, Campinas, 82, e20230128, 2023

the negative values of the GEV-shape parameters depicted in Fig. 3 describe probability density functions that decreases 
slowly for large (low) values of Tmax (Tmin) (Wilks 2011). 

From an agrometeorological perspective, the GEV-parameters depicted in Fig. 3 indicates that the probability of 
occurring high Tmax values that may lead to crop failures increased over the last 133 years in Campinas. Regarding the 
Tmin series, although the increasing trend in the location parameter would decrease the probability of agronomic frost 
events, the increasing values of the GEV-scale parameter and the negative value of the GEV-shape parameter prevent the 
conclusion that the probability of the latter agrometeorological hazard in Campinas-SP may approach zero (Blain 2011). 
In simple terms, despite the significant changes to warmer conditions observed in this location, the increasing trends in 
the dispersion of the daily extreme for the minimum air temperature, along with the heavy tail of its frequency distribution 
(negative GEV-shape parameter), do not allow us to state that Campinas is becoming a frost-free region. This issue is further 
evaluated in the next section.

Agrometeorological perspective: Practical implications

Before evaluating the possible agrometeorological impacts of the trends found in the Tmax and Tmin series, we must 
define frost events from the agronomic viewpoint. Frost is an atmospheric hazard that causes damage to plants due to 
their exposure to low temperatures that fall below their resistance to freezing (Pereira et al. 2002). Thus, it depends on the 
weather conditions, the cultivar, and its phenological phase. In the State of São Paulo, the minimum air temperature is the 
main element that triggers this event, which may occur with or without ice formation (white and black frosts, respectively; 
Pereira et al. 2002). As pointed out by Braga et al. (2021) when the air temperature value (measured at the meteorological 
shelter; Sentelhas et al. 1995) falls below 4°C species such as banana, potato, beans, greenery, papaya and tomato may face 
agronomical frost. When the air temperature values falls below 2°C species such as coffee, soybeans, sugar cane, mango and 
wheat may also face this agronomical hazard. Because of the increasing values of the GEV-location parameter, the cumulative 
probability of such critical air temperature values (e.g., 4°C and 2°C) decreased over the last 133 years in Campinas-SP 
(Fig. 4). However, the increasing values of the GEV-scale and the negative value of the GEV-shape parameters has limited 
such decay. In other words, the slope of curves depicted in Fig. 4 has decreased over time. Regarding the Tmax series, air 
temperatures values above 34°C and 35°C during flowering may put negative pressure on coffee and citrus yields, respectively. 
(e.g., Davies and Albrigo 1994; Monteiro 2009). Figure 4 depicts how the cumulative probability of such critical thresholds’ 
changes in Campinas-SP, over the last 133 year. 
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Figure 4. Cumulative probability [Pr(x≤X)] of minimum (a) and maximum (b) air temperature values as a function of time. Campinas, state 
of São Paulo, Brazil (1890-2022).

Source: Elaborated by the authors.
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The results depicted in Fig. 4 exemplify the significant effects that climate change may have on the probability of extreme 
agrometeorological events. Regarding the minimum air temperature series (Fig. 4a), the probability of having at least one 
day in a year with Tmin ≤ 4°C varied from ~85%, during the last decade of the XIX century, to ~24%, during 2013-2022. 
For Tmin values equal to or lower than 2°C this probability decreased from ~34% to 8%, considering the same periods. 
Despite this remarkable change to warmer conditions, Fig. 4a also described that the slope of these trends decreased as the 
cumulative probabilities of these events moved toward the tail of the distribution (became more extreme in probabilistic 
terms). As previously described, this behavior is explained by the negative value of the GEV-shape parameter and the 
increasing values of the GEV-scale parameter (Fig. 3b,c). In other words, although the probabilistic modelling of the Tmin 
series of Campinas has described a remarkable change to warmer conditions, it does not allow us to state that this region 
may become free from agronomic frost events due to the current global warming.  

The Tmax series also presented remarkable changes to warmer conditions between 1890 and 2022. For instance, the 
probability of having at least one day in a year with Tmax ≥ 34°C varied from ~54%, during the last decade of the XIX 
century, to ~97%, during 2013-2022. For Tmax values equal to or larger than 36°C this probability increased from ~9% to 
47%, considering the same periods. However, opposite to what was observed for the Tmin series, the slope of these trends 
increased over the time. Although the GEV-shape parameter is also negative (Fig. 3f), the GEV-scale parameter did not 
change on time (Fig. 3e) and the GEV-location parameter presented a nonlinear trend with a slope that increased over the 
last years (Fig. 3d). 

CONCLUSION

Taking advantage of the great flexibility of the GEV-CDN (Cannon, 2010), we performed a detailed description of how 
the location, scale, and shape of the frequency distributions of daily extremes for maximum (Tmax) and minimum (Tmin) 
air temperature data changed over the last 133 years (1890-2022) in Campinas, state of São Paulo, Brazil. Among 10 candidate 
models, we found that nonstationary and nonlinear GEV models are those that best explain the variation in both Tmax 
and Tmin series. Specifically, for the Tmin series, the best candidate was a GEV-based model in which the location and 
scale parameters vary on time. For the Tmax series, the best candidate was a GEV-based model in which only the location 
parameter varies on time. Although both series presented trends to warmer conditions, these different signatures regarding 
the scale parameter suggest that different forcing mechanisms or feedback processes must be present to produce these 
different responses (Cordeiro et al. 2011). In other words, while the warming in the Tmax data has intensified over the last 
22 years (~2000 to 2022), the slope of the trends found in the probability of Tmin values has decreased in the same period. 
From an agrometeorological perspective, these results indicated that the probability of occurring Tmax values, which may 
lead to crop failures, are fast increasing. These results also indicated that the probability of occurring agronomic frost events 
in Campinas decreased over the last 133 years (from ~ 85%, during the last decade of the XIX century, to ~24%, during 
2013-2022). However, the rate of these changes to warmer conditions has also decreased in recent years. This result along 
with the negative value of the shape parameter suggest that it is very unlikely that Campinas may become an agronomic 
frost-free region due to global warming. We also developed an internet application <https://climatology-iac.shinyapps.io/
Shinny/> that allows visualizing the temporal changes in the probability of Tmax and Tmin from 1890 to 2022. 
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