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ABSTRACT

The biostatistics has gained significant importance in recent years, being one of the mainstays of current scientific research. It has a
series of concepts and rules that must be understood to carry out or analyze an article. In this review we will discuss some of main
tools utilized in works of interest in ophthalmology, its applications and limitations.
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RESUMO

A bioestatística ganha crescente importância e relevância nos últimos anos, sendo um dos principais pilares da investigação científica.
Possui uma série de conceitos e regras que devem ser bem compreendidos para se realizar ou analisar um artigo. Nesta revisão são
abordadas algumasdas principais ferramentas utilizadas nos trabalhos de interesse da área oftalmológica, suas aplicações e limitações.
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INTRODUCTION

The advent of Evidence-Based Medicine has brought new
standards and requirements, producing significant change
in medical practice. Knowledge is no longer obtained

solely through clinical experience, which is important but limited;
instead, it is now acquired through the scientific method, which
relies on statistics as one of its essential elements(1). Thus,
understanding biostatistics is essential to adequately conduct,
assess, and interpret scientific work. However, physicians often
have difficulties and prejudices related to this area. In this review,
we will discuss the practical aspects of some of the key tests of
interest to ophthalmology studies.

Hypothesis testing
When conducting a statistical test, the first to do is to

develop hypotheses. For example, to assess whether central
corneal thickness (CCT), thickness at the thinnest point (TP),
and central keratometry values   (K1 and K2) can be used to
differentiate normal eyes from eyes with keratoconus, two
hypotheses should be formulated. The hypothesis that there is no
difference in the values   of these variables between the two
groups is called the null hypothesis (H0), while the alternative
hypothesis (H1) assumes that there is a difference between the
normal group and the keratoconus group.

Sampling
To start the proposed test the study samples need to be

determined. For the results of a study to be valid it is essential
that each sample represents the various characteristics of the
population as reliably as possible. The most relevant
characteristics of a sample include how it was obtained, its size,
distribution of variables, and pairing. With this, the potential
sources of bias can be identified and the best methods and
statistical tests to prevent bias can be selected.

Sample distribution
The sample distribution should be tested to determine

whether it is parametric or not. Statistical tests are highly
dependent on the distribution of values   obtained from the
sample. The normal or Gaussian (parametric) distribution is one
of the most studied types of distribution in biostatistics. It is defined
by two parameters: mean (ì) and variance (ó²). Among its
features are the typical bell-shaped symmetrical distribution
around the centre and the presence of two inflection points (right
and left) whose distance from the centre corresponds to the
standard deviation or sigma (ó). Using these data the probabilities
related to a continuous variable can be calculated(2).

When the sample is relatively large, the central limit
theorem can be applied to infer the normality of the distribution.
This theorem states that as the size of a sample increases, the
sample distribution of its mean increasingly approaches the nor-
mal distribution(3).

However, tests can be used to assess the normality of a
distribution. They include the Kolmogorov-Smirnov test, the
Lillefors test, and the Shapiro-Wilk test. The latter was initially
described for small samples(4). In these tests the aim is to find the
null hypothesis, in which there is no difference between the sample
distribution and the normal distribution. In general these tests
are quite rigorous and easily reject the hypothesis of normality.

Other tools include descriptive methods such as histogram
analysis (Figure 1), coefficients of skewness, and kurtosis. When
normality can not be inferred, non-parametric tests or data

transformation can be used. The most commonly-used
transformation is logarithmic transformation, which is primarily
indicated for asymmetrical data. Other transformations such
square root or inverse transformation can also be used in certain
cases(5).

Dependent and independent samples
In selecting the type of test to use, another feature of the

sample should be considered: whether it is paired (dependent)
or unpaired (independent). A study with paired samples occurs
when each observation in the first group is paired with the same
observation in the second group. In ophthalmology, this is most
often used where the same sample is observed at two or more
different time points, such as pre- and postoperatively. In this
case, the two groups are composed of the same individuals.

In unpaired cases each group is composed of distinct
individuals, for example in order to compare subjects with a
certain disease with healthy subjects.

It is important to highlight this feature of the sample, because
two observations in the same individual are more likely to be
similar than two observations in two different individuals;
therefore, they are more likely to be statistically dependent. This
should be considered by the test in order to find the statistical
validity of differences between samples.

Another implication of pairing is the fact that the eyes are
paired organs. There is a symmetry between the right and left
eye of the same individual. If both eyes of a patient are used,
dependent and independent data could get mixed, thus producing
a methodological error(6). Thus, using only one randomly-chosen
eye of each patient is a good way to conduct studies(7).

Types of tests
Statistical tests should conform to the sample features cited

above: distribution and pairing. But in order to select the best
test, the number of groups or observations should also be
considered. The main tests for each situation are summarised in
Flowchart 1.

Example of a study
In the following example we will consider the comparison

of two groups. The samples consist of 114 randomly-selected
healthy eyes (one eye per subject) and 44 eyes with
keratoconus(8). The next step is to determine the study variables.
Since the aim is to assess a variable’s ability to be used as a

Figure 1. Histograms. A: Histogram for K2 showing a normal
distribution in patients with healthy corneas. B: Histogram for corneal
astigmatism showing a non-normal distribution in patients with
healthy corneas.
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diagnostic test, one should test whether the differences between
groups are significant. Knowing that the samples are unpaired,
the test should be selected based on whether the distribution is
normal (parametric) or not. This test will determine whether the
difference could be due to chance. A test such as the Kolmogorov-
Smirnov test should be used to verify whether the variables in
each group are normally distributed (p>0.05), i.e. whether there
is no statistically-significant difference between the data
distribution in the sample and the normal distribution. Histograms
can also be used to visualise the bell-shaped or Gaussian
distribution.

Student’s t test can be used if both samples are parametric.
According to the central limit theorem, since this is a large sample
with more than 30 individuals, using a parametric test can be
considered “correct” a priori. However, if the sample was small
and the distribution was not normal, data transformation or a
non-parametric test could be used, as mentioned above. A non-
parametric test such as the Mann-Whitney test (Mann-Whitney
U test or Wilcoxon rank-sum test) would be a good alternative.

Using the parametric test for the variables K1, K2, CCT,
and TP, a p-value (the probability of error in concluding that there
is a statistically-significant difference) lower than 0.001 was found
(Table 1), confirming that there is a statistically-significant
difference between normal and keratoconus eyes for each of
these variables. When the same test was used for the axis of
astigmatism a p-value of 0.12 was found, i.e., there is a 12%
probability of error in concluding that there is significant
difference between the two samples. In general, a result is
considered statistically significant when there is a 5% chance
that the difference found in the sample does not represent a real

difference between the populations, that is, that the result was
due to chance alone. Thus, due to this high margin of error, it can
be considered that there is no statistically-significant difference
between the two populations for this variable (Table 1).

The box-plot and dot-plot charts shown in Figure 2 illustrate
the distribution of CCT values in the normal and keratoconus
groups. The charts show that although there were significant
differences between groups, there is considerable overlap in
values  , making it impossible to separate them completely. Thus,
the variable has limitations in differentiating normal and
keratoconus eyes, as this overlap produces a greater chance of
error.

Classification errors and cut-off point
Two types of error can occur while trying to classify or

differentiate normal and keratoconus eyes using variables such
as CCT values. Type I error, or á, refers to a positive result in the
group of eyes classified as normal, i.e. a false-positive result. Type
II error, or â, refers to a negative result in the group of eyes
classified as ill, i.e. a false-negative result (Table 2).

However, whether a diagnostic test (or classifier) is
“positive” depends essentially on a set cut-off point. Since the
variable is a continuous quantitative or ordinal variable, each
value can be tested as a cut-off point to determine the presence
or absence of disease. For example, for a CCT cut-off point of
540 ìm (under 540 ìm = keratoconus), 37 (32.4%) of the 114
eyes with normal corneas would present a type I or á error, while
only one eye with keratoconus would present a type II or â error.
The hypothetical sensitivity and specificity of the test can thus
be calculated for each tested cut-off point (Table 3).

Flowchart 1

Normal Keratoconus

Mean ± Standard Deviation Range Mean ± Standard Deviation Range p-value*

K1 42.68 ± 1.47 39.5 - 46.7 49.35 ± 7.64 38.6 - 71.6 < 0.001
K2 43.66 ±  1.58 39.8 - 48.2 51.58 ± 9.1 42.6 - 77.5 <0.001
CCT 550 ±  35 444 - 632 460 ± 57 283 - 548 <0.001
TP 544 ± 35 443 - 629 443 ± 60 254 - 542 <0.001
Astig Axis 97 ±  71 1 - 180 76 ±  64 0 - 179 0.12

* Student’s t test

Table 1

Differences between groups
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Sensitivity and specificity
Sensitivity is a test’s chance of showing a positive result in

an individual affected by a disease. It is calculated using only ill
individuals as the ratio between the number of ill subjects that
had a positive result (true positives, or TP) and the total number
of ill subjects, which also includes false negatives (FN).

Specificity is a test’s chance of showing a negative result
in a healthy individual. It is calculated using only healthy
individuals as the ratio between the number of healthy subjects
that had a negative result (true negatives, or TN) and the total
number of healthy subjects, which also includes the false positives
(FP).

The concepts of sensitivity and specificity will now be used
to quantitatively describe the performance of a diagnostic test
by constructing its ROC curve.

ROC1 curve and accuracy of a test
The ROC curve is constructed on a Cartesian plane, with

sensitivity in the Y axis and 1 minus specificity (1-S) in the X
axis, both in decimal values. Sensitivity and specificity are
calculated for each cut-off value and inserted as a point on the
plane. The ROC curve is formed by linking these points.

Receiver Operating Characteristic
In the case of CCT, the best cut-off value was 517ìm, with

a sensitivity of 86% and a specificity of 93.2%. The respective
ROC curve can be seen in Figure 3.

The area under the curve (AUC) represents the accuracy
or global performance of a test because it considers all the
sensitivity and specificity values for each value of the test
variable. The greater the test’s power to discriminate between
ill and healthy subjects, the more the curve approaches the upper
left corner at the point that represents the sensitivity and 1
minus specificity of the best cut-off value. The better the test,
the more the area under the ROC curve approaches 1. A test
with a weak diagnostic power will show a more flat curve. A
test that simply represented chance (like flipping a coin to obtain
random binary results) would roughly have a 50% chance of a
positive result and a 50% chance of a negative result, regardless
of the group, and its area under the curve would be very close
to 0.50 (Figure 4).

Comparing areas under ROC curves
After establishing that there is a statistically-significant

difference between the variables in   healthy and ill patients, it is
necessary to determine whether the test has good diagnostic
accuracy. As mentioned above, this can be done by building an
ROC curve and finding the best cut-off value.

If there are two different diagnostic methods, they can be
compared using the area under the ROC curve. To know whether
the difference between the two is statistically significant a test is
needed to compare them, such as the DeLong test(9). In the

Figure 2. Box-plot and dot-plot charts for CCT values

Cut-off point Sensitivity (%) Specificity (%)

<  283 0 100

<= 435 20.45 100

<= 444 20.45 99.12

<= 456 34.09 99.12

<= 459 34.09 98.25

<= 460 36.36 98.25

<= 462 36.36 97.37

<= 477 61.36 97.37

<= 479 63.64 96.49

<= 483 63.64 95.61

<= 493 68.18 95.61

<= 496 68.18 93.86

<= 498 72.73 93.86

<= 501 72.73 91.23

<= 502 75 91.23

<= 504 77.27 90.35

<= 505 79.55 88.6

<= 506 79.55 87.72

<= 507 81.82 87.72

<= 508 81.82 86.84

<= 509 88.64 85.96

<= 516* 93.18 85.96

<= 523 93.18 78.07

<= 524 95.45 77.19

<= 529 95.45 72.81

<= 532 97.73 71.05

<= 547 97.73 53.51

<= 548 100 53.51

<= 632 100 0

Table 3

Sensitivity and specificity for each cut-off point

Test III Group Normal Group
(no disease)

Positive for Correct decision, Type II or β error,
Disease True Positive (TP)  False Negative (FN)
Negative for  Type I or  α Correct decision,
Disease  False Positive (FP) True Negative (TN)

Table 2

Results of a diagnostic test

1 Receiver Operating Characteristic

Sensitivity = TP

(TP+FN)

Specificity = TN

(TN+FP)

KeratoconusNormal KeratoconusNormal

CCT CCT
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Figure 3. ROC curve and cut-off point for CCT in normal versus
keratoconus eyes

AUC

K1 0.865
K2 0.859
CCT 0.939
TP 0.957

Table 4

Area under the ROC curve

Table 5

Pairwise comparison of AUCs using
the DeLong test (p-values)

previous example with the ROC curves for K1, K2, CCT, and TP
variables, it was found that the measures of thickness performed
better than the measures of curvature. Among the former, the
AUC of TP (0.957) is greater than CCT (0.939). Comparison
using the DeLong test shows p=0.003, therefore the higher
accuracy of CCT is statistically significant. These results are
summarized in Figure 5 and Tables 4 and 5.

Statistical significance versus clinical significance
To verify whether a difference found in a diagnostic test is

statistically significant one must calculate the p-value, termed
the descriptive level, which is directly related to the test’s power.
It can be defined as the “minimum probability of error in
concluding that there is statistical significance”(10).

A result is considered to be statistically significant when
its p-value is lower than a set value deemed “acceptable” for
type I error, which is generally 0.05 (a 5% chance of error, i.e.,
of concluding that the difference found is significant when it
actually reflects chance alone).

Statistical significance, however, is not necessarily the same
as clinical significance. The p-value is influenced by sample size.
Large samples tend to have lower p-values, and their results tend
to have less practical significance. Conversely, small samples tend
to have higher p-values.

In this case, although there is clinical relevance, results can
be misinterpreted due to the inadequate sample size(11). Therefore
it is not the p-value but AUC that determines the accuracy of a
test, as stated above.

Confidence interval
The concept of confidence interval is related to the

variability in accuracy estimates. Its calculation is directly related
to type I error or α, as shown in Figure 6. The lower the α, the
wider the confidence interval, i.e., the more reliable the estimator.
In the example in Figure 6, a 5% á was chosen in a two-tailed

Figure 4. Areas under ROC curves

Figure 5. Comparing ROC curves
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test, therefore there is a 95% probability that the value will be
in the range between -α/2 and +α/2. Both the confidence interval
and the standard error are calculated based on the sample
characteristics and results, being used to interpret the clinical
relevance of a diagnostic variable(12).

Improving diagnostic tools
While CCT (K1 and K2) values can not be used alone to

differentiate normal and keratoconus eyes, other variables
derived from corneal tomography can be considered in isolation
or combined(13). Topometric curvature mapping provides data on
the steepest point of the anterior surface. This index is more
accurate (higher AUC) than central curvature indices. With
tomographic thickness mapping the TP value can be obtained; as
seen above, this is a better measure to detect keratoconus than
CCT.

Combining variables
To improve diagnostic accuracy even more, different

variables can be combined, which can be done through a funda-
mental mathematical operation. This is the case of Ambrosio’s
Relational Thickness (ART), which is the ratio of corneal
thickness at the thinnest point to pachymetric progression. This
index has shown a high diagnostic power in detecting
keratoconus(8).

Other more sophisticated ways to combine variables are
linear discriminant analysis and logistic regression analysis, which
can be used to differentiate individuals in groups based on a set
of weighted variables. This type of combination is of great value
in diagnostic testing, as the method can more accurately
differentiate normal and ill patients based on the various data
points obtained from tests.

Using the samples above, logistic regression can be
performed on data from topographic (Kmax) and tomographic
(TP) mapping. The following formula is thus obtained:

This formula is then used to calculate the values for each
individual in the sample, obtaining a new variable. By constructing
the box-plot and dot-plot charts and the ROC curve a perfect
separation between groups is found, as shown in Figure 7.
However, formulas obtained through these methods should be
validated in other samples to have their applicability
demonstrated in diverse populations.

Other more sophisticated methods have been implemented
in the study of eye diseases, such as complex artificial intelligence
algorithms. It has been shown that such methods significantly
increase the effectiveness of disease detection(14,15).

CONCLUSION

This review aimed to present the main concepts of
biostatistics and certain tests used to analyse the results of a
scientific study and their applicability. This is broad topic and this
text does not intend to exhaust it, but only to present a study
guide, as the issue is very important in medical practice.

In fact, given the large volume of information produced
each day, it is necessary to draw the attention of ophthalmologists
to biostatistics, because critical analysis of the statistics with which
healthcare professionals deal is critical to improve their clinical
practice.
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