Acessibilidade / Reportar erro

Prediction of genetic gains with selection between and within S2 progenies of papaya using the REML/Blup analysis

Predição de ganhos genéticos com a seleção entre e dentro de progênies S2 de mamoeiro por meio de análise REML/Blup

Abstract:

The objective of this work was to predict the genetic gains with selection of superior individuals within papaya (Carica papaya) progenies using the REML/Blup analysis. Thirty-six S2 progenies, originated from the Calimosa and Tainung 1 hybrids, and two commercial control checks were evaluated in a randomized complete block design, with four replicates. The following traits were evaluated: heights of plants and first fruit; stem diameter at 12 and 18 months; number of days required for fruiting; number, mass, and average mass of commercial fruit; and number and mass of carpelloid and pentandric fruit. The magnitudes of the genetic parameters indicated that the variability present in most of the characters allows greater genetic gain if the selection is made at the progeny level, and not in individual plants. For selection among progenies, PROT-268, PROT-74, PROT-55, and PROT-22 were the most promising, with the greatest genetic gain for the studied characters. In the selection among and within progenies, the prediction of the gains is higher for the increase in the expression of the number of commercial fruit and for the decrease in the expression of pentandric fruit.

Index terms:
Carica papaya; agronomic traits; genetic parameters; mixed models; selective accuracy

Resumo:

O objetivo deste trabalho foi predizer os ganhos genéticos em mamoeiro (Carica papaya) com a seleção dos indivíduos superiores dentro de progênies, por meio da análise REML/Blup. Foram avaliadas 36 progênies S2, oriundas dos híbridos Calimosa e Tainung 1, e duas testemunhas comerciais, no delineamento de blocos ao acaso, com quatro repetições. Os caracteres avaliados foram: altura de planta e do primeiro fruto; diâmetro de caule aos 12 e 18 meses; número de dias requeridos para surgimento do primeiro fruto; número, massa e massa média de frutos comerciais; e número e massa de frutos carpeloides e pentândricos. As magnitudes dos parâmetros genéticos estimados indicaram que a variabilidade presente, para a maioria dos caracteres, possibilita maiores ganhos genéticos se a seleção for praticada em progênies e não por plantas individuais. Para a seleção entre progênies, PROT-268, PROT-74, PROT-55 e PROT-22 foram as mais promissoras, com os maiores ganhos genéticos para os caracteres estudados. Na seleção entre e dentro de progênies, a predição dos ganhos é maior para o aumento da expressividade do número de frutos comerciais e para a redução da expressividade do número de frutos pentândricos.

Termos para indexação:
Carica papaya; caracteres agronômicos; parâmetros genéticos; modelos mistos; acurácia seletiva

Introduction

Papaya cultivars in Brazil are classified into two groups: Solo and Formosa (Dias et al., 2011DIAS, N.L.P.; OLIVEIRA, E.J. de; DANTAS, J.L.L. Avaliação de genótipos de mamoeiro com uso de descritores agronômicos e estimação de parâmetros genéticos. Pesquisa Agropecuária Brasileira, v.46, p.1471-1479, 2011. DOI: 10.1590/S0100-204X2011001100008.
https://doi.org/10.1590/S0100-204X201100...
). In the Solo group, the average weight of papayas ranges from 300 to 650 g, and the predominant cultivars are Golden and Sunrise Solo. The Formosa group is commonly represented by the commercial hybrids Tainung 1 and Calimosa, with average weight ranging from 1,000 to 1,300 g (Dias et al., 2011DIAS, N.L.P.; OLIVEIRA, E.J. de; DANTAS, J.L.L. Avaliação de genótipos de mamoeiro com uso de descritores agronômicos e estimação de parâmetros genéticos. Pesquisa Agropecuária Brasileira, v.46, p.1471-1479, 2011. DOI: 10.1590/S0100-204X2011001100008.
https://doi.org/10.1590/S0100-204X201100...
; Luz et al., 2015LUZ, L.N. da; PEREIRA, M.G., BARROS, F.R.; BARROS, G. de B.; FERREGUETTI, G.A. Novos híbridos de mamoeiro avaliados nas condições de cultivo tradicional e no semiárido brasileiro. Revista Brasileira de Fruticultura , v.37, p.159-171, 2015. DOI: 10.1590/0100-2945-069/14.
https://doi.org/10.1590/0100-2945-069/14...
).

Although Brazil is the second largest producer of papaya (FAO, 2013 FAO. Food and Agriculture Organization of the United Nations. Faostat: Production quantity: papayas. 2013. Available at: Available at: http://faostat3.fao.org/download/Q/QC/E . Accessed on: Nov. 25 2015.
http://faostat3.fao.org/download/Q/QC/E...
), the country is still dependent on the import of seeds of the Formosa group, which considerably raises the production costs (Marin et al., 2006MARIN, S.L.D.; PEREIRA, M.G.; AMARAL JÚNIOR, A.T. do; MARTELLETO, L.A.P.; IDE, C.D. Heterosis in papaya hybrids from partial diallel of ‘Solo’ and ‘Formosa’ parents. Crop Breeding and Applied Biotechnology, v.6, p.24-29, 2006. DOI: 10.12702/1984-7033.v06n01a04.
https://doi.org/10.12702/1984-7033.v06n0...
). Despite this, Brazilian breeding programs have contributed to the development of new cultivars that have both superior agronomic and commercial qualities (Dantas et al., 2015DANTAS, J.L.L.; LUCENA, R.S.; BOAS, S.A.V.B. Avaliação agronômica de linhagens e híbridos de mamoeiro. Revista Brasileira de Fruticultura , v.37, p.138-148, 2015. DOI: 10.1590/0100-2945-022/14.
https://doi.org/10.1590/0100-2945-022/14...
). Although in recent years breeding programs have achieved satisfactory results regarding the introduction of cultivars with high agricultural ability, overcoming current levels of productivity is a great challenge (Silva, 2008SILVA, L.A.S. Herança e relações genéticas entre densidade da semente, teores de proteína e óleo e produtividade em soja. 2008. 170p. Tese (Doutorado). Escola Superior de Agricultura Luiz de Queiroz, Piracicaba. DOI: 10.11606/t.11.2008.tde-22072008-162035.
https://doi.org/10.11606/t.11.2008.tde-2...
). Therefore, it is necessary to investigate the variability of the species, which has a narrow genetic base, in order to obtain, in a single genotype, the maximum phenotypic qualities that are preferred by producers and consumers.

The search for more efficient selection methodologies is one of the most efficient alternatives to achieve these goals. This is because one of the main challenges faced by the breeding programs is low selective accuracy, which negatively impacts genetic gains (Costa et al., 2008 COSTA, R.B. da; RESENDE, M.D.V. de; GONÇALVES, P. de S.; CHICHORRO, J.F.; ROA, R.A.R. Variabilidade genética e seleção para caracteres de crescimento da seringueira. Bragantia, v.67, p.299-305, 2008. DOI: 10.1590/S0006-87052008000200005.
https://doi.org/10.1590/S0006-8705200800...
). Therefore, the implementation of more refined genetic-statistical procedures, such as the REML/Blup methodology, is a trend in plant breeding (Maia et al., 2011 MAIA, M.C.C.; RESENDE, M.D.V. de; OLIVEIRA, L.C. de; ÁLVARES, V. de S.; MACIEL, V.T.; LIMA, A.C. de. Seleção de clones experimentais de cupuaçu para características agroindustriais via modelos mistos. Revista Agro@mbiente On-line, v.5, p.35-43, 2011.).

Even under conditions of unbalanced experiments, this approach allows the accurate and unbiased prediction of genetic values, providing additional information that is relevant to the identification of superior genotypes (Ramalho & Araújo, 2011RAMALHO, M.A.P.; ARAÚJO, L.C.A. de. Breeding self-pollinated plants. Crop Breeding and Applied Biotechnology, v.11, p.1-7, 2011. Número especial. DOI: 10.1590/S1984-70332011000500002.
https://doi.org/10.1590/S1984-7033201100...
). Moreover, the Blup method allows maximizing selective accuracy, which positively impacts the identification of the best individuals and the gains with selection (Rocha et al., 2009ROCHA, R.B.; VIEIRA, A.H.; GAMA, M. de M.B.; ROSSI, L.M.B. Avaliação genética de procedências de bandarra (Schizolobium amazonicum) utilizando REML/BLUP (Máxima verossimilhança restrita/Melhor predição linear não viciada). Scientia Forestalis, v.37, p.351-358, 2009.). However, the application of this methodology in papaya breeding is still very scarce. In the literature, the use of REML/Blup has been associated with different purposes, including the estimation of genetic parameters in segregating populations, aiming at the selection of papaya individuals for fruit length and weight, total soluble solids and fruit firmness (Oliveira et al., 2012OLIVEIRA, E.J.; FRAIFE FILHO, G. de A.; FREITAS, J.P.X. de; DANTAS, J.L.L.; RESENDE, M.D.V. de. Plant selection in F2 segregating populations of papaya from commercial hybrids. Crop Breeding and Applied Biotechnology, v.12, p.191-198, 2012. DOI: 10.1590/S1984-70332012000300005.
https://doi.org/10.1590/S1984-7033201200...
; Pinto et al., 2013PINTO, F. de O.; LUZ, L.N. da; PEREIRA, M.G.; CARDOSO, D.L.; RAMOS, H.C.C. Metodologia dos modelos mistos para seleção combinada em progênies segregantes de mamoeiro. Revista Brasileira de Ciências Agrárias, v.8, p.211-217, 2013. DOI: 10.5039/agraria.v8i2a2409.
https://doi.org/10.5039/agraria.v8i2a240...
), reduction of physiological spots (Pinto et al., 2013PINTO, F. de O.; LUZ, L.N. da; PEREIRA, M.G.; CARDOSO, D.L.; RAMOS, H.C.C. Metodologia dos modelos mistos para seleção combinada em progênies segregantes de mamoeiro. Revista Brasileira de Ciências Agrárias, v.8, p.211-217, 2013. DOI: 10.5039/agraria.v8i2a2409.
https://doi.org/10.5039/agraria.v8i2a240...
), and resistance to phoma spot (Vivas et al., 2014 VIVAS, M.; SILVEIRA, S.F. da; VIVAS, J.M.S.; VIANA, A.P.; AMARAL JUNIOR, A.T. do; PEREIRA, M.G. Seleção de progênies femininas de mamoeiro para resistência a mancha-de-phoma via modelos mistos. Bragantia, v.73, p.446-450, 2014. DOI: 10.1590/1678-4499.216
https://doi.org/10.1590/1678-4499.216...
).

The objective of this work was to predict the genetic gains with selection of superior individuals within papaya progenies using the REML/Blup analysis.

Materials and Methods

The experiment was performed at the Curu experimental field of Embrapa Agroindústria Tropical, located in the municipality of Paraipaba, in the northern region of the state of Ceará, Brazil, in the final stretch of the Curu river basin (3°28'47"S, 39°09'47"W, at 31 m altitude).

The genetic material was obtained from self-fertilized F1 plants from the Tainung 1 and Calimosa hybrids, from commercial fields in the extreme south of the state Bahia, also in Brazil. The two resulting S1 populations, 304 plants of Tainung 1 and 342 of Calimosa, were planted in 2009 and evaluated during the period of 2009 to 2011, but covering only one harvest. In these populations, the best individuals for agronomic and fruit quality traits were selected and self-fertilized, generating the S2 progenies. The latter were evaluated from May 2013 to October 2014.

On the basis of the selection among and within the S1 progenies, 36 individuals of greater agronomic and commercial potential were identified. Of these, 17 were derived from the Calimosa and 19 from the Tainung 1 hybrids (Table 1). The S2 progenies, plus the two hybrids from which they were generated, were evaluated in a randomized complete block design with four replicates. The experimental plot consisted of five plants. The spacing used was 2.5 m between rows and 2.0 m between plants. Three seedlings were used per pit, to guarantee the presence of at least one hermaphrodite plant. Cultural practices and phytosanitary measures were those recommended for the culture, as described by Martins & Costa (2003)MARTINS, D. dos S.; COSTA, A. de F.S. da. (Ed.). A cultura do mamoeiro: tecnologias de produção. Vitória: Incaper, 2003. 497p..

Table 1.
Identification of S2 progenies of papaya (Carica papaya) and commercial hybrids (controls) used in the study.

Plant sex was determined by inspection at the beginning of flowering. Then, thinning was conducted leaving only one plant (hermaphrodite) per pit. Side shoots were removed from plants when they were still small.

To assess the S2 progenies, the main agronomic/phenological traits, related to plant architecture and productivity, and commercial traits, such as fruit size and mass, were considered. The following phenological traits were evaluated: height of the first fruit (HFF), in centimeters, determined at the establishment of the first fruit; plant height at 12 months (PH12M) and at 18 months (PH18M), expressed in centimeters, by measuring the distance from the soil level, contiguous to the stem base of the plant, up to the insertion of the youngest leaf; stem diameter at 12 months (SDIA12M) and at 18 months (SDIA18M), in centimeters, calculated at 20 cm from the soil level; and days after planting to fruiting (DAPFR), referring to the period from planting to first harvest, which guided the selection of plants with earlier fruiting.

Regarding productivity, the following traits were evaluated: number of commercial fruits per plant (NCF) and mass of these fruits (CFM), as well as mean commercial fruit mass (MCFM), calculated using the ratio between NCF and CFM; number of carpelloid fruits per plant (NCARF) and mass of these fruits (CARFM), assessed by counting and weighing carpelloid fruits per plant, respectively; number of pentandric fruits per plant (NPENF) and mass of these fruits (PENFM), obtained by counting and weighing pentandric fruits per plant, respectively. All fruit mass are expressed in grams.

The data were analyzed using mixed models, and the effects were tested using the likelihood ratio test (LRT) for the elaboration of the deviance analysis table. In order to obtain the variance components and estimates of genetic parameters, data were subjected to the deviance analysis, based on the following statistical model: y=Xr+Za+Wp+Tb+e , in which y is the vector of phenotypic averages; r is the vector of progenies and controls (considered as random effects); a is the vector of individual additive genetic effects (assumed to be random); p is the plot-effect vector (random); b is the vector of the block effects (fixed); and e is the vector of errors (random). The incidence matrices for the effects of r, a, p, and b are represented by X, Z, W, and T, respectively.

For a better organization and interpretation of the partial results of the analysis, the progenies identified in Table 1 were numbered by individuals. To number each individual, the digit of the unit corresponds to the number of the plant within the plot, the digit of the ten corresponds to the replicate related to the plot, and the remaining digits are from the number of the progeny. For example, individual 1,421 corresponds to plant one, from the second replicate of progeny 14. All analyses were performed using the Selegen software (Resende, 2002 RESENDE, M.D.V. de. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação Tecnológica, 2002. 975p.).

Results and Discussion

Progenies differed statistically for 7 of the 12 characters studied (Table 2). This indicates that there is genetic variability among these progenies, which allows to obtain gains from selection. Differences were also observed within the progeny for the PH12M, DAPFR, and MCFM characters, indicating the possibility of obtaining genetic gains not only through selection among progenies, but also within progenies.

Table 2.
Likelihood ratio and F-values for progeny effects, difference between progeny (P) and control (C), variation within progenies and populations composed by different progenies, in 36 S2 progenies of papaya (Carica papaya) and in two commercial hybrids (controls).

Among the populations, where the progenies Calimosa and Tainung 1, and the controls (Table 1) are grouped, there were significant differences for HFF, PH18M, DAPFR, NCF, CFM, and MCFM. However, between the progenies obtained and the controls, the differences were only with respect to NCF and MCFM. These results show the existence of genetic variability not only among the evaluated progenies, but also within them. However, the effect among and within the progenies was not significant for PH18M, SDIA12M, NCARF, and PENFM, indicating that the genotypes within the same progeny or among the progenies evaluated had the same performance. Therefore, it is not feasible to obtain genetic gains through these characters, which were disregarded from the following analyses.

The experimental coefficient of variation (CV) ranged from 6.9 to 223.8%. According to Silva et al. (2008)SILVA, F.F. da; PEREIRA, M.G.; RAMOS, H.C.C.; DAMASCENO JUNIOR, P.C.; PEREIRA, T.N.S.; GABRIEL A.P.C.; VIANA, A.P., FERREGUETTI, G.A. Selection and estimation of the genetic gain in segregating generations of papaya (Carica papaya L.). Crop Breeding and Applied Biotechnology, v.8, p.1-8, 2008. DOI: 10.12702/1984-7033.v08n01a01.
https://doi.org/10.12702/1984-7033.v08n0...
, values of CV less than 20% are determinant of good experimental accuracy for this crop; however, high CVs may be related to the genetic nature of the character. The majority of the characters studied are of polygenic nature, and their expressions are greatly affected by the environment (Maia et al., 2006MAIA, M.C.C.; VELLO, N.A.; ROCHA, M. de M.; PINHEIRO, J.B.; SILVA JÚNIOR, N.F. da. Adaptabilidade e estabilidade de linhagens experimentais de soja selecionadas para caracteres agronômicos através de método uni-multivariado. Bragantia , v.65, p.215-226, 2006. DOI: 10.1590/S0006-87052006000200004.
https://doi.org/10.1590/S0006-8705200600...
). The highest values of CV, 223.8 and 121.7, correspond to the number of carpelloid and pentandric fruits, respectively. This is consistent with the results obtained by Damasceno Junior et al. (2008) DAMASCENO JUNIOR, P.C.; PEREIRA, T.N.S.; SILVA, F.F. da; VIANA, A.P.; PEREIRA, M.G. Comportamento floral de híbridos de mamoeiro (Carica papaya L.) avaliados no verão e na primavera. Revista Ceres, v.55, p.310-316, 2008., who observed that the occurrence of fruits with anomalies is a factor strongly associated with environmental variations. These authors studied the occurrence rate of floral anomalies that resulted in anomalous fruits, at different periods, and found that the CVs were superior to the number of abnormal flowers. Moreover, it is worth mentioning that, in the present study, the S2 progenies were evaluated, that is, the genetic material was not genotypically fixed. Thus, variations in the same progeny are usually observed between experimental plots, because in this generation, there is still reduction of dominance deviations as well as variations caused by additive effects (Silva et al., 2013SILVA, V.M.P. e; CARNEIRO, P.C.S.; MENEZES JÚNIOR, J.Â.N. de; CARNEIRO, V.Q.; CARNEIRO, J.E. de S.; CRUZ, C.D.; BORÉM, A. Genetic potential of common bean parents for plant architecture improvement. Scientia Agricola, v.70, p.167-175, 2013. DOI: 10.1590/S0103-90162013000300005.
https://doi.org/10.1590/S0103-9016201300...
).

The coefficients of heritability of the progeny ranged from 1.6 to 83.9% for PH12M and HFF, respectively (Table 3). PH12M and HFF were evaluated at entirely different periods, and PH12M was susceptible to a greater environmental effect. However, for the majority of the characters, the coefficients of heritability of the progenies varied from medium to high magnitude, which could lead to the selection of superior progenies with high selective accuracy (Resende & Duarte, 2007RESENDE, M.D.V. de; DUARTE, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, v.37, p.182-194, 2007.). Therefore, the prediction information of the genetic values to be used in the selection process is precise. Additionally, it has a substantial fraction of the additive genetic variance, which tends to facilitate the identification and selection of progenies with proper phenotypes (Pimentel et al., 2014 PIMENTEL, A.J.B.; GUIMARÃES, J.F.R.; SOUZA, M.A. de; RESENDE, M.D.V. de, MOURA; L.M.; ROCHA, J.R. do A.S. de C.;RIBEIRO, G. Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, v.49, p.882-890, 2014. DOI: 10.1590/S0100-204X2014001100007.
https://doi.org/10.1590/S0100-204X201400...
). For selection within progenies, individual heritability in the strict sense was low for all characters. Regarding mass selection, the coefficients of heritability also presented low magnitude. These results indicate the possibility of obtaining individuals with the same or similar behavior in the next generation, and also the prospect of practicing a satisfactory selection of progenies and not individual plants. There is well shown by the low values observed for the selective accuracy when analyzed with these heritabilities. Pinto et al. (2013)PINTO, F. de O.; LUZ, L.N. da; PEREIRA, M.G.; CARDOSO, D.L.; RAMOS, H.C.C. Metodologia dos modelos mistos para seleção combinada em progênies segregantes de mamoeiro. Revista Brasileira de Ciências Agrárias, v.8, p.211-217, 2013. DOI: 10.5039/agraria.v8i2a2409.
https://doi.org/10.5039/agraria.v8i2a240...
described individual and average values of heritability for several plant and fruit traits, and found that, for averages, the values were up to seven-fold higher than those of individual heritability.

Table 3.
Variance components and genetic parameters estimated in 36 S2 progenies of papaya (Carica papaya) and in two commercial hybrids (controls)(1).

The selective accuracy reflects the quality of the information of the procedures used in the prediction of genetic values. This measure is associated with the selection precision and refers to the correlation between the predicted and the actual genetic values of progenies (Pimentel et al., 2014 PIMENTEL, A.J.B.; GUIMARÃES, J.F.R.; SOUZA, M.A. de; RESENDE, M.D.V. de, MOURA; L.M.; ROCHA, J.R. do A.S. de C.;RIBEIRO, G. Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, v.49, p.882-890, 2014. DOI: 10.1590/S0100-204X2014001100007.
https://doi.org/10.1590/S0100-204X201400...
). The higher the selective accuracy of the evaluation of a progeny, the higher the genetic value predicted for it. Therefore, the estimates obtained for the characters SDIA18M, DAPFR, and HFF should be indicated. However, for the NCF character, the estimate varied from low to moderate magnitude. This reiterates the particularity of each character (Marin, 2004 MARIN, S.L.D. Mamão Papaya: produção, pós-colheita e mercado. Fortaleza: Instituto Frutal, 2004. 82p.), providing the evidence that the complexity of the expression of a particular trait is directly proportional to the complexity of the selection process associated with it.

Individual coefficients of heritability of low magnitude within the progenies may be understood as additional information to heritabilities between progenies, when the individual Blup method is used (Pimentel et al., 2014 PIMENTEL, A.J.B.; GUIMARÃES, J.F.R.; SOUZA, M.A. de; RESENDE, M.D.V. de, MOURA; L.M.; ROCHA, J.R. do A.S. de C.;RIBEIRO, G. Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, v.49, p.882-890, 2014. DOI: 10.1590/S0100-204X2014001100007.
https://doi.org/10.1590/S0100-204X201400...
). Selective accuracy was higher than 75% for most of the characters studied, with the exception of PH12M, NCF, and NPENF. Moreover, for the characters in which the accuracy was high, individual coefficients of heritability were greater than 15%, which represents a considerable magnitude.

The assessment of individuals by Blup analysis presented higher implication for information based exclusively on progeny selection. This is supported by the contribution to selection within progenies, evidenced by the increase in accuracy values, when comparing the progeny selection accuracy with the accuracy in the combined selection among progenies, using the individual Blup. The efficiency of information use within progenies was greater than one unit for all traits, and it was obtained as the ratio of the accuracy in the combined selection, among and within progenies, to the accuracy in progeny selection. Under these conditions, individual Blup selection provides additional gains (Pimentel et al., 2014 PIMENTEL, A.J.B.; GUIMARÃES, J.F.R.; SOUZA, M.A. de; RESENDE, M.D.V. de, MOURA; L.M.; ROCHA, J.R. do A.S. de C.;RIBEIRO, G. Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, v.49, p.882-890, 2014. DOI: 10.1590/S0100-204X2014001100007.
https://doi.org/10.1590/S0100-204X201400...
). These gains should range from 0.8% (if the selection is practiced directly through NCF) to 144% (if performed through PH12M).

Individual coefficient of additive genetic variance quantifies the dispersion of the additive values around the general average. Therefore, high values are more appropriate for populations to be susceptible to genetic progress. The highest percentages were observed in the characters referring to production, although there were deviations of 4.94 and 64.75% for the traits PH12M and CARFM, respectively. Production, however, must be analyzed in combination with the coefficient of environmental variance. Moreover, another important parameter obtained by the ratio among the variables, i.e. the coefficient of relative variance, denotes a favorable condition for selection, when values resulting from this computation are equal to or higher than one unit (Resende & Duarte, 2007RESENDE, M.D.V. de; DUARTE, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, v.37, p.182-194, 2007.; Canuto et al., 2015CANUTO, D.S. de O.; ZARUMA, D.U.G.; MORAES, M.A. de; SILVA, A.M. da; MORAES, M.L.T. de; FREITAS, M.L.M. Caracterização genética de um teste de progênies deDipteryx alataVog. proveniente de remanescente florestal da Estação Ecológica de Paulo de Faria, SP, Brasil. Hoehnea, v.42, p.641-648, 2015. DOI: 10.1590/2236-8906-13/RAD/2015.
https://doi.org/10.1590/2236-8906-13/RAD...
). Therefore, easier gains will be obtained through HFF.

In order to generate more information about the experimental accuracy, the coefficients of determination of plot effects were estimated. In Resende (2002) RESENDE, M.D.V. de. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação Tecnológica, 2002. 975p., ideal estimates are those with magnitudes below 10%; this indicates that the observed phenotypic variation was only slightly affected by environmental variation. This could be confirmed by the minor differences detected between the phenotypic variance within the progenies and the total one. Therefore, for most of the characters, high reliability estimates were generated.

In the analysis of the ten best progenies, four (36, 28, 26, and 20) stood out for most of the evaluated characters (Tables 4 and 5). For example, progeny 28 was one of the most promising for PH12M, NCF, CFM, NCARF, and NPENF. Among these features, progeny 36 did not stand out for NPENF. However, it was among the best for MCFM, which did not occur with progeny 28. Similar results were also observed involving progenies 26 and 20. These four progenies were promising with regard to CFM. Estimates show that these progenies have the highest frequency of favorable alleles for most of the evaluated traits. Thus, these progenies stand out with potential for breeding.

Table 4.
Additive genetic effect (a), additive genetic value (u+a), and accumulated genetic gain (AG) estimated for 36 S2 progenies (Prg) of papaya (Carica papaya)(1).
Table 5
Additive genetic effect (a), additive genetic value (u+a), and accumulated genetic gain (AG, %), estimated for 36 S2 progenies (Prg) of papaya (Carica papaya)(1).

Alves & Resende (2008)ALVES, R.M.; RESENDE, M.D.V de. Avaliação genética de indivíduos e progênies de cupuaçuzeiro no Estado do Pará e estimativas de parâmetros genéticos. Revista Brasileira de Fruticultura, v.30, p.696-701, 2008. DOI: 10.1590/S0100-29452008000300023.
https://doi.org/10.1590/S0100-2945200800...
, in a similar study on cupuaçu [Theobroma grandiflorum (Willd. ex Spreng.) K. Schum] cultivation, when ordering progenies based on the accumulated genetic gain to increase fruit production, verified the possibility of obtaining considerable gains with the selection of the first five progenies of the rankings. In the literature, there are few studies that involve the prediction of genetic gains in fruit species through mixed models, especially with regard to the analysis of a high number of concomitant traits. Oliveira et al. (2012)OLIVEIRA, E.J.; FRAIFE FILHO, G. de A.; FREITAS, J.P.X. de; DANTAS, J.L.L.; RESENDE, M.D.V. de. Plant selection in F2 segregating populations of papaya from commercial hybrids. Crop Breeding and Applied Biotechnology, v.12, p.191-198, 2012. DOI: 10.1590/S1984-70332012000300005.
https://doi.org/10.1590/S1984-7033201200...
and Pinto et al. (2013)PINTO, F. de O.; LUZ, L.N. da; PEREIRA, M.G.; CARDOSO, D.L.; RAMOS, H.C.C. Metodologia dos modelos mistos para seleção combinada em progênies segregantes de mamoeiro. Revista Brasileira de Ciências Agrárias, v.8, p.211-217, 2013. DOI: 10.5039/agraria.v8i2a2409.
https://doi.org/10.5039/agraria.v8i2a240...
, using mixed models for segregating populations of papaya, obtained satisfactory results, while estimating genetic parameters aiming at the selection of papaya individuals for fruit length and weight, total soluble solids, and fruit firmness.

In order to select potential individuals within the best progenies, a ranking of the 20 most promising individuals within and among the progenies was established (Tables 6 and 7). Obviously, this classification was made considering the purpose of the program for increasing or reducing the expression of the character. However, none of the individuals stood out in this ranking among all analyzed characters, probably due to the lack of correlation among those. However, based on the data obtained, it was observed that among the individuals, 16 (113, 141, 145, 311, 342, 921, 1421, 1422, 1432, 1442, 1443, 2424, 3125, 3134, 3142, and 3144) stood out by being among the top 20 in at least two distinct characters simultaneously. The progenies evaluated in the present study are still segregating. Thus, it is risky to indicate one particular individual that may be suitable for assessing the value for cultivation or use. Therefore, it is more plausible to promote selection in subsequent cycles or to apply lenient selection indices, so that promising individuals, although not fixed genotypically yet, are not immediately penalized/disregarded. In this way, two selection conditions were simulated considering intensities of 10 and 20% (Tables 6 and 7). The gains that each intensity represents were predicted based on the average genetic value of the populations and the average genetic value of the selected individuals.

Table 6.
Additive genetic effect (a), individual additive genetic value (u + a), and accumulated genetic gain (AG, %), estimated with the selection of 10 and 20% of the best genotypes (plant) within and among 36 S2 progenies of papaya (Carica papaya)(1).
Table 7.
Additive genetic effect (a), individual additive genetic value (u+a), and accumulated genetic gain (AG, %) estimated with the selection of 10 and 20% of the best genotypes (plant) within and among 36 S2 progenies of papaya (Carica papaya)(1).

Among the characters that were evaluated for the purpose of increasing expression, NCF generated the highest average gains - 28.8 and 23.0%, respectively - with both selection intensity of 10 and 20%. However, when the goal is to reduce the expression of characters with unfavorable phenotypes, it is recommended to identify the individuals that provide the greatest negative gains. Among the characters that were evaluated for this purpose, NPENF generated the lowest average gains for the two selection intensities: -0.1% for 10% intensity and for 20% intensity; the accumulated gain was null.

Conclusions

  1. The variability observed for most of the characters allows greater genetic gains if selection is made at the progeny level, and not in individual papaya (Carica papaya) plants.

  2. In progeny selection, PROT-268, PROT-74, PROT-55, and PROT-22 are the most promising for the breeding process.

  3. The prediction of the gains is higher for the increase in the expression of the number of commercial fruits and for the decrease in the expression of the number of pentandric fruits.

Acknowledgments

To Embrapa Agroindústria Tropical, for technical support; and to Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (Funcap), for financial support

References

  • ALVES, R.M.; RESENDE, M.D.V de. Avaliação genética de indivíduos e progênies de cupuaçuzeiro no Estado do Pará e estimativas de parâmetros genéticos. Revista Brasileira de Fruticultura, v.30, p.696-701, 2008. DOI: 10.1590/S0100-29452008000300023.
    » https://doi.org/10.1590/S0100-29452008000300023
  • CANUTO, D.S. de O.; ZARUMA, D.U.G.; MORAES, M.A. de; SILVA, A.M. da; MORAES, M.L.T. de; FREITAS, M.L.M. Caracterização genética de um teste de progênies deDipteryx alataVog. proveniente de remanescente florestal da Estação Ecológica de Paulo de Faria, SP, Brasil. Hoehnea, v.42, p.641-648, 2015. DOI: 10.1590/2236-8906-13/RAD/2015.
    » https://doi.org/10.1590/2236-8906-13/RAD/2015
  • COSTA, R.B. da; RESENDE, M.D.V. de; GONÇALVES, P. de S.; CHICHORRO, J.F.; ROA, R.A.R. Variabilidade genética e seleção para caracteres de crescimento da seringueira. Bragantia, v.67, p.299-305, 2008. DOI: 10.1590/S0006-87052008000200005.
    » https://doi.org/10.1590/S0006-87052008000200005
  • DAMASCENO JUNIOR, P.C.; PEREIRA, T.N.S.; SILVA, F.F. da; VIANA, A.P.; PEREIRA, M.G. Comportamento floral de híbridos de mamoeiro (Carica papaya L.) avaliados no verão e na primavera. Revista Ceres, v.55, p.310-316, 2008.
  • DANTAS, J.L.L.; LUCENA, R.S.; BOAS, S.A.V.B. Avaliação agronômica de linhagens e híbridos de mamoeiro. Revista Brasileira de Fruticultura , v.37, p.138-148, 2015. DOI: 10.1590/0100-2945-022/14.
    » https://doi.org/10.1590/0100-2945-022/14
  • DIAS, N.L.P.; OLIVEIRA, E.J. de; DANTAS, J.L.L. Avaliação de genótipos de mamoeiro com uso de descritores agronômicos e estimação de parâmetros genéticos. Pesquisa Agropecuária Brasileira, v.46, p.1471-1479, 2011. DOI: 10.1590/S0100-204X2011001100008.
    » https://doi.org/10.1590/S0100-204X2011001100008
  • FAO. Food and Agriculture Organization of the United Nations. Faostat: Production quantity: papayas. 2013. Available at: Available at: http://faostat3.fao.org/download/Q/QC/E Accessed on: Nov. 25 2015.
    » http://faostat3.fao.org/download/Q/QC/E
  • LUZ, L.N. da; PEREIRA, M.G., BARROS, F.R.; BARROS, G. de B.; FERREGUETTI, G.A. Novos híbridos de mamoeiro avaliados nas condições de cultivo tradicional e no semiárido brasileiro. Revista Brasileira de Fruticultura , v.37, p.159-171, 2015. DOI: 10.1590/0100-2945-069/14.
    » https://doi.org/10.1590/0100-2945-069/14
  • MAIA, M.C.C.; RESENDE, M.D.V. de; OLIVEIRA, L.C. de; ÁLVARES, V. de S.; MACIEL, V.T.; LIMA, A.C. de. Seleção de clones experimentais de cupuaçu para características agroindustriais via modelos mistos. Revista Agro@mbiente On-line, v.5, p.35-43, 2011.
  • MAIA, M.C.C.; VELLO, N.A.; ROCHA, M. de M.; PINHEIRO, J.B.; SILVA JÚNIOR, N.F. da. Adaptabilidade e estabilidade de linhagens experimentais de soja selecionadas para caracteres agronômicos através de método uni-multivariado. Bragantia , v.65, p.215-226, 2006. DOI: 10.1590/S0006-87052006000200004.
    » https://doi.org/10.1590/S0006-87052006000200004.
  • MARIN, S.L.D. Mamão Papaya: produção, pós-colheita e mercado. Fortaleza: Instituto Frutal, 2004. 82p.
  • MARIN, S.L.D.; PEREIRA, M.G.; AMARAL JÚNIOR, A.T. do; MARTELLETO, L.A.P.; IDE, C.D. Heterosis in papaya hybrids from partial diallel of ‘Solo’ and ‘Formosa’ parents. Crop Breeding and Applied Biotechnology, v.6, p.24-29, 2006. DOI: 10.12702/1984-7033.v06n01a04.
    » https://doi.org/10.12702/1984-7033.v06n01a04
  • MARTINS, D. dos S.; COSTA, A. de F.S. da. (Ed.). A cultura do mamoeiro: tecnologias de produção. Vitória: Incaper, 2003. 497p.
  • OLIVEIRA, E.J.; FRAIFE FILHO, G. de A.; FREITAS, J.P.X. de; DANTAS, J.L.L.; RESENDE, M.D.V. de. Plant selection in F2 segregating populations of papaya from commercial hybrids. Crop Breeding and Applied Biotechnology, v.12, p.191-198, 2012. DOI: 10.1590/S1984-70332012000300005.
    » https://doi.org/10.1590/S1984-70332012000300005
  • PIMENTEL, A.J.B.; GUIMARÃES, J.F.R.; SOUZA, M.A. de; RESENDE, M.D.V. de, MOURA; L.M.; ROCHA, J.R. do A.S. de C.;RIBEIRO, G. Estimação de parâmetros genéticos e predição de valor genético aditivo de trigo utilizando modelos mistos. Pesquisa Agropecuária Brasileira, v.49, p.882-890, 2014. DOI: 10.1590/S0100-204X2014001100007.
    » https://doi.org/10.1590/S0100-204X2014001100007
  • PINTO, F. de O.; LUZ, L.N. da; PEREIRA, M.G.; CARDOSO, D.L.; RAMOS, H.C.C. Metodologia dos modelos mistos para seleção combinada em progênies segregantes de mamoeiro. Revista Brasileira de Ciências Agrárias, v.8, p.211-217, 2013. DOI: 10.5039/agraria.v8i2a2409.
    » https://doi.org/10.5039/agraria.v8i2a2409
  • RAMALHO, M.A.P.; ARAÚJO, L.C.A. de. Breeding self-pollinated plants. Crop Breeding and Applied Biotechnology, v.11, p.1-7, 2011. Número especial. DOI: 10.1590/S1984-70332011000500002.
    » https://doi.org/10.1590/S1984-70332011000500002
  • RESENDE, M.D.V. de. Genética biométrica e estatística no melhoramento de plantas perenes. Brasília: Embrapa Informação Tecnológica, 2002. 975p.
  • RESENDE, M.D.V. de; DUARTE, J.B. Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical, v.37, p.182-194, 2007.
  • ROCHA, R.B.; VIEIRA, A.H.; GAMA, M. de M.B.; ROSSI, L.M.B. Avaliação genética de procedências de bandarra (Schizolobium amazonicum) utilizando REML/BLUP (Máxima verossimilhança restrita/Melhor predição linear não viciada). Scientia Forestalis, v.37, p.351-358, 2009.
  • SILVA, F.F. da; PEREIRA, M.G.; RAMOS, H.C.C.; DAMASCENO JUNIOR, P.C.; PEREIRA, T.N.S.; GABRIEL A.P.C.; VIANA, A.P., FERREGUETTI, G.A. Selection and estimation of the genetic gain in segregating generations of papaya (Carica papaya L.). Crop Breeding and Applied Biotechnology, v.8, p.1-8, 2008. DOI: 10.12702/1984-7033.v08n01a01.
    » https://doi.org/10.12702/1984-7033.v08n01a01
  • SILVA, L.A.S. Herança e relações genéticas entre densidade da semente, teores de proteína e óleo e produtividade em soja. 2008. 170p. Tese (Doutorado). Escola Superior de Agricultura Luiz de Queiroz, Piracicaba. DOI: 10.11606/t.11.2008.tde-22072008-162035.
    » https://doi.org/10.11606/t.11.2008.tde-22072008-162035
  • SILVA, V.M.P. e; CARNEIRO, P.C.S.; MENEZES JÚNIOR, J.Â.N. de; CARNEIRO, V.Q.; CARNEIRO, J.E. de S.; CRUZ, C.D.; BORÉM, A. Genetic potential of common bean parents for plant architecture improvement. Scientia Agricola, v.70, p.167-175, 2013. DOI: 10.1590/S0103-90162013000300005.
    » https://doi.org/10.1590/S0103-90162013000300005
  • VIVAS, M.; SILVEIRA, S.F. da; VIVAS, J.M.S.; VIANA, A.P.; AMARAL JUNIOR, A.T. do; PEREIRA, M.G. Seleção de progênies femininas de mamoeiro para resistência a mancha-de-phoma via modelos mistos. Bragantia, v.73, p.446-450, 2014. DOI: 10.1590/1678-4499.216
    » https://doi.org/10.1590/1678-4499.216

Publication Dates

  • Publication in this collection
    Dec 2017

History

  • Received
    02 Oct 2016
  • Accepted
    04 Apr 2017
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br