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ABSTRACT: The use of new technologies, the development of new software, and the 
advances in the machines ability to process data have brought a new perspective to soil 
science and especially to pedology, with the advent of digital soil mapping (DSM). To meet 
the demand for soil surveys in Brazil, it will be necessary to popularize the techniques used 
in DSM. To identify and map the soil to generate maps of land use capability, we proposed 
a theoretical and practical course focused on the training in DSM for professionals involved 
in the management of land resources. The methodology was divided into five modules: 
I. Introduction to pedology, soil-landscape relationship, soil survey and soil classification 
(theory); II. Identification of soils in the field and study of the soil-landscape relationship 
(practice); III. Digital soil mapping and geographic information system (theory) and obtaining 
environmental covariates (practice); IV. Statistical learners and quality measures of spatial 
predictions (theory) and spatial pseudo-sampling (practice); V. Database organization, 
calibration, and validation of predictive models (practice). Results such as the average 
level of confidence of the participants in the soil classification, as well as the number of 
pseudo-sampling classified by the participants, chosen statistical apprentice, environmental 
covariables used, and overall accuracy, were influenced by the participants level of knowledge 
regarding DSM soils and techniques. The structure, focus, and time of each module should 
be based on the participants needs. It is suggested that a survey should be carried out 
to consider the level of knowledge in relation to the topics addressed in DSM before the 
preparation and execution of the course. The contribution of individual experiences showed 
the importance of multidisciplinarity in the teaching-learning process because it is a technique 
that involves soil knowledge, statistics, and mathematics applied to geoinformation science to 
understand soil variability in the landscape. The practical classes were fundamental, enabling 
an approximation of the content studied with the participants’ reality and consolidation of the 
acquired knowledge. In general, the course was well evaluated by the participants regarding 
the contents covered and practical field training and laboratory geoprocessing, who reported 
that the practical classes were fundamental for the appropriation of knowledge in DSM. This 
course could be a model for the PronaSolos, which tend to have heterogeneous groups of 
participants, being necessary to plan specific protocols to tend the particularity.
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INTRODUCTION

Soil class and properties for rational land use planning, prediction of future scenarios 
such as erosion, sedimentation, climate change, and also as a data source for modeling, 
are an urgent need (Amundson et al., 2015; Dalmolin and ten Caten, 2015; FAO/ITPS, 
2015). In Brazil, most of the available maps are classified as small scale, smaller 
than 1:250,000, suitable for state or region level land use planning (Santos et al., 
2013). In addition, most of these maps were generated by the traditional soil survey 
method, which is characterized by not meeting society’s current demand for low-cost, 
short-term quantitative information (Hartemink and McBratney, 2008; Sanchez et al., 
2009). This inability of soil maps obtained through the traditional method is related 
to the partial loss of information on soil variability in the landscape since the discrete 
model employed results in chloroplectic maps (ten Caten et al., 2011), which impose 
abrupt boundaries between soil classes. This feature of traditional surveys results 
in difficulties in the practical application of map information (Sanchez et al., 2009).

To fulfill the need to map Brazilian soils and to properly approach land use planning, 
the National Program of Soil Survey and Interpretation (PronaSolos) (Polidoro et al., 
2016) was recently established. The main objective of PronaSolos is to map the 
soils of the entire Brazilian territory in scales varying from 1:25,000 to 1:100,000 
(Polidoro et al., 2016). However, conducting of soil surveys in the demand required 
by Brazil will only be possible with the use of new mapping techniques. The use of 
new technologies, the development of new softwares (Arrouays et al., 2017), and the 
advances in the machines ability to process data (Heung et al., 2016) have brought 
a new perspective to soil science and especially to pedology, with the advent of 
digital soil mapping (DSM) (McBratney et al., 2003; Lagacherie and McBratney, 
2007). To meet the demand for DSM, provided by the actions of PronaSolos, it will be 
necessary to popularize the techniques used in this new methodology. In addition to 
the investments in soil mapping, the training of new pedologists with special attention 
to DSM should be considered (Arrouays et al., 2017). Thus, soil scientists working 
on predictive soil mapping need to incorporate these techniques and methodologies 
used in DSM, morphometry, and proximal remote sensing to meet the demand for 
spatial soil information (Hartemink, 2015). 

Despite a large number of undergraduate courses with an emphasis on agrarian sciences 
in Brazil, few professionals are trained to work in the field of pedology, and even less are 
familiar with techniques required in DSM (Dalmolin and ten Caten, 2015). Some countries 
at the forefront of new developments in DSM, such as Australia and the Netherlands, 
have training courses aimed at this technique. The first DSM course in Australia was held 
in 2011 at the University of Sydney, meeting a request from the Australian Agricultural 
Land Assessment Program (Minasny and McBratney, 2016). The course was structured 
to develop user skills demonstrating how to use DSM techniques developed in the 
research to design soil maps for land use planning purposes. These authors report the 
positive experience of these training courses and are essential to initiate DSM activities 
across Australia. In the Netherlands, there are a series of training courses applied to 
DSM developed at the International Soil Reference and Information Center, whose main 
objective is to produce soil maps and information using local, regional, and global data 
sets. In Brazil, however, it has only been reported that EMBRAPA Solos has developed 
training courses in DSM (Baca et al., 2013; Vasques et al., 2013). The EMBRAPA Solos 
courses, aimed at training professionals from Brazil and other Latin American and 
Caribbean countries, showed that it is possible to carry out low cost theoretical and 
practical laboratory training using free software and data available in soil databases 
and environmental covariates derived, for example, Shuttle Radar Topography Mission 
(SRTM) and Landsat Mission. 
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MacMillan and Hengl (2019), discussing the future of predictive soil mapping (PSM) 
observed that it is necessary to adopt new methods and ideas associated with PSM 
within a new collaborative and open operational framework. Concerning collaborative and 
voluntary contributions from citizen scientists, Hengl et al. (2018) go further, asserting 
that there is a role in PSM for crowdsourcing to engaged citizen volunteers in collecting 
field observations and measurements to extend the soil and environmental relationships. 
According to Rossiter et al. (2015), soil observations require fieldwork. These authors 
state that soil maps are known by the user who relies on soil maps for decision making, 
especially those who are linked to agriculture or land planners. For increasing initiatives 
to a better understanding of soil, Rossiter et al. (2015) suggest multiple initiatives could 
reach projects in DSM, among then, training opportunities. 

The DSM involves solid knowledge of pedology, statistics, and mathematics (Lagacherie 
and McBratney, 2007). Thus, in the proposition of this DSM course, we focus on the 
theoretical, practical field and laboratory software knowledge, and it is clear that the 
methodological proposition of this course is not only on pedagogical emphasis but on 
specific knowledge directed at pedology and DSM. Within this perspective, this work aims 
to: (i) present the first Brazilian experience of a theoretical and practical course, including 
field practice, focused on the DSM training for professionals with different levels of soil 
mapping knowledge; (ii) to evaluate whether the degree of experience in soil mapping 
of participants influence the products generated by DSM technique. Moreover, the report 
about the structure of the course, experience, and results may even serve as a basis for 
the planning of training courses provided in PronaSolos.

MATERIALS AND METHODS

General structure of the course

The theoretical-practical course of DSM was developed at the Agronomic Institute of 
Paraná (IAPAR), in Londrina, Paraná State, Brazil. Twenty-three professionals participated, 
including undergraduate teachers, researchers, rural extension workers, land-use planners, 
and policy-makers. The course has been presented through theory classes and practical 
sessions for five days, totaling 40 hours (approximately 8 hours by module). The course 
was structured in five modules, starting with basic pedological concepts, both in the 
classroom and in the field, followed by the basic concepts of DSM and geographic 
information systems (GIS), and its practical application for soil mapping (Figure 1). 
A detailed description is presented in the following sections.

Practical field and DSM application activities were developed in a catchment with 3,212 ha, 
here called BH, located near the IAPAR headquarters. The participants of the course were 
assigned the task of generating a detailed map of soil taxonomic classes [in the second 
categorical level of the Brazilian Soil Classification System, SiBCS (Santos et al., 2018)] 
of the BH – along with uncertainty measures - using DSM techniques. In a traditional 
soil survey, a detailed map is one that is produced using an observation density of one 
observation per 0.8-4.0 ha, considering a minimum mappable area (MMA) of 0.4 ha, 
and published with a cartographic scale of 1:10,000 (Rossiter, 2000). In DSM, data are 
handled exclusively in the digital environment and maps are published in the form of 
raster images. Thus, the concepts of MMA and cartographic scale lose meaning, giving 
rise to the concepts of spatial resolution and pixel size. There is no direct equivalence 
between these concepts. However, an approximation can be made from the MMA and the 
fact that at least four pixels are required to identify a rectangular object in a digital image. 
If we take the MMA of 0.4 ha as a rectangular object and divide it into four elements, we 
find what would be the pixel size, i.e., 0.5 × √4000 m2 = 31.62 m. A number of different 
digital landscape mapping projects have a similar pixel size, i.e., 30 m, such as LANDSAT 
(NASA, 2009), SRTM V3.0 (NASA/JPL, 2013), and TOPODATA (Valeriano and Rossetti, 2012). 
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Given the easy access to these environmental covariates data for DSM, the 30 m pixel 
size was adopted for the generation of a detailed soil map of the BH.

Description of course modules

Module I

The theory classes on pedology presented basic concepts about soil morphology, soil 
profile, pedogenic horizons, and diagnostic horizons, soil identification and classification, 
and the SiBCS structure (Santos et al., 2018). All theoretical concepts about soil surveys 
(IBGE, 2015), including the soils and their variability in the landscape and soil-landscape 
relationships were also addressed. Module I provided the necessary theoretical framework 
for the field practices and the knowledge needed for the relationships to be established 
in the DSM approach.

Module II

In the practice sessions (Figure 2), the theoretical concepts approached in the module 
I were explored with more emphasis on the field soil survey stages such as landscape 
information acquisition and identification of soil taxonomic classes. The taxonomic class 
recognition process took place by identifying the diagnostic horizons (Figure 2a) defined 
by SiBCS for each soil class. In this module, much emphasis has been placed on the 
soil-landscape relationship, the main soil formation factors (Figures 2b and 2c) in which 
relationships have been established between the elevation, slope, and curvature of the 
terrain with the soil classes in the landscape. From this, the instructors established the 
conceptual model of pedogenesis together with the participants (Figure 2d). In this model, 
in BH the Latossolos Vermelhos occur in the summit positions with declivity varying from 
3 to 8 %. The Nitossolos Vermelhos are found on the surfaces of deflection of undulated 
relief, with slope varying from 8 to 20 %. On the slopes with inflection surfaces, strong 
undulated and sometimes mountainous relief, the Neossolos Regolíticos and Neossolos 
Litólicos are found. The Cambissolos Flúvicos are located in the lower open areas of the BH, 
close to the streams. These five classes of soils in the WRB system (IUSS Working Group 

Module I
Theory classes Introduction to pedology, soil-landscape 

relationship, soil surveys, and 
soil classification

Module II
Practice sessions Identification of soils in the field and 

study of the soil-landscape relationship 

Module III
Theory classes and 

practice sessions

Digital soil mapping and geographic 
information systems (theory), 
and obtaining environmental 
covariates (practice)

Module IV
Theory classes and 

practice sessions

Statistical learners and quality measures 
of spatial predictions (theory), 
and spatial pseudo-sampling (practice)

Module V
Practice sessions Database organization, calibration, and 

validation of predictive models

Figure 1. Flowchart of the theoretical-practical course of DSM.
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WRB, 2015) correspond respectively to Rhodic Ferralsol, Rhodic Nitisol, Umbric Leptosol, 
Leptic Regosol, and Fluvic Cambisol. More details about BH soil can be found in the report 
of the semi-detailed soil survey of the municipality of Londrina (Bognola et al., 2011).

Module III

The main concepts of the DSM were approached with emphasis on the model 
S = f (S, C, O, R, P, A, N), in which S: soil, C: climate, O: organism, R: relief, P: parent 
material, A: age, N: location, for quantification of the correlation between soil and 
environmental conditions, and production of graphical representations of soil in a digital 
environment (McBratney et al., 2003). The statistical concepts of “variable response” 
or “dependent variable”, and “covariable” or “independent variable” were presented. 
The nature of soil data was defined in three types: “continuous”, such as carbon and 
clay content, “ordinal”, as the drainage class and the stoniness class, and “categorical”, 
as the taxonomic class. The GIS concepts such as coordinate reference systems (CRS), 
data representation models (vector and matrix), CRS transformation and structure, and 
nomenclature of files and folders in GIS were discussed. For the realization of the DSM 
work and exercises, the free software QGIS version 2.18 (QGIS Development Team, 
2017) and R version 3.4.0 (R Core Team, 2017) were used because they are developed 
in collective collaboration, are flexible and without cost, being among the most used 
by the DSM scientific community (Samuel-Rosa et al., 2015; Vaysse and Lagacherie, 
2015; Heung et al., 2016; Arrouays et al., 2017; Chagas et al., 2017). The need to obtain 
information on soils and environmental covariates to supply the predictive models and 
perform soil mapping was also addressed in this module.

In the practice sessions, it was demonstrated how covariates are made available and can 
be obtained, for example, from the Topodata project (http://www.dsr.inpe.br/topodata/), 
WorldClim (http://worldclim.org/version2), and United States Geological Survey - USGS 
(https://earthexplorer.usgs.gov). It was highlighted that pre-existing soil profile data, for 

(a) (b)

(c) (d)

Figure 2. Field practice sessions with identification and description of soil profiles (a), a study of 
the soil-landscape relationship (b and c), and construction of the conceptual model of pedogenesis 
in the study area (d)
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example, legacy data from the Embrapa Brazilian Soil Information System (https://www.
bdsolos.cnptia.embrapa.br/consulta_publica.html), IBGE (http://www.downloads.ibge.
gov.br/tematicos/solos), and World Soil Information System - WoSIS (http://www.isric.
org/explore/wosis), can be used in conjunction with the new field samplings. To facilitate 
participants’ understanding of the sources and use of environmental covariates, as well 
as the correlation between soil and environmental characteristics used in examples of 
global DSM projects, the results of SoilGrids1km were presented (Hengl et al., 2014).

For this task, the vector files of the area (catchment boundary, contour lines, hydrography, 
among others) and the environmental covariates in matrix files obtained from Topodata 
(elevation, slope, horizontal curvature, and vertical curvature) were provided to 
the participants.

Module IV

In this module, participants were grouped into four groups, named 1, 2, 3, and 4. Group 1 
was composed of technicians with little knowledge in soil science and whose academic 
formation may not have addressed subjects such as soil survey and classification. Group 3 
was composed of technicians who worked for years with soil survey and are researchers 
and professors in this area, while groups 2 and 4 presented previous knowledge of the 
subject and work on a daily basis with soils. This grouping was carried out to evaluate 
the influence of the previous level of knowledge on soil mapping in the pseudo-sampling 
stage and effect on quality of the final product (predicted map) generated by the DSM 
technique. The DSM courses conducted so far did not use this method.

The goal of Module IV was to obtain the data for calibration of the models for the DSM. 
As BH has 3,212 ha, at least 803 observations were required (3,212 ha/4 ha). As the 
duration of the course was only 40 hours, there was no time to visit all the 803 necessary 
points in the field. The alternative was to use pseudo-observations of the soil, sampled 
computationally. Pseudo-observations are based on the use of the theoretical model of 
pedogenesis - created in Module II - to deduce the taxonomic class of the soil in an unvisited 
site of BH (Figure 3) based on probabilities. To avoid participants’ tendency in choosing 
the sites of soil pseudo-observations, their location was defined using a completely 
random mechanism in QGIS (QGIS geoalgorithm > vector selection tool > random points 
within fixed polygons). To maximize the spatial coverage of BH and ensure that an area 
of 30 × 30 m ≅ 0.4 ha (MMA) had only a single pseudo-observation inside it, it was 
established that the minimum distance between two neighboring pseudo-observations 
should be √[(30 m x 2)2 + (30 m x 2)2] = 84.85 m.

Since the pseudo-observations of the soil are obtained deductively, on a computer, 
it was discussed with the participants about the considerable uncertainty about these 
observations due to the lack of empirical data collected in the field and analyzed in the 
laboratory. To represent this uncertainty, the concept of degree of confidence (DC) on the 
taxonomic class of a soil profile was presented. First, in discussion with all participants, 
it was agreed that even considering data with a complete description of a soil profile, 
confidence in the accuracy of the taxonomic class should be 98 %. This was assumed 
because the data contains variations from sampling and from the laboratory, which 
can lead to misclassification. Then, assuming that in BH there are only five taxonomic 
classes, and not considering their spatial distribution, it was agreed that by using a 
completely random classification, the taxonomic class of a soil profile would be correct in 
at least 20 % (1/5 = 0.20 × 100 = 20 %) of the time. Once the upper and lower degrees 
of confidence in the soil classification were established, the four groups were asked to 
indicate their DC in the soil taxonomic class in the following situations: observation by 
auger, observation in the soil profile, and pseudo-sampling on the computer screen.

From the set of 803 random points established in QGIS, each participant performed the 
pseudo-sampling of as many points as they needed, based on their pedological knowledge 
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and auxiliary data, as contour lines, Google Earth 3D satellite imagery (Figure 3a) and 
terrain covariates (elevation and slope) of the area (Figure 3b), establishing the respective 
DC for each soil taxonomic classification.

(a)

(b)

Figure 3. Pseudo-sampling on computer simulations based on the soil-landscape relationship. 
Google Earth image with contour lines (equidistant 10 meters) (a) and  Digital elevation model, 
contours and taxonomy assignment, and confidence level for each point (b).

Table 1. Average confidence level (DC) of each group of participants in the classification of the 
soil in one of the five taxonomic classes identified in the BH

Soil information 
available

Group
Everyone 1 2 3 4

Complete profile 0.98 - - - -
Incomplete profile - 0.65 0.85 0.95 0.90
Augering/Ravine - 0.70 0.75 0.90 0.80
Pseudo-sampling - 0.50 0.70 0.75 0.60
Random classification(1) 0.20 - - - -

(1) Probability of correct classification of a soil observation using a completely random classification, considering 
that five taxonomic classes were identified in the study area (1/5 = 0.20).
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The DC in the soil classification from different levels of information from each group of 
participants is shown in table 1. Group 1 achieved the lowest DC’s, and group 3, the 
largest. Groups 2 and 4 indicated intermediate values.

This module also addressed the basic concepts of the most used machine learning methods 
in the construction of soil prediction models (Table 2). Because the prediction models 
present an estimate of how uncertain they are about a predicted value, the concept of 
uncertainty and its representation in categorical variables (taxonomic classes), such 
as theoretical purity, Shannon’s entropy, and confusion index (Kempen et al., 2009) 
were presented.

Module V

The guidelines for the organization of the data set containing the information of the 
soil class and environmental covariates for each point obtained in the pseudo-sampling 
step were presented. This set was the database for training prediction models. The 
prediction of soil classes was performed using a Python script specifically developed to 
access, from QGIS, the machine learning methods implemented in R, which is available at  
https://github.com/samuel-rosa/qgis-r.

In the prediction step, a cross-validation method was adopted for the predictive models 
(Filzmoser et al., 2009). After this procedure, the external validation of the digital soil 
map was carried out using 64 real soil observations, most of them located outside the 
study area, derived from the semi-detailed soil survey of the municipality of Londrina 
- PR (Bognola et al., 2011). External validation differs from cross-validation by the fact 
that the data used for validation is not used to feed the statistical apprentice. Thus, 
cross-validation is a measure obtained in the initial phase of work, using the available 
data. External validation is always a later phase, carried out using data obtained in 
the field after the soil map was elaborated. Data from the semi-detailed survey of soils 
of the municipality of Londrina are available at the Free Brazilian Repository for Open 
Soil Data (www.ufsm.br/febr) under the identification code ctb0022. The Free Brazilian 
Repository for Open Soil Data is a repository that stores accessible soil data for various 
applications (Samuel-Rosa et al., 2020).

The results of this stage were the digital soil map, uncertainty maps, and metadata table. 
The metadata table is composed of general data information used in the prediction and 
validation, the importance of predictor covariates, machine learning method used and 
values of cross-validation and external validation. The uncertainty maps are composed of 
measures of theoretical purity, Shannon entropy, and confusion index. Theoretical purity 
is the highest predicted value of probability at a point and varies between 0 and 1, where 
1 means maximum theoretical purity, that is, the machine learning method has great 
confidence about the class of the predicted soil. On the other hand, 0 means minimal 
theoretical purity, in which the machine learning method has great uncertainty about the 

Table 2. R statistical package, method of implementation, description, and reference of the 
machine learning methods used in the detailed DSM course
Package Method Description Reference
rpart rpart Classification and regression tree Therneau and Atkinson (2019)
MASS lda Linear discriminant analysis Venables and Ripley (2002)

nnet multinom Penalized multinomial regression 
linear Venables and Ripley (2002)

nnet nnet Artificial neural network Venables and Ripley (2002)
randomForest rf Random forest Liaw and Wiener (2002)

kernlab svmRadial Support vector machines with 
radial basis kernel function Karatzoglou et al. (2018)
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predicted class. The Shannon entropy is a measure of the “disorder” of prediction and 
also varies from 0 to 1, where 1 means maximum disorder; that is, the machine learning 
method has very little confidence about the predicted class, and 0 means maximum 
confidence about the predicted class. The index of confusion is a measure of the confusion 
the model makes between the two most likely classes. Like the two previous measures, 
the confusion index ranges from 0 to 1, where 1 means maximum confusion. The R code 
needed to reproduce these results was implemented in the Python script mentioned 
above, which is available at https://github.com/samuel-rosa/qgis-r.

Evaluation

Each participant generated their own maps and metadata table, which were presented 
and discussed together at the end of the course, considering pseudo-sampling strategy, 
the influence of the number of points, correlation of the predicted classes with the 
observations made in the field activity and the results of accuracy and uncertainty 
obtained in prediction. Results obtained by the participants will be discussed and presented 
through letters (A, B, C, D...) in order to keep them anonymous.

For the evaluation of the course, participants were given an evaluation questionnaire 
with open and closed questions. In the closed questions, scores ranging from 1 (minimum 
grade) to 5 (maximum grade) were given.

RESULTS
The results of the practical activity of DSM showed that participants who were familiar 
with the topics covered in the theoretical presentation in module I were the ones who 
had an effective participation, reporting personal experiences related to what was 
exposed and discussed, pointing out that the time dedicated to these subjects could 
be adapted according to the groups needs. It was demonstrated that the ease for soil 
identification, profile description, and establishing soil-landscape relationships developed 
in module II, depended on the academic background and previous experience from 
the participants.

Operational difficulties were observed in the practical activities in module II, even after 
the theoretical approach about the concepts of DSM and GIS. The main questions were 
related to the source, meaning, acquisition, and application of environmental covariates in 
DSM. It was clear that including more detailed information about statistics and also about 
the ways to obtain environmental covariates and their relationship with the distribution 
of soils in the landscape was a necessity.

In the topic of pseudo-sampling in module III, we noticed that the knowledge about 
the soil-landscape relationship of the study area or the tacit pedological knowledge 
developed by a few more experienced participants (pedologists), besides knowledge 
in GIS, facilitated the understanding and execution of this step. The results show that 
participants with more experience in soil mapping and GIS produced a higher number 
of pseudo-observations.

The digital soil map (Figure 4a) obtained by one of the participants of the course showed 
much similarity to the distribution of soils in the landscape observed in the construction 
stage of the pedogenesis model in the field practice. The confusion index map (Figure 4b) 
shows locations of higher uncertainty of the predictive model, where a higher number 
of samples is necessary to improve the quality of the soil map. Similarly, these places 
of greatest uncertainty were described by participants as places of greater difficulty to 
construct the pedogenesis model.

Regarding the model construction stage and soil class prediction, the greatest operational 
difficulties were observed, indicating the need for adjustments in to the workload for 
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this stage of the course, to consolidate learning and mastery of the software operation 
technique used in MDS. Such fact was reported in the evaluation carried out by the 
course participants.

In relation to the models used to adjust the predictive models, many questions arose 
regarding the theoretical basis and statistical assumption of each model and in which 
scenario to use each one. These doubts arose when doing in group analysis of the 
results of table 3. It was observed a better performance for linear models compared to 
the random forest (Table 3). The results of cross-validation and external validation from 
participant H showed that random forest is subject to overfitting and, therefore, poor 
at generalization. The questions derived from the discussion of the results in table 3 
showed the clear need for greater workload aimed at teaching and learning of theoretical 
concepts of statistical learners.

In general, regardless of the calibration data, the machine learning methods identified 
the vertical curvature and elevation as the most important covariates, with slope, in 
all cases, being the second most important. Vertical curvature and elevation switched 

Figure 4. Digital soil map (a) and confusion index (b) produced by one of the participants 
of the course. LV: Latossolos Vermelhos (Rhodic Ferralsol); NV: Nitossolos Vermelhos (Rhodic 
Nitisol); RR: Neossolos Regolíticos (Umbric Leptosol); CY: Cambissolos Flúvicos (Fluvic Cambisol) 
(Santos et al., 2018).
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positions in logistic regression and random forest. Regarding the covariates used as 
predictors, several questions also arose about how many, which, and when to use a 
given covariate. There were still manifestations about sources of covariates and how 
to obtain them.

Participant A had the fewest number of pseudo-samples, and the results showed that the 
class CY was not predicted, probably due to the small representativity of this class in the 
calibration data. The same pattern can be attributed to participant C, which results had 
no class RL predicted, besides the amplitude between the accuracy of cross-validation 
and external validation. In this case, the lack of knowledge about the lower predictive 
potential of the Linear Discriminant Analysis machine learning by participant C associated 
with the low number of pseudo-samples resulted in lower accuracy (Table 3). 

Regardless of the high number of pseudo-samples, participant B did not distribute 
the observations properly, since class RR was not predicted. The importance of the 
quality of pseudo-sampling is demonstrated by participant D, who performed only 
175 observations but obtained an accuracy of 0.58 in external validation using the 
Penalized Multinomial Regression learner. Participant E used 429 pseudo-samples 
and obtained an accuracy of 0.56 using the same learner as participant D. On the 
other hand, Random Forest only approaches the best models when the number of 
observations is very high, which is demonstrated by the results from participant F. 
This participant is part of group 1 (poor knowledge of soil science), so the participant, 
knowing their limitations in pedological knowledge, chose to perform excessive 
pseudo-sampling in order to achieve good accuracy in the prediction. This reflected 
in the model’s greater ability to better identify the transitions between soil classes 
when more information about the soil is provided, enabling the creation of a higher 
number of rules with the covariates.

Concerning the steps of pseudo-sampling and spatial prediction, it was observed that 
the performance of the machine learning methods is related to the quality and quantity 
of observations for calibration of the models. It should be emphasized that quality 

Table 3. Participants, number of pseudo-samples performed, machine learning method used for prediction, covariates used in order 
of importance for the model, classes predicted by the calibrated model, and global purity in cross-validation and external validation. 
The top three models are highlighted in bold

Participant Pseudo-samples Statistical learner Covariates Predicted classes(1) CV(2) EV(3)

A 122 Penalized Multinomial 
Regression

Vertical curvature, 
Slope, Elevation LV, NV, RL, RR 0.52 0.50

B 714 Penalized Multinomial 
Regression

Vertical curvature, 
Slope, Elevation CY, LV, NV, RL 0.55 0.42

C 240 Linear Discriminant 
Analysis

Elevation, Slope, 
Horizontal curvature CY, LV, NV, RR 0.80 0.45

D 175 Penalized Multinomial 
Regression

Vertical curvature, 
Slope, Elevation CY, LV, NV, RL, RR 0.70 0.58

E 429 Penalized Multinomial 
Regression

Vertical curvature, 
Slope, Horizontal 

curvature
CY, LV, NV, RL, RR 0.48 0.56

F 813 Random Forest Elevation, Slope, 
Vertical curvature CY, LV, NV, RL, RR 0.74 0.53

G 342 Random Forest Elevation, Slope, 
Vertical curvature CY, LV, NV, RL, RR 0.55 0.44

H 236 Random Forest Elevation, Slope, 
Vertical curvature CY, LV, NV, RL, RR 0.71 0.48

(1) LV: Latossolo Vermelho (Rhodic Ferralsol); NV: Nitossolo Vermelho (Rhodic Nitisol); RL: Neossolo Litólico (Leptic Regosol); RR: Neossolo Regolítico 
(Umbric Leptosol); CY: Cambissolo Flúvico (Fluvic Cambisol). (2) CV: Cross-Validation. (3) EV: external validation.
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pseudo-samplings require knowledge of the soil-landscape relationship. In fact, the models 
used in DSM need to take into account the pedological knowledge for their construction 
and to be in agreement with reasonable hypotheses about the soil-landscape relationship 
(Rossiter, 2018).

The results of the course evaluation by the participants (Figure 5) show a positive scenario 
regarding items A, B, C, D, and E, with all answers being very good or excellent (marks 4 
and 5). The item F, in which the participant was asked if he/she felt capable of applying 
the acquired knowledge, was the one that presented the highest percentage (45 %) 
of negative answers, mainly due to the insecurity of having the first contact with the 
subject, but this percentage decreased in item H, in which the ability to replicate the 
information received in future DSM training courses was questioned.

DISCUSSION
It was clear that it is necessary to know beforehand about the training and experiences of 
the course participants to direct the necessary training time in the basic soil classification 
modules (modules I and II). Participants reported the need for more time allocated for 
field practice classes for a better understanding of the soil-landscape relationship. 
This excessive reliance on field training, classification and soil identification for better 
understanding of the soil-landscape relationship and field mapping has been reported in 
a study by Hudson (1992) and later by Scull et al. (2003), who report that the acquisition 
of tacit pedological knowledge is a slow and expensive process, as it requires a lot of 
field training.
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Figure 5. Evaluation carried out by the course participants, considering 5 the highest mark and 
1 the lowest mark. Items evaluated: (A) the course met the expectations, and the objectives were 
achieved; (B) logical sequence of the course; (C) field class; (D) adequacy of practical classes; 
(E) the theoretical classes were illustrative, relevant and adjusted to the proposed subject; (F) 
Do you feel able to apply the acquired knowledge? (G) the knowledge acquired in the course are 
applicable in your work routine? (H) Do you feel able to replicate this knowledge in DSM courses 
that might be organized?
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In addressing the foundations of DSM in module III, we observed little or no knowledge 
of the participants regarding the subject, resulting in innumerable basic questions 
about the subject. It is interesting to note that some participants were familiar with 
the use of GIS and geoprocessing techniques obtained in courses (face-to-face and 
distance learning) from educational institutions and on-line (e.g., in the Education Portal 
https://www.portaleducacao.com.br). The search for knowledge, according to what is 
demanded by these professionals, reinforces Lobry de Bruyn et al. (2017) statement 
that a multidimensional approach to soil education is needed that balances traditional 
models with new models to create a learning environment that facilitates changes 
and consequently learning. On the other hand, some basic concepts for building and 
managing a spatial database such as file formats for spatial data, coordinate reference 
systems, and directory naming standards, files and data tables, were not well known. 
This demonstrates that, regardless of the participants’ experience, there is a need to 
level knowledge about GIS and spatial data.

We observed that the practice classes were fundamental in the appropriation of 
new knowledge, allowing an approximation of the content studied with the reality 
of the participants, corroborating studies by Minasny and McBratney (2016) and 
Arrouays et al. (2017), and this was reported as very positive in the evaluation of the 
present course. In spite of the advances in DSM in Brazil, with a recognized prominence 
in the world scenario, not only in the number of articles, but also with good citation 
indices (Cancian et al., 2018), the difficulties in understanding the DSM bases clearly 
demonstrate that the teaching of DSM in Brazil is restricted to a few Post-Graduate 
Programs in Soil Science or related areas (Dalmolin and ten Caten, 2015; Dalmolin et al., 
2017). It should be emphasized that DSM is a recent subject compared to the other 
areas of soil science, demonstrating that the theoretical approach in DSM should have 
a greater workload in the course syllabus proposed here (Baca et al., 2013; Minasny 
and McBratney, 2016).

We observed that the knowledge provided by teaching DSM needs to be meaningful 
for the people involved. This is usually easily achieved as the learner is more familiar 
with the terms and concepts of the subject matter (Fazenda, 2014). The effectiveness 
of teaching DSM is directly related to the previous knowledge about the training of the 
participants, knowledge in pedology, understanding of the soil-landscape relationship, 
level of GIS training, and knowledge in statistics, as well as the distribution of the workload 
between modules. According to Hartemink et al. (2014), finding the balance between 
different professionals with deep and creative knowledge is a challenging task for soil 
science educators. Training technicians with different levels of knowledge in subjects 
related to DSM such as spatial modeling, multivariate statistics, organization, and use 
of soil databases, GIS, programming languages, etc., was a major challenge identified 
by Baca et al. (2013).

Knowing that teaching is not transferring knowledge, but creating possibilities for its own 
construction, the previous experience of the individual, used in the teaching-learning 
process, has become a differential in producing more significant results during the course. 
Minasny and McBratney (2016) reported that training in DSM creates learning possibilities, 
knowledge replication, and DSM techniques are moving from research to operational. This 
favored the understanding of the object of study in its environment, providing richness of 
details to the construction of knowledge, promoting broad reflections and interrelations, 
which diminished the problem of knowledge fragmentation (Morin, 2015). 

Considering that the process of landscape interpretation and mapping is not always an 
individual task, the advantage of working with distinct backgrounds was evident, since 
it allowed the interconnection of contents from several areas of knowledge. This type 
of observation is common in all levels of learning, from the elementary school to higher 
education (Fazenda, 2014).



Dalmolin et al. How is the learning process of digital soil mapping in a diverse group...

14Rev Bras Cienc Solo 2020;44:e0190037

The baselines used to distribute class time per module should, as far as possible, consider 
the opinion of the participants and contemplate their needs. Considering that teaching 
requires critical reflection on the practice, the evaluations made by the participants can 
reveal flaws in the teaching strategies to which they are submitted and provide corrections 
for future practices. The main points reported were the need for more workload for field 
practice and study of the soil-landscape relationship, especially for participants in groups 1 
and 2. It was also reported by all participants the need for more attention from instructors 
to the theoretical concepts of machine learning and obtaining predictor covariates, as 
well as practice in software employed in DSM. In a distance learning course about DSM, 
Baca et al. (2013) extended the total time in two weeks at the request of the trainees 
so that there was more time to access the content and perform the exercises with the 
support of the instructors.

In the evaluation of the course, although the participant’s suggestions did not encompass 
the whole scenario involved in a DSM course, mainly because they did not consider the 
limitations of human and material resources, they were important and may indicate the 
readjustment of the workload. Still need a greater emphasis on the practical activities that 
consolidate the learning in DSM and the commitment of the participants in the continued 
study of the theoretical bases that encompass the DSM technique. The evaluation process 
allows to know the view of the participants, revealing their perceptions and serving as 
input for the reflection of the educators on the execution of the pedagogical practice 
(Fazenda, 2014).

Our observation was that the practice classes developed in an environment familiar to the 
participants motivated and facilitated the understanding of DSM. The teaching-learning 
process proved to be effective when using images from areas for training and validation 
of maps in landscapes that were common to the participants. The acquisition of 
pedological knowledge is a slow process, but field training in familiar landscapes can 
accelerate the learning process (Hudson, 1992). It was observed that the construction 
of the conceptual model of pedogenesis of the study area was a process guided by 
the previous knowledge of each of the participants, which manifested the various 
relationships that could be established for the production of the final map. In this line, 
Arrouays et al. (2017) emphasize that DSM should be conducted at a regional or local 
level to be consistent with its use and application, to ensure end-user involvement 
and efficient collection of soil data. 

The low familiarization of the participants with DSM bases is related to the publication 
of results on this topic being restricted to scientific articles, emphasizing the need to 
disseminate this information through other means, for example, informative bulletins 
that aim the practical use of the knowledge (Minasny and McBratney, 2016). According 
to these authors, the distribution of computer code and manuals with protocols for DSM 
facilitates the practical application of this technique.

PronaSolos predicts an investment of approximately 1,3 billion dollars in 30 years to map 
Brazilian soils, and DSM methodologies will be used (Polidoro et al., 2016). According 
to Arrouays et al. (2017), there is a need for intensive training in pedology and DSM. 
This corroborates the reported results and experience show the need for planning the 
protocols involved in the five modules presented in this DSM courses, as well as prior 
knowledge of the participants skills. 

The course described here is within this perspective and could be one of the guiding 
principles for future training for PronaSolos. As confirmed by Baca et al. (2013) 
and Vasques et al. (2013), and according to this work, it is possible to effectively 
capacitate professionals using free software and data available in soil databases and 
environmental covariates repositories. It is noteworthy that participants who reported 
not being able to replicate the course have little knowledge in soils, machine learning, 
and geoprocessing. Therefore, future courses should make a previous diagnosis, 
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aiming to group the participants in homogeneous groups in relation to knowledge in 
soils and DSM and thus plan the most appropriate DSM teaching protocol for each 
group demand.

CONCLUSIONS

The structure, focus, and time of each module should be based on the participants’ needs. 
It is suggested that a survey should be carried out to consider the level of knowledge 
in relation to the topics addressed in DSM before the preparation and execution of the 
course, aiming at assisting in the planning of the techniques and in the level of deepening 
of the concepts.

The development of the course in an environment familiar to the users facilitated the 
teaching-learning process, since using common data helps the visualization and solution 
of problems.

The contribution given in the discussions according to the participants’ experiences 
highlighted the importance of multidisciplinarity in the teaching-learning process in 
DSM, because it is a technique that involves soil knowledge, statistics, and mathematics 
applied to geoinformation science to understand soil variability in the landscape.

The course was well evaluated by the participants, who reported that the practical classes 
were fundamental to approach the studied content to their reality.

This course could be a model to meet the needs of PronaSolos, which tend to have 
heterogeneous groups of participants, being necessary to plan specific protocols to tend 
the specific demand of each one. 
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