Acessibilidade / Reportar erro

Periods of coexistence of weeds with carrot grown with and without black oat straw

Períodos de convivência de plantas daninhas com cenoura cultivada com e sem palhada de aveia-preta

Abstract

The objective of this work was to evaluate the effect of black oat (Avena strigosa) straw on the period prior to the interference (PPI) of weeds in the 'Alvorada' carrot (Daucus carota) crop. The experiment was carried out in a randomized complete block design, in a 2×5 factorial arrangement, with five replicates. The following two factors were evaluated in the 2016/2017 and 2017/2018 crop years: soil cover, with and without 10 Mg ha1 black oat straw; and periods of coexistence with weeds – 0, 15, 30, 60, and 120 days after emergence (DAE). To determine the PPI, a loss of 5% in the commercial yield of carrot roots was considered as acceptable. At the end of the crop cycle, straw reduced the total dry mass of weeds by 43.5 and 67.5%, respectively, in the first and second crop years. The PPI of the crops with and without straw was, respectively, 2.0 and 1.5 DAE in the first crop year and 17 and 6.0 DAE in the second. The use of black oat straw increases the PPI for the 'Alvorada' carrot crop.

Index terms:
Avena strigosa ; Daucus carota ; integrated management; no-tillage; weed competition

Resumo

O objetivo deste trabalho foi avaliar o efeito da palhada de aveiapreta (Avena strigosa) sobre o período anterior à interferência (PAI) de plantas daninhas na cultura da cenoura 'Alvorada' (Daucus carota). O experimento foi realizado em delineamento de blocos ao acaso, em arranjo fatorial 2×5, com cinco repetições. Os dois seguintes fatores foram avaliados nos anos de cultivo de 2016/2017 e 2017/2018: cobertura de solo com e sem 10 Mg ha1 de palhada de aveia-preta; e períodos de coexistência com as plantas daninhas – 0, 15, 30, 60 e 120 dias após a emergência (DAE). Para determinar o PAI, considerou-se como aceitável a perda de 5% na produtividade comercial de raízes da cenoura. Ao final do ciclo da cultura, a palhada reduziu a massa seca total de plantas daninhas em 43,5 e 67,5%, respectivamente, no primeiro e no segundo ano de cultivo. O PAI dos cultivos com e sem palhada foi, respectivamente, de 2,0 e 1,5 DAE no primeiro ano e de 17 e 6,0 DAE no segundo. O uso da palhada de aveia-preta aumenta o PAI para cultura da cenoura 'Alvorada'.

Termos para indexação:
Avena strigosa ; Daucus carota ; manejo integrado; plantio direto; matocompetição

Introduction

Carrot (Daucus carota L.) stands out among the main vegetables produced and consumed in Brazil and worldwide (Canella et al., 2018CANELLA, D.S.; LOUZADA, M.L. da C.; CLARO, R.M.; COSTA, J.C.; BANDONI, D.H.; LEVY, R.B.; MARTINS, A.P.B. Consumption of vegetables and their relation with ultra-processed foods in Brazil. Revista de Saúde Pública, v.52, art.50, 2018. DOI: https://doi.org/10.11606/S1518-8787.2018052000111.
https://doi.org/10.11606/S1518-8787.2018...
; FAO, 2020FAO. Food and Agriculture Organization of the United Nations. Available at: <http://www.fao.org/faostat/en/#data/QC/visualize>. Accessed on: Sept. 26 2020.
http://www.fao.org/faostat/en/#data/QC/v...
). In Brazil, carrots can be grown throughout the year when the specific cultivar for autumn-winter, spring, or summer is chosen (Resende et al., 2005RESENDE, F.V.; SOUZA, L.S. de; OLIVEIRA, P.S.R. de; GUALBERTO, R. Uso de cobertura morta vegetal no controle da umidade e temperatura do solo, na incidência de plantas invasoras e na produção da cenoura em cultivo de verão. Ciência e Agrotecnologia, v.29, p.100-105, 2005. DOI: https://doi.org/10.1590/S1413-70542005000100012.
https://doi.org/10.1590/S1413-7054200500...
).

Carrot root yield may range from 20 to 100 Mg ha-1 depending on the used production system (conventional or organic), irrigation, sowing density and spacing, sowing and harvesting time, and cultivated species (Carvalho et al., 2020CARVALHO, A.D.F. de; SILVA, G.O. da; MAGALHÃES, C. da C. Yield and quality of carrot cultivars related to the harvest time. Horticultura Brasileira, v.38, p.319-323, 2020. DOI: https://doi.org/10.1590/S0102-053620200313.
https://doi.org/10.1590/S0102-0536202003...
). However, despite this high yield potential, weed interference may reduce total root yield by up to 96% (Freitas et al., 2009FREITAS, F.C.L.; ALMEIDA, M.E.L.; NEGREIROS, M.Z.; HONORATO, A.R.F.; MESQUITA, H.C.; SILVA, S.V.O.F. Períodos de interferência de plantas daninhas na cultura da cenoura em função do espaçamento entre fileiras. Planta Daninha, v.27, p.473-480, 2009. DOI: https://doi.org/10.1590/S0100-83582009000300007.
https://doi.org/10.1590/S0100-8358200900...
), besides stimulating the deformation of developing roots, decreasing their quality and hindering mechanical harvesting (Soares et al., 2010SOARES, I.A.A.; FREITAS, F.C.L.; NEGREIROS, M.Z.; FREIRE, G.M.; AROUCHA, E.M.M.; GRANGEIRO, L.C.; LOPES, W.A.R.; DOMBROSKI, J.L.D. Interferência das plantas daninhas sobre a produtividade e qualidade de cenoura. Planta Daninha, v.28, p.247-254, 2010. DOI: https://doi.org/10.1590/S0100-83582010000200003.
https://doi.org/10.1590/S0100-8358201000...
). Therefore, weed control measures need to be adopted (Reginaldo et al., 2021REGINALDO, L.T.R.T.; LINS, H.A.; SOUSA, M. de F.; TEÓFILO, T.M. da S.; MENDONÇA, V.; SILVA, D.V. Weed interference in carrot yield in two localized irrigation systems. Revista Caatinga, v.34, p.119-131, 2021. DOI: https://doi.org/10.1590/1983-21252021v34n113rc.
https://doi.org/10.1590/1983-21252021v34...
).

Herbicide use is the main method for weed control in the carrot crop (de Boer et al., 2019DE BOER, T.; SMITH, P.; CHANDLER, K.; NURSE, R.; OBEID, K.; SWANTON, C. A linuron-free weed management strategy for carrots. Weed Technology, v.33, p.464-474, 2019. DOI: https://doi.org/10.1017/wet.2018.112.
https://doi.org/10.1017/wet.2018.112...
). However, with the increasing public concern about the use of chemicals in agricultural production, research efforts have intensified to reduce the amount of herbicides applied in carrot production (Main et al., 2013MAIN, D.C.; SANDERSON, K.R.; FILLMORE, S.A.E.; IVANY, J.A. Comparison of synthetic and organic herbicides applied banded for weed control in carrots (Daucus carota L.). Canadian Journal of Plant Science, v.93, p.857-861, 2013. DOI: https://doi.org/10.4141/cjps2013-052.
https://doi.org/10.4141/cjps2013-052...
). The use of grass straw as mulch is an economically viable alternative for weed control (Hirata et al., 2019HIRATA, A.C.S.; HIRATA, E.K.; RÓS, A.B.; NARITA, N. Cauliflower cultivars associated with Urochloa decumbens straw mulch in integrated weed management. Planta Daninha, v.37, e019212770, 2019. DOI: https://doi.org/10.1590/S0100-83582019370100124.
https://doi.org/10.1590/S0100-8358201937...
), mainly in organic crops (Bernstein et al., 2014BERNSTEIN, E.R.; STOLTENBERG, D.E.; POSNER, J.L.; HEDTCKE, J.L. Weed community dynamics and suppression in tilled and no-tillage transitional organic winter ryesoybean system. Weed Science, v.62, p.125-137, 2014. DOI: https://doi.org/10.1614/WS-D-13-00090.1.
https://doi.org/10.1614/WS-D-13-00090.1...
).

Black oat (Avena strigosa Schreb.) forage has a high biomass production potential of 12 Mg ha-1 (Demétrio et al., 2012DEMÉTRIO, J.V.; COSTA, A.C.T. da; OLIVEIRA, P.S.R. de. Produção de biomassa de cultivares de aveia sob diferentes manejos de corte. Pesquisa Agropecuária Tropical, v.42, p.198-205, 2012. DOI: https://doi.org/10.1590/S1983-40632012000200011.
https://doi.org/10.1590/S1983-4063201200...
) and its straw can be used in the integrated management of weeds, besides producing allelopathic compounds (Sturm et al., 2016STURM, D.J.; KUNZ, C.; GERHARDS, R. Inhibitory effects of cover crop mulch on germination and growth of Stellaria media (L.) Vill., Chenopodium album L. and Matricaria chamomilla L. Crop Protection, v.90, p.125-131, 2016. DOI: https://doi.org/10.1016/j.cropro.2016.08.032.
https://doi.org/10.1016/j.cropro.2016.08...
). However, more information is needed on the use of straw for the suppression of the seed bank in the carrot crop.

Despite this, soil cover can confer competitive advantage to carrot plants by slowing their initial growth and significantly increasing leaf dry mass accumulation starting only at 30 days after seedling emergence (Colquhoun et al., 2017COLQUHOUN, J.B.; RITTMEYER, R.A.; HEIDER, D.J. Tolerance and suppression of weeds varies among carrot varieties. Weed Technology, v.31, p.897-902, 2017. DOI: https://doi.org/10.1017/wet.2017.54.
https://doi.org/10.1017/wet.2017.54...
). This period coincides with the beginning of the critical period for weed control in crops cultivated without soil cover (Coelho et al., 2009COELHO, M.; BIANCO, S.; CARVALHO, L.B. Interferência de plantas daninhas na cultura da cenoura (Daucus carota). Planta Daninha, v.27, p.913-920, 2009. N. Spe. DOI: https://doi.org/10.1590/S0100-83582009000500004.
https://doi.org/10.1590/S0100-8358200900...
). Therefore, it is important to evaluate if the use of black oat straw can increase the tolerance of the carrot crop to weeds by suppressing the emergence of the seed bank and, consequently, reduce the need for control measures.

The objective of this work was to evaluate the effect of black oat straw on the period prior to the interference (PPI) of weeds in the 'Alvorada' carrot crop.

Materials and Methods

The experiment was conducted from October to February of the 2016/2017 and 2017/2018 crop years in the municipality of Ponta Grossa, in the state of Paraná, Brazil (25°13'S, 50°03'W, at an average altitude of 880 m). The climatic data throughout the experimental period are presented in Figure 1.

Figure 1
Climatic data during the experimental period from October to February 2016/2017 and 2017/2018 in the municipality of Ponta Grossa, in the state of Paraná, Brazil. Data obtained from the climatological station of Fazenda Escola Capão da Onça, also located in the state of Paraná.

Before the experiment was implemented in the first crop year, the soil of the experimental area was subjected to chemical analysis and presented the following characteristics: pH (CaCl2) 5.2, 6.2 cmolc dm-3 H+Al, 0 cmolc dm-3 Al, 5.5 cmolc dm-3 Ca, 2.4 cmolc dm-3 Mg, 0.56 cmolc dm-3 K, 25 mg dm-3 P, 9.6 mg dm-3 SO4, 31 g dm-3 organic C, cation exchange capacity at pH 7.0 of 14.67 cmolc dm-3, and base saturation of 58%.

The experimental design was a randomized complete block in a 2×5 factorial arrangement, with five replicates. The two evaluated factors were: soil cover, with and without black oat straw; and periods of coexistence of the carrot crop with weeds in days – 0, 15, 30, 60, and 120 days after emergence (DAE).

Five days before sowing, 500 kg ha-1 N-P2O5-K2O (04-14-08) were incorporated into the soil and, 30 days after sowing, 50 and 80 kg ha-1 potassium chloride and urea were applied as topdressing, respectively, according to the recommendation of Raij et al. (1997)RAIJ, B.; CANTARELLA, H.; QUAGGIO, J.A.; FURLANI, A.M.C. (Ed.). Recomendações de adubação e calagem para o Estado de São Paulo. 2.ed. rev. e atual. Campinas: IAC, 1997. 285p. (Boletim técnico, 100)..

The soil was gridded, and 1.0 m wide and 40 m long beds were raised mechanically. Each experimental unit consisted of a 2.0 m long and 1.0 m wide bed with five lines. Shortly after the preparation of the beds, black oat straw was deposited manually in the plots with mulch in order to obtain 10 Mg ha-1 of cover, i.e., 1.0 kg m-2. The straw deposited on the beds was obtained from 'Embrapa 139' black oat plants, which were previously cultivated each year in an area close to the experiment and then cut in the flowering stage and dried in the field.

In each crop year, seeds of the 'Alvorada' carrot were sown in October. Thinning was performed 30 days after sowing, keeping ten plants per meter, with a spacing of 0.10 m between plants and 0.20 m between rows. Both sowing and weeding were done manually.

At the end of each period of coexistence (0, 15, 30, 60, and 120 DAE) and before weeding, a metallic 50×50 cm frame was cast twice in the center of each plot, from where weeds were collected. The relative importance index (RII%) of the species present in the weed community in each coexistence period was then determined according to Mueller-Dombois & Ellemberg (1974)MUELLER-DOMBOIS, D.; ELLEMBERG, H. Aims and methods of vegetation ecology. New York: J. Wiley, 1974. 574p. and by the similarity index (SI) of Sørensen (1948)SØRENSEN, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, v.5, p.1-34, 1948. between crop years, using the formula: SI = [(2c/a+b) x 100], where c is the number of species common to the two areas, a is the total number of species present in the area in the first crop year, and b is the total number of species present in the area in the second crop year.

The collected weeds were identified, quantified, and dried in a greenhouse under forced-air circulation, at 60°C, until reaching constant dry mass, and then weighed on a precision scale (0.001 g) to obtain the total dry mass of weeds in each period, which was extrapolated to Mg ha-1.

At the time of harvest – February 2017 and 2018 in the first and second crop years, respectively –, carrot plants were manually collected in a 0.3 m2 area observing the standard size for marketable roots, which is of at least 10 cm. The total yield (Mg ha-1) of the marketable roots was obtained for each plot.

To determine the periods prior to the interference (PPI) of weeds, the yield data of marketable roots was used, considering as a criterion a 5% yield loss as acceptable (Coelho et al., 2009COELHO, M.; BIANCO, S.; CARVALHO, L.B. Interferência de plantas daninhas na cultura da cenoura (Daucus carota). Planta Daninha, v.27, p.913-920, 2009. N. Spe. DOI: https://doi.org/10.1590/S0100-83582009000500004.
https://doi.org/10.1590/S0100-8358200900...
; Freitas et al., 2009FREITAS, F.C.L.; ALMEIDA, M.E.L.; NEGREIROS, M.Z.; HONORATO, A.R.F.; MESQUITA, H.C.; SILVA, S.V.O.F. Períodos de interferência de plantas daninhas na cultura da cenoura em função do espaçamento entre fileiras. Planta Daninha, v.27, p.473-480, 2009. DOI: https://doi.org/10.1590/S0100-83582009000300007.
https://doi.org/10.1590/S0100-8358200900...
).

Data on the accumulation of total dry weed mass and on the yield of marketable carrot roots were subjected to the joint analysis of variance. Means were adjusted to regression models, and the used equations were chosen based on significant models (p≤0.05), normality, high coefficient of determination, and biological logic.

Results and Discussion

In the treatments with and without straw in the two crop years, ten weed species were identified, being distributed in the seven following families: Asteraceae family, Bidens pilosa L., Conyza bonariensis (L.) Cronquist, and Galinsoga ciliata S.F.Blake; Brassicaceae, Raphanus sp.; Cyperaceae, Cyperus rotundus L.; Euphorbiaceae, Euphorbia heterophylla L.; Oxalidaceae, Oxalis latifolia Kunth; Plantaginaceae, Plantago tomentosa Cham. & Schltdl.; and Poaceae, Brachiaria mutica Stapf and Eragrostis pilosa (L.) P.Beauv.

In both crop years, the floristic composition of the weed community in the carrot crops with and without straw showed a high similarity of 100%. However, the B. mutica, E. heterophylla, E. pilosa, and G. ciliata species had the greatest competitive effect due to their highest RII% values in practically all coexistence periods in 2016/2017 and 2017/2018 (Figure 2). This high similarity between the weed species can be explained by the fact that the experiment was carried out in the same location and, therefore, the identified species belong to the same community, showing similar density, frequency, and abundance indices.

Figure 2
Relative importance index of the weed community in different coexistence periods – 0, 15, 30, 60 and 120 days after emergence – with the 'Alvorada' carrot (Daucus carota) crop cultivated with and without black oat (Avena strigosa) straw in the 2016/2017 (A) and 2017/2018 (B) crop years. Main identifed weeds: Brachiaria mutica, Euphorbia heterophylla, Bidens pilosa, and Galinsoga ciliata.

The use of black oat straw negatively influenced the emergence and development of weed species, significantly reducing biomass accumulation in both crop years (Table 1 and Figure 3). The increases in weed dry mass accumulation intensified at 15 DAE when straw was not used, but only at 30 DAE when it was (Figure 3). In addition to slowing weed growth, the use of straw reduced the maximum biomass accumulation by around 43.4 and 55.7% in 2016/2017 and 2017/2018, respectively.

Table 1
Summary of the joint analysis of variance of the dry mass accumulation data of weeds during the period of coexistence – 0, 15, 30, 60, 120 days after emergence – with the 'Alvorada' carrot (Daucus carota) crop cultivated with and without black oat straw (Avena strigosa).

Figure 3
Accumulation of weed dry mass as a function of the period of coexistence with the 'Alvorada' carrot (Daucus carota) crop, cultivated with and without black oat (Avena strigosa) straw, in the 2016/2017 and 2017/2018 crop years. ** and *Significant by the F-test, at 1 and 5% probability, respectively.

Silva et al. (2013)SILVA, M.G.O. da; FREITAS, F.C.L. de; NEGREIROS, M.Z. de; MESQUITA, H.C. de; SANTANA, F.A.O. de; LIMA, M.F.P. de. Manejo de plantas daninhas na cultura da melancia nos sistemas de plantio direto e convencional. Horticultura Brasileira, v.31, p.494-499, 2013. DOI: https://doi.org/10.1590/S0102-05362013000300025.
https://doi.org/10.1590/S0102-0536201300...
also found a reduction of 87.3% in the accumulation of weed dry mass when using Urochloa brizantha (A.Rich.) R.D.Webster as a cover plant in watermelon [Citrullus lanatus (Thunb.) Mansf.] crops. Moreover, according to these authors, the need of weeding/tillage was reduced in the areas with straw in comparison with those without it. Hirata et al. (2019)HIRATA, A.C.S.; HIRATA, E.K.; RÓS, A.B.; NARITA, N. Cauliflower cultivars associated with Urochloa decumbens straw mulch in integrated weed management. Planta Daninha, v.37, e019212770, 2019. DOI: https://doi.org/10.1590/S0100-83582019370100124.
https://doi.org/10.1590/S0100-8358201937...
reported that Urochloa decumbens (Stapf) R.D.Webster straw reduced the density of the weed community by 98.6%, standing out as an effective tool in the integrated management of weeds during caulif lower (Brassica oleracea var. botrytis L.) cultivation, without interfering in crop yield.

Favarato et al. (2014)FAVARATO, L.F.; GALVÃO, J.C.C.; SOUZA, J.L.; GUARÇONI, R.C.; SOUZA, C.M.; CUNHA, D.N. Population density and weed infestation in organic no-tillage corn cropping system under different soil covers. Planta Daninha, v.32, p.739-746, 2014. DOI: https://doi.org/10.1590/S0100-83582014000400008.
https://doi.org/10.1590/S0100-8358201400...
observed a reduction of up to 91.8% in the absolute density of weeds when using the straw of black oat alone or combined with white lupine (Lupinus albus L.) as soil cover for a green corn (Zea mays L.) crop grown in an organic no-tillage system. Likewise, in the broccoli (Brassica oleracea L. var. italica Plenck) crop, the use of black oat straw reduced weed density by up to 43% (Frutos et al., 2016FRUTOS, V.; PÉREZ, M.; RISCO, D. Efecto de diferentes mulches orgánicos sobre el cultivo de brócoli (Brassica olerácea L. var. Italica) en Ecuador. Idesia, v.34, p.61-66, 2016. DOI: https://doi.org/10.4067/S0718-34292016005000038.
https://doi.org/10.4067/S0718-3429201600...
). Besides functioning as a barrier to the passage of light and the emergence of the soil seed bank, black oat straw has a strong allelopathic inhibitor effect on some weed species (Rueda-Ayala et al., 2015RUEDA-AYALA, V.; JAECK, O.; GERHARDS, R. Investigation of biochemical and competitive effects of cover crops on crops and weeds. Crop Protection, v.71, p.79-87, 2015. DOI: https://doi.org/10.1016/j.cropro.2015.01.023.
https://doi.org/10.1016/j.cropro.2015.01...
), inhibiting, for example, the germination and growth of Euphorbia heterophylla L. (Hagemann et al., 2010HAGEMANN, T.R.; BENIN, G.; LEMES, C.; MARCHESE, J.A.; MARTIN, T.N.; PAGLIOSA, E.S.; BECHE, E. Potencial alelopático de extratos aquosos foliares de aveia sobre azevém e amendoim-bravo. Bragantia, v.69, p.509-518, 2010. DOI: https://doi.org/10.1590/S0006-87052010000300001.
https://doi.org/10.1590/S0006-8705201000...
), one of the main species identified in the present study.

In general, the commercial yield of carrot roots was extremely sensitive to the coexisting weed community, mainly when cultivated without black oat straw (Table 2 and Figure 4). However, in both crop years, the coexistence of weeds throughout the carrot cycle hindered the commercial production of roots.

Table 2
Summary of the joint analysis of variance of the yield data of commercial roots of the 'Alvorada' carrot (Daucus carota) crop cultivated with and without black oat (Avena strigosa) straw and subjected to periods of coexistence with weeds (0, 15, 30, 60, 120 days after emergence).

Figure 4
Commercial yield of 'Alvorada' carrot (Daucus carota) roots as a function of the period of coexistence with weeds when cultivated with and without black oat (Avena strigosa) straw in the 2016/2017 and 2017/2018 crop years. **Significant by the F-test, at 1% probability.

The results of the present study are similar to those of Freitas et al. (2009)FREITAS, F.C.L.; ALMEIDA, M.E.L.; NEGREIROS, M.Z.; HONORATO, A.R.F.; MESQUITA, H.C.; SILVA, S.V.O.F. Períodos de interferência de plantas daninhas na cultura da cenoura em função do espaçamento entre fileiras. Planta Daninha, v.27, p.473-480, 2009. DOI: https://doi.org/10.1590/S0100-83582009000300007.
https://doi.org/10.1590/S0100-8358200900...
and Soares et al. (2010)SOARES, I.A.A.; FREITAS, F.C.L.; NEGREIROS, M.Z.; FREIRE, G.M.; AROUCHA, E.M.M.; GRANGEIRO, L.C.; LOPES, W.A.R.; DOMBROSKI, J.L.D. Interferência das plantas daninhas sobre a produtividade e qualidade de cenoura. Planta Daninha, v.28, p.247-254, 2010. DOI: https://doi.org/10.1590/S0100-83582010000200003.
https://doi.org/10.1590/S0100-8358201000...
, who observed losses of up to 91% in carrot root yield in the absence of weed control. However, considering the commercial yield of the roots obtained in the plots without weed coexistence, a 32.1 and 22.5% higher yield was found in the crops with black oat straw in the first and second crop years, respectively. Using different types of cover crops, Resende et al. (2005)RESENDE, F.V.; SOUZA, L.S. de; OLIVEIRA, P.S.R. de; GUALBERTO, R. Uso de cobertura morta vegetal no controle da umidade e temperatura do solo, na incidência de plantas invasoras e na produção da cenoura em cultivo de verão. Ciência e Agrotecnologia, v.29, p.100-105, 2005. DOI: https://doi.org/10.1590/S1413-70542005000100012.
https://doi.org/10.1590/S1413-7054200500...
and Santos et al. (2011)SANTOS, C.A.B.; ZANDONÁ, S.R.; ESPINDOLA, J.A.A.; GUERRA, J.G.M.; RIBEIRO, R. de L.D. Efeito de coberturas mortas vegetais sobre o desempenho da cenoura em cultivo orgânico. Horticultura Brasileira, v.29, p.103-107, 2011. DOI: https://doi.org/10.1590/S0102-05362011000100017.
https://doi.org/10.1590/S0102-0536201100...
also reported an increased carrot crop yield of, in average, 32 and 13%, respectively. In other crops, such as lettuce (Lactuca sativa L.) and strawberry [Fragaria × ananassa (Weston) Duchesne ex Rozier], the use of soil cover provided gains of 32 and 2.5% in commercial yield, respectively (Barbosa et al., 2018BARBOSA, J. de A.; FRANKE, D.E.; FERREIRA, S.D.; SALVALAGGIO, A.C.; COSTA, N.V. da. Manejo da mucunapreta na supressão de plantas daninhas na cultura da alfacecrespa. Revista de Agricultura Neotropical, v.5, p.13-18, 2018. DOI: https://doi.org/10.32404/rean.v5i2.1872.
https://doi.org/10.32404/rean.v5i2.1872...
; Tonin et al., 2017TONIN, J.; MACHADO, J.T.M.; SOBUCKI, L.; BENATI, J.A.; ROHRIG, B.; SCHNEIDER, E.P. Controle de plantas daninhas e aspectos produtivos de morangueiro sob diferentes coberturas do solo. Revista de Ciências Agroveterinárias, v.16, p.48-53, 2017. DOI: https://doi.org/10.5965/223811711612017048.
https://doi.org/10.5965/2238117116120170...
).

Other benefits of straw include protecting the soil against erosive or degradation factors, as well as favoring the development of microorganisms that aid in nutrient cycling after the decomposition of plant material (Gatiboni et al., 2011GATIBONI, L.C.; COIMBRA, J.L.M.; DENARDIN, R.B.N.; WILDNER, L. do P. Microbial biomass and soil fauna during the decomposition of cover crops in no-tillage system. Revista Brasileira de Ciencia do Solo, v.35, p.1151-1157, 2011. DOI: https://doi.org/10.1590/S0100-06832011000400008.
https://doi.org/10.1590/S0100-0683201100...
). The release of nutrients and organic compounds combined with the maintenance of moisture promoted by straw cover on the soil forms an environment favorable for the development of crop roots, consequently promoting increases in nutrient absorption rate and yield (Brito et al., 2017BRITO, L.F.; GALVÃO, J.C.C.; GIEHL, J.; CAMPOS, S. de A.; COELHO, S.P. Agronomic traits and yield of organic maize under no-tillage system. Pesquisa Agropecuária Tropical, v.47, p.72-79, 2017. DOI: https://doi.org/10.1590/1983-40632016v4742774.
https://doi.org/10.1590/1983-40632016v47...
; Lowry & Brainard, 2019LOWRY, C.J.; BRAINARD, D.C. Strip intercropping of ryevetch mixtures: effects on weed growth and competition in striptilled sweet corn. Weed Science, v.67, p.114-125, 2019. DOI: https://doi.org/10.1017/wsc.2018.83.
https://doi.org/10.1017/wsc.2018.83...
).

Considering as acceptable a yield loss of 5% for 'Alvorada' carrot, the PPI obtained with and without black oat straw was of 2.0 and 1.5 DAE, respectively, in 2016/2017 and of 17 and 6 DAE in 2017/2018. This difference in PPI values with and without straw can be attributed to soil disturbance while the beds were being prepared, altering the distribution of weed seeds in the soil layers, which can alter emergence dynamics and the interaction with straw cover.

Freitas et al. (2009)FREITAS, F.C.L.; ALMEIDA, M.E.L.; NEGREIROS, M.Z.; HONORATO, A.R.F.; MESQUITA, H.C.; SILVA, S.V.O.F. Períodos de interferência de plantas daninhas na cultura da cenoura em função do espaçamento entre fileiras. Planta Daninha, v.27, p.473-480, 2009. DOI: https://doi.org/10.1590/S0100-83582009000300007.
https://doi.org/10.1590/S0100-8358200900...
found a PPI of 19 and 18 DAE for 'Brasília' carrot sown without straw with a spacing of 15×6 and 20×6 cm between rows, respectively, in the municipality of Mossoró, in the state of Rio Grande do Norte, Brazil. For the same crop, Coelho et al. (2009)COELHO, M.; BIANCO, S.; CARVALHO, L.B. Interferência de plantas daninhas na cultura da cenoura (Daucus carota). Planta Daninha, v.27, p.913-920, 2009. N. Spe. DOI: https://doi.org/10.1590/S0100-83582009000500004.
https://doi.org/10.1590/S0100-8358200900...
reported a PPI of 31 days after sowing in lines spaced at 20 cm, in the municipality of Anápolis, in the state of Goiás, also Brazil. These values are higher than those obtained in the present study probably due to differences in the tolerance of the used varieties to weed competition, differences in the edaphoclimatic characteristics of each study region, the adopted production system, and the weed community present in the experimental areas.

Considering mainly the data of the 2017/2018 crop year, the results of the present study are indicative that the carrot plants cultivated with black oat straw as soil cover were able to coexist with weeds in the early growth stages for up to 11 days more than those that were not. Therefore, the use of black oat straw in carrot crops for integrated weed management can improve crop yield potential.

Conclusion

The use of black oat (Avena strigosa) straw increases the period prior to the interference of weeds in the 'Alvorada' carrot crop.

Acknowledgments

To Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes), for financing, in part, this study (Finance Code 001); and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for support.

References

  • BARBOSA, J. de A.; FRANKE, D.E.; FERREIRA, S.D.; SALVALAGGIO, A.C.; COSTA, N.V. da. Manejo da mucunapreta na supressão de plantas daninhas na cultura da alfacecrespa. Revista de Agricultura Neotropical, v.5, p.13-18, 2018. DOI: https://doi.org/10.32404/rean.v5i2.1872
    » https://doi.org/10.32404/rean.v5i2.1872
  • BERNSTEIN, E.R.; STOLTENBERG, D.E.; POSNER, J.L.; HEDTCKE, J.L. Weed community dynamics and suppression in tilled and no-tillage transitional organic winter ryesoybean system. Weed Science, v.62, p.125-137, 2014. DOI: https://doi.org/10.1614/WS-D-13-00090.1
    » https://doi.org/10.1614/WS-D-13-00090.1
  • DE BOER, T.; SMITH, P.; CHANDLER, K.; NURSE, R.; OBEID, K.; SWANTON, C. A linuron-free weed management strategy for carrots. Weed Technology, v.33, p.464-474, 2019. DOI: https://doi.org/10.1017/wet.2018.112
    » https://doi.org/10.1017/wet.2018.112
  • BRITO, L.F.; GALVÃO, J.C.C.; GIEHL, J.; CAMPOS, S. de A.; COELHO, S.P. Agronomic traits and yield of organic maize under no-tillage system. Pesquisa Agropecuária Tropical, v.47, p.72-79, 2017. DOI: https://doi.org/10.1590/1983-40632016v4742774
    » https://doi.org/10.1590/1983-40632016v4742774
  • CANELLA, D.S.; LOUZADA, M.L. da C.; CLARO, R.M.; COSTA, J.C.; BANDONI, D.H.; LEVY, R.B.; MARTINS, A.P.B. Consumption of vegetables and their relation with ultra-processed foods in Brazil. Revista de Saúde Pública, v.52, art.50, 2018. DOI: https://doi.org/10.11606/S1518-8787.2018052000111
    » https://doi.org/10.11606/S1518-8787.2018052000111
  • CARVALHO, A.D.F. de; SILVA, G.O. da; MAGALHÃES, C. da C. Yield and quality of carrot cultivars related to the harvest time. Horticultura Brasileira, v.38, p.319-323, 2020. DOI: https://doi.org/10.1590/S0102-053620200313
    » https://doi.org/10.1590/S0102-053620200313
  • COELHO, M.; BIANCO, S.; CARVALHO, L.B. Interferência de plantas daninhas na cultura da cenoura (Daucus carota). Planta Daninha, v.27, p.913-920, 2009. N. Spe. DOI: https://doi.org/10.1590/S0100-83582009000500004
    » https://doi.org/10.1590/S0100-83582009000500004
  • COLQUHOUN, J.B.; RITTMEYER, R.A.; HEIDER, D.J. Tolerance and suppression of weeds varies among carrot varieties. Weed Technology, v.31, p.897-902, 2017. DOI: https://doi.org/10.1017/wet.2017.54
    » https://doi.org/10.1017/wet.2017.54
  • DEMÉTRIO, J.V.; COSTA, A.C.T. da; OLIVEIRA, P.S.R. de. Produção de biomassa de cultivares de aveia sob diferentes manejos de corte. Pesquisa Agropecuária Tropical, v.42, p.198-205, 2012. DOI: https://doi.org/10.1590/S1983-40632012000200011
    » https://doi.org/10.1590/S1983-40632012000200011
  • FAO. Food and Agriculture Organization of the United Nations Available at: <http://www.fao.org/faostat/en/#data/QC/visualize>. Accessed on: Sept. 26 2020.
    » http://www.fao.org/faostat/en/#data/QC/visualize
  • FAVARATO, L.F.; GALVÃO, J.C.C.; SOUZA, J.L.; GUARÇONI, R.C.; SOUZA, C.M.; CUNHA, D.N. Population density and weed infestation in organic no-tillage corn cropping system under different soil covers. Planta Daninha, v.32, p.739-746, 2014. DOI: https://doi.org/10.1590/S0100-83582014000400008
    » https://doi.org/10.1590/S0100-83582014000400008
  • FREITAS, F.C.L.; ALMEIDA, M.E.L.; NEGREIROS, M.Z.; HONORATO, A.R.F.; MESQUITA, H.C.; SILVA, S.V.O.F. Períodos de interferência de plantas daninhas na cultura da cenoura em função do espaçamento entre fileiras. Planta Daninha, v.27, p.473-480, 2009. DOI: https://doi.org/10.1590/S0100-83582009000300007
    » https://doi.org/10.1590/S0100-83582009000300007
  • FRUTOS, V.; PÉREZ, M.; RISCO, D. Efecto de diferentes mulches orgánicos sobre el cultivo de brócoli (Brassica olerácea L. var. Italica) en Ecuador. Idesia, v.34, p.61-66, 2016. DOI: https://doi.org/10.4067/S0718-34292016005000038
    » https://doi.org/10.4067/S0718-34292016005000038
  • GATIBONI, L.C.; COIMBRA, J.L.M.; DENARDIN, R.B.N.; WILDNER, L. do P. Microbial biomass and soil fauna during the decomposition of cover crops in no-tillage system. Revista Brasileira de Ciencia do Solo, v.35, p.1151-1157, 2011. DOI: https://doi.org/10.1590/S0100-06832011000400008
    » https://doi.org/10.1590/S0100-06832011000400008
  • HAGEMANN, T.R.; BENIN, G.; LEMES, C.; MARCHESE, J.A.; MARTIN, T.N.; PAGLIOSA, E.S.; BECHE, E. Potencial alelopático de extratos aquosos foliares de aveia sobre azevém e amendoim-bravo. Bragantia, v.69, p.509-518, 2010. DOI: https://doi.org/10.1590/S0006-87052010000300001
    » https://doi.org/10.1590/S0006-87052010000300001
  • HIRATA, A.C.S.; HIRATA, E.K.; RÓS, A.B.; NARITA, N. Cauliflower cultivars associated with Urochloa decumbens straw mulch in integrated weed management. Planta Daninha, v.37, e019212770, 2019. DOI: https://doi.org/10.1590/S0100-83582019370100124
    » https://doi.org/10.1590/S0100-83582019370100124
  • LOWRY, C.J.; BRAINARD, D.C. Strip intercropping of ryevetch mixtures: effects on weed growth and competition in striptilled sweet corn. Weed Science, v.67, p.114-125, 2019. DOI: https://doi.org/10.1017/wsc.2018.83
    » https://doi.org/10.1017/wsc.2018.83
  • MAIN, D.C.; SANDERSON, K.R.; FILLMORE, S.A.E.; IVANY, J.A. Comparison of synthetic and organic herbicides applied banded for weed control in carrots (Daucus carota L.). Canadian Journal of Plant Science, v.93, p.857-861, 2013. DOI: https://doi.org/10.4141/cjps2013-052
    » https://doi.org/10.4141/cjps2013-052
  • MUELLER-DOMBOIS, D.; ELLEMBERG, H. Aims and methods of vegetation ecology New York: J. Wiley, 1974. 574p.
  • REGINALDO, L.T.R.T.; LINS, H.A.; SOUSA, M. de F.; TEÓFILO, T.M. da S.; MENDONÇA, V.; SILVA, D.V. Weed interference in carrot yield in two localized irrigation systems. Revista Caatinga, v.34, p.119-131, 2021. DOI: https://doi.org/10.1590/1983-21252021v34n113rc
    » https://doi.org/10.1590/1983-21252021v34n113rc
  • RESENDE, F.V.; SOUZA, L.S. de; OLIVEIRA, P.S.R. de; GUALBERTO, R. Uso de cobertura morta vegetal no controle da umidade e temperatura do solo, na incidência de plantas invasoras e na produção da cenoura em cultivo de verão. Ciência e Agrotecnologia, v.29, p.100-105, 2005. DOI: https://doi.org/10.1590/S1413-70542005000100012
    » https://doi.org/10.1590/S1413-70542005000100012
  • RUEDA-AYALA, V.; JAECK, O.; GERHARDS, R. Investigation of biochemical and competitive effects of cover crops on crops and weeds. Crop Protection, v.71, p.79-87, 2015. DOI: https://doi.org/10.1016/j.cropro.2015.01.023
    » https://doi.org/10.1016/j.cropro.2015.01.023
  • SANTOS, C.A.B.; ZANDONÁ, S.R.; ESPINDOLA, J.A.A.; GUERRA, J.G.M.; RIBEIRO, R. de L.D. Efeito de coberturas mortas vegetais sobre o desempenho da cenoura em cultivo orgânico. Horticultura Brasileira, v.29, p.103-107, 2011. DOI: https://doi.org/10.1590/S0102-05362011000100017
    » https://doi.org/10.1590/S0102-05362011000100017
  • SOARES, I.A.A.; FREITAS, F.C.L.; NEGREIROS, M.Z.; FREIRE, G.M.; AROUCHA, E.M.M.; GRANGEIRO, L.C.; LOPES, W.A.R.; DOMBROSKI, J.L.D. Interferência das plantas daninhas sobre a produtividade e qualidade de cenoura. Planta Daninha, v.28, p.247-254, 2010. DOI: https://doi.org/10.1590/S0100-83582010000200003
    » https://doi.org/10.1590/S0100-83582010000200003
  • SILVA, M.G.O. da; FREITAS, F.C.L. de; NEGREIROS, M.Z. de; MESQUITA, H.C. de; SANTANA, F.A.O. de; LIMA, M.F.P. de. Manejo de plantas daninhas na cultura da melancia nos sistemas de plantio direto e convencional. Horticultura Brasileira, v.31, p.494-499, 2013. DOI: https://doi.org/10.1590/S0102-05362013000300025
    » https://doi.org/10.1590/S0102-05362013000300025
  • SØRENSEN, T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content, and its application to analyses of the vegetation on Danish commons. Biologiske Skrifter, v.5, p.1-34, 1948.
  • STURM, D.J.; KUNZ, C.; GERHARDS, R. Inhibitory effects of cover crop mulch on germination and growth of Stellaria media (L.) Vill., Chenopodium album L. and Matricaria chamomilla L. Crop Protection, v.90, p.125-131, 2016. DOI: https://doi.org/10.1016/j.cropro.2016.08.032
    » https://doi.org/10.1016/j.cropro.2016.08.032
  • TONIN, J.; MACHADO, J.T.M.; SOBUCKI, L.; BENATI, J.A.; ROHRIG, B.; SCHNEIDER, E.P. Controle de plantas daninhas e aspectos produtivos de morangueiro sob diferentes coberturas do solo. Revista de Ciências Agroveterinárias, v.16, p.48-53, 2017. DOI: https://doi.org/10.5965/223811711612017048
    » https://doi.org/10.5965/223811711612017048
  • RAIJ, B.; CANTARELLA, H.; QUAGGIO, J.A.; FURLANI, A.M.C. (Ed.). Recomendações de adubação e calagem para o Estado de São Paulo 2.ed. rev. e atual. Campinas: IAC, 1997. 285p. (Boletim técnico, 100).

Publication Dates

  • Publication in this collection
    05 Dec 2022
  • Date of issue
    2022

History

  • Received
    11 Mar 2022
  • Accepted
    22 Aug 2022
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br