ESPECIAÇÃO DE ARSÊNIO - UMA REVISÃO

Cristina Maria Barra

Departamento de Química - UFRRJ - Antiga Rio-São Paulo - Km 47 - 23850-970 - Seropédica - RJ

Ricardo Erthal Santelli, Jorge João Abrão

Departamento de Geoquímica - UFF - Outeiro de São João Batista - s/n - Centro - 24020-007 - Niterói - RJ

Miguel de la Guardia

Departamento de Química Analítica - Universidade Valência - Dr. Moliner - 50, Burjassot - 46100 - Valencia - Espanha

Recebido em 3/8/98; aceito em 16/4/99

ARSENIC SPECIATION – A REVIEW. This paper provides a review on separation methods and analytical techniques for the determination of several species of organic and inorganic arsenic in different matrices. Arsenic is an element whose speciation is of particular interest due to the great variation of toxicity levels exhibited for its different chemical forms. Arsenic (III) and As (V) are the most toxic species while organic compounds such as arsenobetaine (AsB), produced by methylation of inorganics species (carcinogenics) are relatively less toxic, hence the great importance of arsenic speciation in the determination of the degree of contamination of an environmental or biological system.

Keywords: arsenic compounds; speciation; toxicity.

INTRODUÇÃO

Especiação é a determinação da concentração das diferentes formas químicas de um elemento numa matriz, sendo que estas espécies, juntas, constituem a concentração total do elemento na amostra. Antigamente, a determinação da concentração total de um dado elemento parecia ser suficiente para todas as considerações clínicas e ambientais. Hoje já não é mais assim. Embora o conhecimento da concentração total de um elemento ainda seja muito útil, é essencial, em muitos esquemas analíticos, a determinação das espécies químicas nas quais o elemento está distribuído¹.

Atualmente, sabe-se que a determinação da concentração total de um elemento é uma informação limitada, especialmente sobre o seu comportamento no meio ambiente e nos danos que pode causar à saúde. As propriedades físicas, químicas e biológicas são dependentes da forma química em que o elemento está presente². Por exemplo, a medida da concentração total de arsênio, não indica os verdadeiros níveis de cada espécie individualmente. Para estimar o risco envolvido, precisam ser levados em consideração a variação na toxicidade, o transporte e a biodisponibilidade, que são dependentes das formas químicas na qual o arsênio está presente. Por isto a necessidade de utilizar-se métodos analíticos que ajudem a diferenciar essas formas³.

A coleta, o tratamento e a preservação das amostras para determinação qualitativa e quantitativa, visando à especiação de um elemento, requerem planejamento e uma consideração cuidadosa. A natureza desta tarefa é muito diferente daqueles procedimentos para determinação total do elemento. Neste caso, o procedimento a ser adotado, é o de manter o equilíbrio estabelecido entre as formas químicas do elemento nas amostras, desde a coleta até a análise. Entretanto, é essencial ter-se em mente que dados sobre a concentração total são necessários para muitas investigações¹. As amostras devem ser analisadas o mais rapidamente possível, logo após a coleta, sem uso de soluções preservativas, como, por exemplo, a acidificação do meio, que modifica o equilíbrio das espécies presentes⁴.

A determinação seletiva de arsênio, tem despertado o maior interesse em muitos laboratórios analíticos, e vários métodos vêm sendo desenvolvidos para a determinação de arsênio

inorgânico, orgânico e total em diferentes tipos de matrizes como águas, alimentos de origem marinha, sedimentos e materiais biológicos, entre outros¹.

Arsênio é amplamente distribuído na biosfera. Água do mar não poluída contém 2 - 3 μg.L⁻¹, a crosta terrestre possui uma concentração média de 2 μg.kg⁻¹, e a concentração em organismos marinhos varia de 1 μ.g⁻¹ a mais de 30 μ.g⁻¹ de arsênio⁵, os quais são caracterizados pela quantidade relativamente alta deste elemento, sendo que no exame de alimentos de origem marinha, geralmente se determina a concentração total de arsênio e, raramente, As(III) e As(V) separados da forma orgânica. Esta avaliação, sem especiação, envolve valores superestimados, uma vez que os compostos orgânicos de arsênio, presentes nos organismos marinhos, e de muito menor toxicidade, são também determinados⁶.

A QUÍMICA DO ARSÊNIO

Arsênio existe na natureza numa variedade de formas químicas, incluindo espécies orgânicas e inorgânicas, como resultado de sua participação em complexos biológicos, processos químicos e algumas aplicações industriais, como a manufatura de certos vidros, materiais semicondutores e fotocondutores, entre outros⁷⁻⁹. Compostos contendo arsênio são utilizados no tratamento de determinadas doenças e, na agricultura, o arsênio encontra-se nos herbicidas, inseticidas e desfolhantes ². Também a flora e a fauna marinha contêm compostos de arsênio, pois nas vias metabólicas o nitrogênio e o fósforo podem ser facilmente trocados por ele⁷.

Os altos níveis de toxicidade de arsênio são muito bem conhecidos, pois compostos de arsênio são facilmente absorvidos, tanto oralmente quanto por inalação, sendo a extensão da absorção dependente da solubilidade do composto. Na Tabela 1¹⁰ são apresentadas algumas espécies de arsênio de interesse em estudos de especiação, com seus respectivos valores de pk_a, que proporcionam uma idéia das formas possíveis em função do pH.

Uma longa exposição a compostos inorgânicos de arsênio, através da água de beber, pode conduzir a várias doenças tais como: conjuntivite, hiperqueratose, hiperpigmentação, doenças cardiovasculares, distúrbios no sistema nervoso central e vascular periférico, câncer de pele e gangrena nos membros. O efeito

Tabela 1. Compostos de Arsênio de Interesse em Estudos de Especiação. Extraído de Demesmay et al, 1994 (Ref. 10).

Composto	Fórmula	pK_a	
Arsina	AsH_3	-	
Ácido arsenioso As (III)	O=As —OH	9,3	
Ácido arsênico	ОН О=As -—ОН I ОН	2,3	
As (V)		6,9 11,4	
Ácido monometilarsônico	OH O=As —OH CH ₃	3,6	
MMAA (V)	, and the second	8,2	
Ácido dimetilarsínico	CH ₃ O=As —OH CH ₃	1,6	
DMAA (V)		6,2	
Arsenobetaína (AsB)	H_3C — As — CH_2 — C OH	4,7	
	CH₃ İ.		
Arsenocolina	CH ₃ ₊ H ₃ C — As — CH ₂ — CH ₂ — OH CH ₃	-	
(AsC)	3		

tóxico das espécies de arsênio depende, principalmente, de sua forma química. Arsênio em águas naturais pode ocorrer como As(III) (arsenito), As(V) (arseniato), íon monometilarsônico (MMA) e íon dimetilarsínico (DMA). Águas subterrâneas contêm arsênio como arsenito e arseniato. Em águas de mar, lagoas, lagos, e onde houver possibilidade de biometilação, arsenito e arseniato ocorrem junto com MMA e DMA¹¹.

A ordem decrescente de toxicidade dos compostos de arsênio, segundo Anderson et al.,1986¹¹, e Burguera et al., 1991¹², é a seguinte: arsina > arsenito > arseniato > ácidos alquil-arsênicos > compostos de arsônio > arsênio elementar. O arsênio trivalente (arsenito) é 60 vezes mais tóxico do que a forma oxidada pentavalente (arseniato). Os compostos inorgânicos são 100 vezes mais tóxicos do que as formas parcialmente metiladas (MMA e DMA)¹³.

Arsênio(III) e As(V) são as espécies mais tóxicas, enquanto arsenobetaína e arsenocolina são relativamente não tóxicas. A LD $_{50}$ (a dose letal para 50% de uma população) para As_2O_3 em ratos é de 20 mg.kg $^{-1}$, para KAs O_2 é de 14 mg.kg $^{-1}$ 14 , para Ca $_3(AsO_4)_2$ é de 20 mg.kg $^{-1}$ 14 , para MMAA (ácido monometilarsônico) é de 700-800 mg.kg $^{-1}$ 14 , para DMAA (ácido dimetilarsínico) é de 700-2600 mg.kg $^{-1}$ 14 , enquanto que para arsenobetaína e para arsenocolina não foi observado sinal de toxicidade em camundongos após dose oral de 10 g.kg $^{-1}$ 5,14 e de 6,5 g.kg $^{-1}$ 14 respectivamente.

A metilação de arsênio inorgânico no corpo humano, é um processo de desintoxicação que ocorre nos rins, e reduz a afinidade do composto para com o tecido. As etapas de metilação

são: $As(V) \rightarrow As(III) \rightarrow MMA(V) \rightarrow MMA(III) \rightarrow DMA(V)^{13,15}$, logo, quando arsênio inorgânico é ingerido, é através da urina (a principal via de eliminação) que os metabólitos do arsênio inorgânico, isto é, DMA e MMA são eliminados $^{13,15-18}$.

Muitos compostos arseno-orgânicos, presentes em sistemas biológicos são muito menos tóxicos. Por exemplo, arsenobetaína (AsB), cuja presença em alimentos de origem marinha constitui a maior fonte de arsênio na dieta, é essencialmente não tóxica 1,10,13,16 e excretada na urina, sem modificação, com tempo de residência muito curto (de 6 a 24 horas, no máximo)6.

A flora e fauna marinhas, contém um número de compostos de arsênio onde este elemento parece ser trocado por nitrogênio ou fósforo nas vias metabólicas. Tais compostos incluem além da arsenobetaína, arsenocolina e arseno-açúcares de origem algal^{1,7}.

Organismos marinhos acumulam quantidades substanciais de arsênio de modo mais eficiente que os organismos terrestres. Informações sobre espécies de arsênio são tão importantes para avaliar as implicações toxicológicas quanto para elucidar o ciclo biogeoquímico deste elemento no ambiente marinho. Algas marinhas absorvem arseniatos (forma predominante de arsênio na água do mar), e o transformam em diferentes ribosídeos contendo arsênio. O arseniato é absorvido devido a sua similaridade com o fosfato que é essencial. Parece que os organismos marinhos, adquirem arsênio através da cadeia alimentar, e transformam o arsênio inorgânico em arsenobetaína via MMA e DMA através da biometilação⁵.

A arsenobetaína é um composto orgânico formado pela desintoxicação do arseniato fitotóxico através de biometilação.

É muito pouco tóxica sendo o principal derivado de arsênio encontrado nos organismos marinhos. Os resultados da literatura sugerem que, acima de tudo, produtores primários tais como: microorganismos, fitoplâncton e zooplâncton, como também algas e outros organismos de mais baixo estágio de evolução trófica, desintoxicam arseniato pelo desenvolvimento de substâncias metiladas, arseno-açúcares solúveis em água e arseno-fosfolipídios solúveis em gordura⁶.

Quando o ser humano sofre uma exposição a arsênio, aguda ou crônica, sua concentração é freqüentemente monitorada pela determinação de arsênio total na urina. Por exemplo, arsênio inorgânico ingerido (por inalação, comida ou bebida) como As(V) é reduzido a As(III), o qual está sujeito às etapas do processo de metilação – inicialmente a MMA, e em seguida a DMA. Se o arsênio é ingerido nas formas menos tóxicas, MMA ou DMA, ou formas não tóxicas derivadas da arsenobetaína e arsenocolina, nenhum processo de metilação ou desmetilação parece ocorrer, e essas formas são excretadas na urina sem mudança na estrutura¹⁹.

A química ambiental do arsênio é complexa, em virtude das grandes diferenças entre as propriedades dos seus compostos de origem natural ou antropogênica. O aspecto bioquímico mais observado no meio ambiente é a metilação. Mesmo que compostos metilados de arsênio não sejam usados na agricultura, o arsênio inorgânico pode ser convertido em formas metiladas no meio ambiente, que são liberadas no meio aquoso, tornando-se disponível para aumentar os níveis de arsênio na cadeia alimentar. Como a biodisponibilidade e os efeitos fisiológicos/toxicológicos do arsênio dependem de sua forma química, o conhecimento da especiação e transformação no meio ambiente torna-se muito importante, necessitando de métodos adequados para a separação e determinação das espécies de arsênio²⁰.

As formas orgânicas do arsênio são dominadas por espécies organometálicas α-ligadas. Ribofuranosídeos, contendo arsênio, são predominantes em algas, enquanto que a arsenobetaína é encontrada em outros organismos marinhos. Entretanto, os ribofuranosídeos contendo arsênio e a arsenobetaína, ao que tudo indica, não fazem parte do estoque de arsênio em águas naturais, já que o produto excretado por algas e culturas de animais aquáticos parece estar limitado às espécies inorgânicas e metiladas. Os ácidos MMA(V) e DMA(V) têm sido determinados em águas naturais. Por outro lado o arsênio inorgânico trivalente [As(OH)3 e As(III)] também está distribuído na hidrosfera, embora seja termodinamicamente muito mais instável que o ácido arsênico [AsO(OH)3; As(V)] sob condições aeróbicas. Neste contexto, observou-se que os metilarsênicos trivalentes, os ácidos monometilarsenioso [MMA(III)] e dimetilarsenioso [DMA(III)] se perdem durante as análises de águas naturais. Esses compostos são produzidos através da redução de MMA(V) e DMA(V) por sulfeto de hidrogênio e existem por um tempo considerável sob condições aeróbicas. Os metilarsênicos trivalentes são os prováveis intermediários na biossíntese de organoarsênicos, onde a metilação do As(V) processa-se através de transferência alternada de grupamento metila (redução ou oxidação). A especiação de arsênio, incluindo o MMA(III) e o DMA(III) é, então, de grande importância para a biogeoquímica do arsênio²¹.

MÉTODOS ANALÍTICOS UTILIZADOS PARA ESPECIAÇÃO DE ARSÊNIO

60

O pré-tratamento de amostras para a determinação de arsênio, está sempre associado ao risco inerente de contaminação e perdas por volatilização (cloretos e oxicloretos de arsênio) e adsorção. A mineralização por via seca, é um método padrão de preparação de amostras orgânicas para determinação de arsênio²². A utilização de substâncias como MgO e Mg(NO₃)₂ na preparação de amostras sólidas, por via seca, previne a perda de arsênio e aumenta a velocidade de oxidação. A sua grande desvantagem é que consome muito tempo, tornando-se inadequada para ser usada em rotina.

Digestão por via úmida pode ser realizada em sistemas fechados ou abertos. Os sistemas fechados funcionam com pressões superiores a dos sistemas abertos, obtendo-se assim, temperaturas acima daquelas de ebulição do agente oxidante, à pressão ambiente, tendo como resultado um poder de oxidação maior e uma mineralização mais completa da amostra²².

A determinação de arsênio total pode ser muito difícil se houver resíduo de matéria orgânica, tornando-se crítica nos casos em que o mesmo está presente como derivados organo-metálicos. Neste caso, a preparação da amostra requer digestão prolongada, em presença de agentes oxidantes, para degradação total da matéria orgânica. Podem ser utilizados vários procedimentos para eliminação da matéria orgânica, entre eles a decomposição em meio alcalino com persulfato de potássio em bomba de Teflon²¹ e digestão por via seca seguida de lixiviação com ácidos, estes feitos em batelada²³. Vários procedimentos utilizam injeção em fluxo contínuo (FI): decomposição em forno microondas com persulfato de potássio e hidróxido de sódio 17,18,24-28, decomposição ácida em fornos de microondas^{29,30}, decomposição com mistura de ácidos a temperaturas elevadas ^{6,13,15,3}, digestão com dicromato de potássio e misturas de ácidos, seguida por ataque com peróxido de hidrogênio¹⁹, fotooxidação com persulfato de potássio em meio alcalino^{7,27,32-35}, e termooxidação com persulfato de potássio em meio alcalino36.

A determinação seletiva de arsênio, tem despertado grande interesse em muitos laboratórios analíticos, e uma variedade de procedimentos têm sido publicada para a determinação de arsênio inorgânico, orgânico e total em águas, sedimentos e materiais biológicos¹.

O método da geração de hidretos para a determinação de arsênio, utiliza, geralmente, como agente redutor o borohidreto de sódio (NaBH₄). Entretanto, a utilização deste redutor tem diversas desvantagens: o reagente pode introduzir contaminação, suas soluções aquosas são instáveis e devem ser preparadas para uso imediato³⁷. A estabilidade desta solução pode ser aumentada pela alcalinização com hidróxido de potássio ou sódio, necessitando filtração em filtro de 0,45 µm para remover a turvação produzida pelo precipitado de carbonato³⁸. A transferência do arsênio até o sistema de detecção e sua atomização, são feitas pela conversão dos compostos contendo arsênio até o hidreto volátil correspondente, por reação com NaBH₄. O método da geração de hidreto facilita o transporte do arsênio até o detetor e possui boa sensibilidade, mas o número de compostos que podem ser determinados por este método é restrito. Uma séria limitação do mesmo é que o NaBH4 não forma um produto volátil com algumas espécies de arsênio. Isto inclui muitos dos bioarsênicos: arsenobetaína, arsenocolina, arseno-açúcares e também compostos organo-arsênicos industriais ⁷. Arsenito e arseniato formam AsH₃, MMA forma CH₃AsH₂ e DMA forma (CH₃)₂AsH, pela reação com NaBH₄, sendo que a formação destes hidretos é dependente do pH e está relacionada aos valores do pKa de cada espécie individual²⁴.

Diversos pesquisadores^{20,24,39,40} estudaram as condições experimentais para a determinação seletiva de espécies do arsênio, particularmente a concentração de NaBH₄ e do ácido utilizado, tanto em procedimentos em batelada quanto em fluxo contínuo. Entretanto, devido à variedade de configurações e condições, é difícil obter-se uma descrição clara de como estes fatores influenciam a sensibilidade das medidas.

A acidez é um fator importante. Foi observado que a sensibilidade para As(III) varia muito pouco numa grande faixa de concentração ácida^{20,38}. Já para As(V) respostas só são obtidas quando a concentração ácida é alta, entre 4,0 e 5,0 M^{20,38}. Isto acontece porque As(V) é reduzido a As(III) antes da conversão em AsH₃ e o potencial de redução para esta reação é dependente da cinética e do pH⁴¹, pois cada espécie precisa estar protonada para formação do hidreto volátil^{7,39}. Para MMA e DMA, a sensibilidade cai para concentrações ácidas acima de 0,025 M em HCl³⁸ ou 0,1 M em HCl²⁴. Logo, respostas idênticas não podem ser obtidas

para as quatro espécies de arsênio (arsenito, arseniato, MMA e DMA), quando a mesma concentração ácida é usada. Para contornar este problema, foi estudada a adição de cisteína ²⁴ que reduz as espécies arseniato, MMA e DMA ao seu estado trivalente antes da reação com NaBH₄, tendo sido obtidas respostas idênticas para as quatro espécies, numa mesma faixa de pH (0,3 - 0,7 M de HCl). Logo, como a cisteína não afeta as arsinas produzidas por cada espécie individual de arsênio, torna-se então aplicável não somente à determinação de arsênio total, mas também aos estudos de especiação. Compostos orgânicos de arsênio como arsenobetaína, arsenocolina e o íon tetrametilarsônio [(CH₃)₄As⁺] não formam hidretos, com ou sem cisteína. No entanto, após decomposição destas espécies por diferentes métodos, como os citados acima, recuperações quantitativas podem ser obtidas, já que são convertidos a arseniato/arsenito²⁴.

Para a determinação de arsênio inorgânico em materiais biológicos, nos estados de oxidação III e V, ou pela soma de ambos, devem ser consideradas as seguintes etapas: o estágio de liberação do hidreto, a separação da forma inorgânica da forma orgânica, e a medida do arsênio. Na literatura pode-se encontrar diversas alternativas para cada estágio, que incluem desde uma série de extrações ^{21,42-45}, até separações desenvolvidas em diferentes estágios⁴⁶, aumentando a complexidade do processo, especialmente quando arsênio é determinado em amostras sólidas, onde uma série de extrações e purificações sucessivas precisam ser feitas^{23,47}.

Para arsênio inorgânico, normalmente determina-se As(III) por geração de hidreto com NaBH₄ em uma faixa ácida muito ampla^{20,24,40}, e também por geração eletroquímica de hidreto ⁴¹. Na presença de baixas concentrações de organo-arsênicos, determina-se As(III) ajustando o meio a pH 4,5 com tampão citrato/ácido cítrico, que inibe a redução de As(V) à arsina e, conseqüentemente, aumenta a seletividade para As(III)⁴¹.

O método mais promissor combina a liberação e separação de arsênio inorgânico, a baixo custo e com facilidade de operação ²³, baseado na destilação convencional de As(III) como AsCl₃ em presença de HCl concentrado. Entretanto, a destilação consome tempo e ainda não está estabelecido se ocorre a degradação de espécies de arsênio orgânico sob estas condições. A destilação de AsCl₃ é eficiente e econômica quando comparada com os procedimentos individuais de extração seletiva.

Para a determinação de arsênio inorgânico total [As(III) + As(V)], faz-se a redução do As(V) a As(III) e determina-se o arsênio inorgânico total como As(III). Na etapa de redução podem ser utilizados diferentes redutores: KI^{2,20,48,49}, tiouréia^{49,50} e L-cisteína^{24,29,37,51,52}. O KI é utilizado em meio fortemente ácido^{2,20,48,49}, sendo esta uma grande desvantagem deste redutor, pois é necessário uma alta concentração de HCl para que a redução se complete²⁹. O KI pode ser utilizado na presença de ácido ascórbico ^{37,48,53,54}, que é utilizado para prevenir a oxidação do iodeto pelo oxigênio atmosférico. Em amostras tratadas com ácidos oxidantes ou contendo agentes oxidantes, são formadas grandes quantidades de iodo (I₃), já que a quantidade de KI necessária para redução também é grande. O iodo precisa ser retirado da solução antes da adição de NaBH₄, o que pode provocar perdas de As(III)-iodo no gerador⁴¹. A vantagem da L-cisteína em relação ao KI, é que ela pode ser usada em baixas concentrações ácidas^{47,51}, sendo estável e mais livre de interferências^{24,29}.

Assim, o As(V) é determinado por diferença entre o arsênio inorgânico total e o As(III).

A determinação de arsênio orgânico é um pouco mais complicada, pois MMA e DMA formam hidretos voláteis, mas não a arsenobetaína, a arsenocolina e os arseno-açúcares, que, para serem determinados, necessitam ser transformados em arsênio inorgânico, e determinados como arsênio total.

A determinação quantitativa de uma mistura de espécies de arsênio, em matrizes complexas, normalmente requer o poder de separação de um método cromatográfico e um sistema específico de detecção de arsênio. A sofisticação do método de separação pode variar de uma simples armadilha

criogênica 24,51,55,56 à utilização de HPLC - cromatografia líquida de alta eficiência 4,7,9,10,16,18 .

Nos últimos dez anos, foram desenvolvidos muitos métodos para especiação de baixas concentrações de arsênio, orgânico e inorgânico, em diversas matrizes, acoplando as técnicas cromatográficas - gasosa e líquida, com um detetor específico²⁵.

A redução de arsênio inorgânico, MMA e DMA, para gerar os hidretos voláteis correspondentes, é um modo excelente para isolar as várias espécies de arsênio de suas matrizes. Esses hidretos podem ser retidos em colunas cromatográficas e liberados seletivamente, por aquecimento, antes da detecção. Embora esse método seja muito sensível, sua precisão e recuperação é dependente das condições experimentais, como a vazão do carreador, o tipo de fase adsorvente e o tamanho da coluna. Outros métodos utilizam a extração com solventes para a separação das espécies de arsênio antes da detecção. A principal desvantagem é que o limite de detecção não é bom e são necessárias grandes quantidades de amostra¹⁶.

A cromatografia líquida é potencialmente adequada, na procura de métodos que possam ser aplicados à determinação de um grande número de espécies de arsênio, sem utilizar o recurso da derivatização⁷.

As espécies de arsênio submetidas à especiação, são ânions (arseniato, monometilarsonato - MMA e dimetilarsinato - DMA) ou cátions (arsenobetaína - AsB, arsenocolina - AsC e o íon tetrametilarsônio - TMA) ou ainda compostos não carregados a pH neutro (ácido arsenioso). A separação das espécies de arsênio é dependente do pH. Em pH neutro, arseniato (pk_{al} = 2,3), MMA $(pk_{a1} = 3,6)$ e DMA $(pk_{a1} = 6,2)$ estão presentes como ânions; arsenocolina [(CH₃)₃As⁺CH₂CH₂OH] e o íon tetrametilarsônio -TMA [(CH₃)₃As⁺] como cátions; arsenobetaína [(CH₃)₃As⁺ CH₂COO⁻] como zwitterion; e ácido arsenioso (pK_a = 9,3) como uma espécie não carregada¹⁷. Logo, tanto a cromatografia líquida (HPLC) de troca aniônica^{9,10,15,16,25,32,43,45,57}, quanto a de troca catiônica^{33,56,57}, podem ser utilizadas para a separação dessas espécies iônicas de arsênio. HPLC de fase reversa^{14,18,57,58,59}, também pode ser usada com contra-íons apropriados. O contraíon forma um par iônico com carga oposta a do analito, introduzindo interações adicionais para uma melhor separação¹⁸. Também são empregadas na especiação de arsênio, em linha ou batelada, a cromatografia em coluna de troca iônica^{3,13,15,31,44,60} cromatografia gasosa⁶, e cromatografia de permeação em gel⁵⁷, sendo esta última utilizada para separação dos arseno-açúcares.

Para utilizar HG-AAS na determinação de todas as espécies solúveis de arsênio, é necessária a conversão dos organoarsênicos em espécies reativas à formação de hidretos. Isto pode ser alcançado por procedimentos de digestão ácida ou básica, em batelada, na qual todas as espécies de arsênio são convertidas em arsênio inorgânico. Entretanto, estes procedimentos são trabalhosos, lentos e impraticáveis, quando se tem um grande número de amostras a serem analisadas³⁴.

Procedimentos de fotooxidação com irradiação ultravioleta em linha, têm sido empregados para aumentar a seletividade e a sensibilidade na determinação de muitos compostos orgânicos. Esses sistemas têm sido usados com derivatização pós-coluna para medidas por HPLC, visando melhorar a detecção de compostos orgânicos empregando AAS ou ICP-AES. Tais sistemas permitem a transferência direta e contínua da arsina volátil gerada até o detetor. As espécies organo-arsênicas exibem diferentes respostas em comparação com arsênio inorgânico na liberação do hidreto, tanto em procedimentos em batelada quanto por fluxo contínuo³⁴. Isto se deve às diferenças na cinética de reação, volatilidade e eficiência da chama em converter a arsina correspondente em arsênio elementar. Tais diferenças afetam a sensibilidade para cada espécie e podem introduzir erros para algumas espécies. Foi então desenvolvido um procedimento que permitisse a formação em linha de espécies, que gerassem arsinas voláteis a partir dos organo-arsênicos que são resistentes à formação de hidreto³⁴. A reação de fotooxidação utilizando persulfato em meio alcalino foi usada em um sistema FI, após a

coluna de HPLC, e o arsênio inorgânico gerado por fotooxidação dos organo-arsênicos foi reduzido à arsina e continuamente detectado por AAS^{34,61}. Neste sistema FI^{7,32,33}, após a coluna de HPLC, foram montados três estágios distintos: fotooxidação com persulfato alcalino, acidificação/reação com NaBH₄, separação e transporte da fase gasosa até o detetor. Desta forma cada espécie é separada e então, após a fotooxidação, convertida completamente a arsênio inorgânico. A formação da arsina ocorre a partir do produto da fotólise, que é feita em pH bem baixo, para assegurar que a redução de arseniato (e outros produtos de fotólise) à arsina possa ocorrer. Este sistema foi aplicado a uma grande variedade de compostos, incluindo íons arsenito, arseniato, dimetilarsenato, metilarsonato, arsenobetaína, arsenocolina, o- e p- arsanilato, fenilarsonato e tetrametilarsônio⁷. Outros sistemas com derivatização pós-coluna foram utilizados, como a fotooxidação de todas as espécies de arsênio, em meio fortemente ácido, a 100 °C9, precedida de digestão em forno microondas utilizando persulfato de potássio, em meio fortemente alcalino, para oxidação das espécies que não formam hidretos voláteis²⁵.

A Tabela 2 apresenta um resumo dos diversos métodos utilizados para a especiação de arsênio.

TÉCNICAS DE DETECÇÃO PARA DETERMINAÇÃO DAS DIFERENTES ESPÉCIES DE ARSÊNIO

As técnicas que utilizam a espectrometria atômica, associada à geração de hidretos, oferecem maior sensibilidade, seletividade e simplicidade na determinação de arsênio, a nível de nanogramas, e podem ser utilizadas para diferenciar espécies que formam hidretos voláteis, podendo ser facilmente combinada com sistemas de fluxo contínuo³⁴. Em estudos de especiação, o acoplamento do poder de separação da cromatografia, combinado com a seletividade e sensibilidade da espectrometria atômica⁶², tem se mostrado uma ferramenta poderosa para a separação e determinação de várias espécies de arsênio em amostras reais.

Os métodos mais usados para a detecção de arsênio são: espectrometria de absorção e emissão atômicas e espectrometria de massas. A espectrometria de emissão atômica em chama não apresenta suficiente sensibilidade e, por esta razão, não é muito utilizada. Como a instrumentação para a espectrometria de absorção atômica é amplamente disponível, essa técnica é freqüentemente empregada em conjunto com a geração de hidretos, visto que a espectrometria de absorção atômica com chama também não é muito sensível¹. A espectrometria de absorção atômica com atomização eletrotérmica (ETAAS), tem sido bastante usada para análise de diferentes tipos de amostras, devido a sua sensibilidade e acurácia^{63,64}. Entretanto para matrizes complexas como, por exemplo, água do mar, a concentração de arsênio está abaixo do limite de detecção da técnica, em torno de 1,1 - 1,9 μg.L⁻¹, sendo esses níveis muito menores em áreas não poluídas⁶³, necessitando de procedimentos de pré-concentração, o que torna esta técnica mais difícil de ser utilizada em análises de rotina.

A geração de hidretos, combinada com espectrometria de absorção atômica (AAS ou ETAAS) como sistema de detecção, tem sido muito utilizada para a determinação direta de arsênio em diferentes tipos de amostras. A utilização de um *trap in situ* para coletar o hidreto no forno de grafite (HG-ETAAS) apresenta maior sensibilidade que HG-AAS, pois evita-se a diluição do hidreto no argônio, além de se usar temperaturas acima de 1000°C. Entretanto, a principal desvantagem desta técnica é a necessidade de estruturas de grafite porosas para obter o *trap* adequado para o hidreto⁶³.

A geração de hidretos combinada com AAS ou ETAAS está particularmente bem estabelecida na literatura, sendo mais adequada para ICP-AES, porque esta técnica elimina as interferências na fase gasosa que podem ser encontradas na espectrometria de absorção atômica. Para ICP-AES, um sistema de fluxo contínuo para geração de hidretos é mais apropriado que aqueles em batelada, pelo fato de assegurar a

estabilidade do plasma e a capacidade de determinações multielementares. Os hidretos podem ser separados da fase líquida por diferentes meios, sendo o mais comum um separador formado por um tubo em U, onde o hidreto é em seguida introduzido diretamente na câmara de nebulização⁴⁹.

Muitas técnicas automatizadas para a determinação de traços de metais, como, por exemplo, a análise por injeção em fluxo (FI), têm atraído atenção devido à alta precisão, elevada taxa de amostragem e a possibilidade de inclusão de pré-tratamentos da amostra e pré-concentração do analito em linha. A importância das análises automáticas de rotina e monitoramento de elementostraco em várias matrizes está crescendo. Métodos empregando a técnica FI são considerados os melhores, pela instrumentação simples e de baixo custo, permitindo procedimentos rápidos e efetivos para a determinação de traços de diversos elementos em linha⁶⁵⁻⁶⁸. Injeção em Fluxo - Geração de Hidretos - Espectrometria de Absorção Atômica (FI-HG-AAS) é um acoplamento atrativo, devido à sua simplicidade e alta sensibilidade. Estes procedimentos fazem uso dos benefícios da introdução direta da amostra, volume reduzido da mesma, diminuição da possibilidade de contaminação e do aumento da tolerância para interferentes, quando comparados aos procedimentos convencionais em batelada 19,38.

Outras técnicas instrumentais de especiação têm sido amplamente aplicadas pois fornecem meios para a determinação em amostras com pequenas concentrações. Cromatografias líquida e gasosa são técnicas muito populares em estudos de especiação. A cromatografia gasosa requer que as espécies sejam voláteis e termicamente estáveis, sob o programa de temperatura escolhido para análise. A cromatografia líquida é mais adequada à separação de compostos não voláteis e compostos de alto peso molecular, desde que sejam escolhidas colunas adequadas e eluentes compatíveis com os componentes da amostra.

Estudos comparativos de vários métodos de espectrometria atômica, acoplados com cromatografia líquida ou gasosa, têm sido publicados^{1,24,51,56}, sendo a cromatografia gasosa acoplada à espectrometria de absorção atômica o método mais sensível para especiação de arsênio, enquanto que a cromatografia líquida de alta eficiência acoplada à espectrometria de absorção atômica com geração de hidretos (HPLC-HG-AAS) o método mais simples para a especiação de níveis mais altos de arsênio.

O espectrômetro de massas com fonte de plasma indutivamente acoplado (ICP-MS), é um equipamento ideal para a determinação de elementos traço numa grande variedade de matrizes. O limite de detecção, a nível de ppt, acoplado com a seletividade tem expandido a sua aplicação. Algumas matrizes ainda possuem dificuldades analíticas específicas inerentes à sua composição, resultando na formação de íons poliatômicos. Por exemplo: águas estuarinas e de oceano aberto contêm altos níveis de elementos alcalinos (sódio principalmente), alcalinos-terrosos e íons cloreto. Estas matrizes requerem uma etapa de remoção desses íons antes da análise por ICP-MS, devido à formação de íons poliatômicos (ArCl+, ArNa+, OCl+, etc). Um caminho para a remoção destas interferências é a geração de hidretos. A geração de hidretos, além de separar os elementos formadores de hidreto da matriz, transporta o analito até o plasma. A utilização de membranas permeáveis a gases tem se revelado atrativa para a determinação de elementos que formam hidretos, via ICP-MS, por diversas razões. Uma vantagem das membranas para separação gás-líquido, é a remoção do sinal do cloreto residual, observado quando se emprega separadores gás-líquido convencionais. A remoção de cloreto elimina a formação de 40 Ar³⁵Cl favorecendo a determinação de ultra-traços de ⁷⁵As. Como já foi mencionado, águas estuarinas e de oceano aberto contêm altos níveis de cloreto, e quando combinado com o emprego de HCl, comumente usado no processo de geração de hidretos, produz uma matriz com concentração de cloreto extremamente alta. Então, um separador gás-líquido que minimize a introdução de cloreto, também reduzirá a interferência de ⁴⁰Ar ³⁵Cl^{48, 52, 69}.

A geração contínua de hidreto, introduz quantidades

Tabela 2. Sumário das metodologias empregadas para especiação de compostos de arsênio.

Espécies de Arsênio	Método para Especiação	Ref.
As(III) e As(V)	Reação de Fleitman	2
As(III) e As(V)	Redução c/ coluna de alumínio	12
As(III)+As(V)+MMA+DMA, As total e AsB	MW	17
As(III)+As(V)+MMA+DMA, As total e AsB+AsC+TMA	MW	27
As total	MW	22, 30, 75
As total, As(III) e As(V)	Hidrólise/Destilação As(III) c/MW	23
As(III) e As(V)	MW/Redução c/ L-cisteína	29
As total, AsB, AsC, e AsB+AsC	Digestão ácida em autoclave/ES	5
As total	Digestão ácida convencional	13, 15, 22,
		23, 31, 76
As total	Digestão ácida/SE	31
As total	Redução assistida por microondas	139
As total	Redução com L-cisteína por 1 hora	161
As total	Digestão ácida em autoclave	76
As(III), As total, As inorgânico e As orgânico	Digestão via seca	46
As(III), As(V), MMA e DMA	Redução /Controle de pH	78, 102
As(III), DMA, As(III)+As(V) e As total	Controle do pH	11
As total, As(III), As(III)+As(V) e As(III)+DMA	Controle do pH	20
As(III), As(V), MMA e DMA	Controle do pH	40, 134
As(III)+As(V)+MMA+DMA, As(III), As(III)+As(V) e DMA	Controle do pH	77
As(III), As(V) e As inorgânico	Controle do pH/MW	41
As(III) e As(V)	Controle do pH/SE	136
As(III) e As(V)	Redução c/ L-cisteína	37, 51, 74
As(III) e As(V)	Redução c/ KI	37, 49
As(III) e As(V)	Redução c/ tiouréia	49, 50
As(III) e As(III)+As(V)+MMA+DMA	Redução c/KI	79
As total	Redução c/KI	138
As(III) e As total inorgânico	Redução c/KI e ác. Ascórbico	48, 53
As(III), As(V) e As orgânico total	Extração c/HCl/Redução c/ KI	137
As total, As(III)+(V), MMAA(III),	SE	21
DMAA(III), MMAA(V) e DMAA(V)	SE	21
As(III)	SE	42, 80
As(III), As(V), MMA e DMA	SE SE	13
As(III) e $As(V)$	SE SE	95, 130
As total, As(III), As(V), MMA, DMA, AsB, TMA e TMAO	SE-IC	31
As(V), MMA e DMA	SE-IC	133
As(III), As(V), MMA e DMA	SFC	93, 98
As(III) e As total	SE	99
As(III), As(V), MMA e DMA	SE-MW	19
As(V), MMA, DMA, AsB e Arseno-açucar	SE-MW	163
	Extração c/ HCl 4,0M-IC	81
As(III) e As(V)	Redução/Extração-IC	54, 82
As(III) e As(V) As(III), As(V), MMA e DMA	, ,	83
	SE-IC SE HDLC HV	
As(III),As(V), MMA, DMA, AsB e AsC	SE-HPLC-UV	32 44
As(V), MMA, DMA, AsB e As total	SE-HPLC-UV SE-HPLC	156
As(III) e As(V)		
As total, As(III), As(V), MMA e DMA	SE-HPLC	45
2 compostos de arsênio	SE-HPLC	57
As(III),As(V), MMA, DMA, As total e As mineral	SE-HPLC	84
As(III), As(V), MMA, DMA, AsB, AsC, TMA e TMAsO	SE-HPLC	160
As(III), As(V), MMA, DMA e AsB	HPLC-UV	158
As(III), As(V), MMA e DMA	IC	3, 13, 69, 70,
A . A . MMA DMA	IC	85, 147, 155
As inorgânico, MMA e DMA	IC	15
As total, As(III), As(V), MMA e DMA	IC	47
As(III) e As(V)	IC	86
As(V) e MMA	IC	87
As(III), As(V), MMA, DMA e p-APA	IC	88
As(III), As(V), MAA, DMA, AsB e TMAO	IC	89
As(III), As(V), MMA, DMA, AsB e AsC	IC	90, 164
As(III), As(V), MMA, DMA, AsB, AsC e TMA	IC-UV	91
As(III), As(V), MMA, DMA, AsB, AsC e TMA	IC	152
As(III)+As(V)+MAA+DMA, AsB+AsC+TMA e As total	UV	27
As(III), As(V), MMA, DMA, AsB e AsC	LC-UV	34
	LC	92

Cont. Tabela 2.

Espécies de Arsênio	Método para Especiação	Ref.
As(III), As(V), MMA e DMA	LC	43, 52, 93, 94
As(III) e As(V)	IEC	96
As total e AsB	GC-MW	6
As(III), As(V), MMA e DMA, AsB, AsC e TMA	GC-MW	24
As(III), As(V), MMA e DMA	GLC	101
As(III), As(V), MMA e DMA	GC	103,104,157
As(III), As(V), MMA e DMA	HPLC	4, 9, 16, 72, 104,
		114, 150, 151, 158
As(V), MMA e DMA	HPLC	154
AsB e AsC	HPLC	73
10 compostos de arsênio	HPLC	59
15 espécies de arsênio	HPLC	115
As(III), As(V), MMA, DMA e AsB	HPLC	116-118
As(III), As(V), MMA, DMA, AsB e AsC	HPLC	117, 148
As(III) e As(V)	HPLC	119, 120, 153
MMA e DMA	HPLC	121
As inorgânico, MMA e DMA	HPLC	122
As(III), As(V), MMA, DMA, AsB e AsC	HPLC	10, 58, 123-125
As(III), As(V), MMA, DMA, AsB, AsC e TMA	HPLC	14, 53, 104
As(III), As(V), MMA, DMA, AsB, AsC, TMA e TMAO	HPLC	126, 140
As(III), As(V) e DMA	HPLC	127
As(III), As(V), MMA, DMA, AsB, AsC, TMA e fenilarsênio	HPLC-UV	7
As(III), As(V), MMA, DMA, AsB e AsC	HPLC-UV	35
As(III), As(V), MMA, DMA, AsB, AsC, TMA e TMAsO	HPLC-UV	162
MMA, DMA, AsB e AsC	HPLC-UV	33
As(III), As(V), MMA, DMA, AsB e AsC	HPLC-termooxidação	36
As(III), As(V), MMA, DMA, AsB, AsC e TMA	HPLC-MW	18
As(III), As(V), MMA, DMA e AsB	HPLC-MW	25
As(III), As(V), MMA, DMA, AsB e AsC	HPLC-MW	26, 28
As total e AsB	HPLC-MW	61
As total, As(III), As(V), MMA, DMA e AsB	HPLC-MW-Redução c/ L-cisteína	100
As(III), As(V), MMA e DMA.	CZE	95, 128, 146
As(III) e As(V)	CZE	129
As(III), As(V) e DMA	CZE	145
As(III) e As(V)	CSV	149

As(III) - ânion arsenito, As(V) - ânion arseniato, AsB - cátion arsenobetaína, AsC - cátion arsenocolina, MMA - ânion monometilarsonato, DMA - ânion dimetilarsenato, TMA - cátion tetrametilarsônio, p-APA - para-aminofenilarsonato, As total - arsênio total, TMAO - óxido de tetrametilarsônio, TMAsO - óxido de trimetilarsina, CZE - Eletroforese por zona capilar, CSV - Voltametria de redissolução catódica, GC - Cromatografia gasosa, HPLC - Cromatografia líquida de alta eficiência, IEC - Cromatografia de exclusão iônica, IC - Cromatografia Iônica, LC - Cromatografia líquida, SE - Extração por solvente, SFC - Cromatografia com fluido supercrítico, UV - Fotooxidação com luz ultravioleta, MW - Digestão em forno de microondas, GLC - Cromatografia gás-líquido.

relativamente altas de hidrogênio e água no plasma de argônio, o que reduz a sua eficiência e estabilidade. A perda de energia do plasma é importante, particularmente para um elemento tal como arsênio que tem uma energia de excitação relativamente alta, 9,81 eV, ionizando-se somente de modo parcial no plasma de argônio. A introdução de amostras por vaporização eletrotérmica (ETV), oferece diversas vantagens sobre os sistemas convencionais. Além da grande sensibilidade e capacidade de analisar pequenos volumes (μL) de amostras, a remoção do solvente antes da análise resulta em um plasma mais quente, reduzindo as interferências poliatômicas como, por exemplo, a dos óxidos. Além disso, as interferências de matriz podem ser removidas com modificadores químicos ou volatilizados na etapa de calcinação, separando efetivamente, *in situ*, as espécies interferentes⁷¹.

Dentre as técnicas para determinação de elementos traço, a espectrometria de fluorescência atômica (AFS) tem recebido pouca atenção. De 1960 a 1970, os métodos por espectrometria de absorção atômica estiveram na moda. De 1970 a 1980, a espectrometria de emissão atômica com fontes de plasmas indutivamente acoplados (ICPs) e de plasmas de corrente direta (DCPs) tornaram-se predominantes e, na década atual, a ênfase tem sido ao acoplamento direto de ICPs com espectrômetro de massas. No entanto, a técnica de fluorescência atômica, oferece grandes

vantagens em termos de linearidade e níveis de detecção, pois, atualmente, os sinais têm melhorado muito em função da qualidade das lâmpadas empregadas como fontes de excitação. Suas limitações, como espalhamento e background, dependem dos níveis de impurezas das amostras. A detecção por fluorescência atômica, especialmente quando acoplada à técnica de geração de hidreto, oferece sensibilidade e especificidade⁸, sendo esta sensibilidade comparável à mais alta sensibilidade oferecida por HG-ETAAS, com um custo reduzido, devido a não se ter necessidade de utilizar tubos de grafite, oferecendo um sistema de detecção atrativo para determinação de arsênio em amostras líquidas a nível de traços⁶³. Muitos dos elementos formadores de hidretos, inclusive arsênio, podem ser detectados por espectrometria de fluorescência atômica (AFS) na região do ultravioleta, abaixo de 259 nm. Esta é a região espectral útil, porque somente uma pequena emissão de fundo (background) é observada, quando uma chama fria de baixa energia é utilizada. É claro que para se obter bons limites de detecção é necessário uma fonte de excitação de alta intensidade de radiação. Esta é, possivelmente, a razão pela qual a AFS não foi largamente utilizada no passado. Recentemente, lâmpadas do tipo boosted-discharge hollow cathode (BHDC) tornaram-se comercialmente disponíveis e têm se mostrado uma boa fonte de excitação para a AFS^{72,73}.

Os sistemas de detecção que combinam digestão por microondas em linha, geração de hidretos e espectrometria de fluorescência atômica (HG-AFS), fornecem uma abordagem única para diferenciar alguns compostos de arsênio que, até então, eram difícies de serem separados por HPLC. Arsenito, arseniato, MMA e DMA reagem com NaBH₄ e formam facilmente hidretos voláteis, sendo detectados por AFS. Arsenobetaína, arsenocolina e TMA não formam hidretos sob o mesmo tratamento químico, mas podem ser derivatizados a arsênio inorgânico por diversos métodos e, então, detectados da mesma forma¹⁸.

A Tabela 3 apresenta um resumo das diferentes técnicas para detecção de arsênio e as matrizes para as quais os procedimentos foram aplicados.

Tabela 3. Sumário das técnicas de detecção empregadas para a especiação de compostos de arsênio e tipos de matrizes analizadas.

Espécies de Arsênio	Técnica de Detecção	Matriz	Ref.
As(III), As(V), MMA e DMA	GFAAS	Amostra sintética	3
As(III) e As(V)	GFAAS	Água	86,130
As(III), As(V), MMA, DMA, AsB e AsC	GFAAS	Músculo de peixe	123
As(V),MMA, DMA, AsB, AsC e TMA	GFAAS	Padrões aquosos	131
As(III) e As total	GFAAS	Sedimentos marinhos	99
As total	GFAAS	Alimento de origem marinha	76
As(III) e As(V)	GFAAS	Sedimento lacustre	81
As(III), As(V), MMA, DMA, AsB e AsC	GFAAS	Amostras sintéticas	132
As(III) e As(III)+As(V)+MMA+DMA	GFAAS	Urina	79
As(III)	GFAAS	Solo e sedimento	141
As(III)	FI-GFAAS	Padrão aquoso	64,68
As(III) e As(V)	FI-GFAAS	Água	2,54
		Água do mar	82
As(III)+As(V)+MMA+DMA,	FI-GFAAS	Água (certificada)	27
As total, AsB e AsC+TMA	CEAAC	Alimento de enigem meninho	5
As total, AsB, AsC e AsB+AsC	GFAAS	Alimento de origem marinha (certificado)	5
As total, As(III), As(III)+As(V) e DMA+As(III)		Água	20
As total, As(III)+As(V), MMAA(III), DMAA(III), MMAA(V) e DMAA(V)	GFAAS	Agua	21
As(III), As(V), MMA, DMA, AsB e AsC	GFAAS	Urina	26,28
As total, As(III), As(V), MMA, DMA, AsB e TMA	GFAAS	Urina	14
As inorgânico, MMA, DMA, AsB e AsC	GFAAS	Material biológico (certificado)	31
As(III), As(V), MMA, DMA, AsB, AsC, TMA e TMAO	GFAAS	Urina	7
As(III) e As(V)	GFAAS	Alimento de origem marinha	23
As(III), As(V), MMA e DMA	GFAAS	Amostras de origem marinha	83
As total, As(III), As(V), MMA e DMA	GFAAS	Sedimentos marinhos	47
As(III) e As(V)	GFAAS	Sedimentos estuarinos	153
As(III), As(V), MMA e DMA	GFAAS	Água intersticial	85
is(iii), his(v), wiwhi c Dwh	GITITIS	Água do mar	102
As total	GFAAS	Material biológico	31
As total	GIAAS	Alimento de origem marinha	76
		Tabaco (certificado)	144
As increânice As(III) a As(IV)	GFAAS		41
As inorgânico, As(III) e As(V) As(III)+As(V)+MMA+DMA, As(III)+ As(V), As(III) e DMA	GFAAS	Água Água	77
As(III), As(III) e DMA As(III), As(V) e As orgânico total	GFAAS	Solo	137
	HG-GFAAS		137
As(V), MMA e DMA		Organismos marinhos e sedimentos	154
As(V), MMA e DMA Asp. Asc. a TMA	HG-AAS	Águas	
As(III), As(V), MMA, DMA, AsB, AsC e TMA As(III), As(V), MMA e DMA	FI-HG-AAS	Água (certificada) Solo	91
		Água	9, 56, 111, 112, 134
		Urina	13, 16, 19, 105
		Soro	33, 106
		Amostra sintética	40, 51, 55, 104, 107, 78
As(III), As(V), MMA, DMA e AsB	FI-HG-AAS	Amostra sintética	11
As total, As(III)+As(V), MMA, DMA, e AsB	FI-HG-AAS	Urina	17
As(III) e As(V)	FI-HG-AAS	Água	12
As inorgânico, MMA e DMA	FI-HG-AAS	Urina	15
		Água	122
As total	FI-HG-AAS	Tecido de peixe (certificado)	22
As(III), As(V), AsB, MMA, DMA,	FI-HG-AAS	Padrões aquosos	34
ác.o-arsanílico e ác. Fenilarsônico	11101110		J .

Cont. Tabela 3.

Espécies de Arsênio	Técnica de Detecção	Matriz	Ref.
As total	FI-HG-AAS	Úrina	161
As total, As(III) e As(V)	FI-HG-AAS	Água	37
As(III)	FI-HG-AAS	Amostra sintética	39
		Padrão aquoso	64
as total, As inorgânico,	FI-HG-AAS	Tecido de animal marinho	100
s reduzível, MMA, DMA e AsB	111101110	Teelde de ammar marmine	100
MA e DMA	FI-HG-AAS	Alimento de origem marinha	121
		Amostra sintética	
s(III), As(V), MMA, DMA e p-APA	FI-HG-AAS		88
s(III) e As Inorgânico	FI-HG-AAS	Água de rio	53
s(III) e As(V)	FI-HG-AAS	Ųrina	19
s(III), As(V), MMA, DMA,	FI- HG-AAS	Água	26
sB e AsC		Água e extrato de peixe	36
		Urina	97, 125
s(III), As(V), MMA, DMA e AsB	FI-HG-AAS	Urina	25
s(III) e As(V)	FI-HG-AAS	Sangue	29
s(III), As(V), MMA, DMA, AsB,	FI-HG-AAS	Amostra sintética	7
	11-110-AAS	Amostra sintetica	,
sC, TMA e fenilarsênio	EL HG A A G		.
s total e AsB	FI-HG-AAS	Alimento marinho	61
s(III), As(V), MMA e DMA, AsB, AsC e TI	MA FI-HG-AAS	Urina	24
		Solo	60
rsênio total	HG-AFS	Água	8
s(III), As(V), MMA, DMA, AsB e TMA	HG-AFS	Urina	14
s(III), As(V), MMA e DMA	HG-AFS	Cogumelo	158
s(III), As(V), MMA, DMA, AsB, AsC e TM		Urina	18
s(III), As(V), MMA, DMA, AsB,	HG-AFS	Amostras sintéticas	162
sC, TMA e TMAsO		,	
s(III), As(V) e As total	FI-HG-AFS	Água do mar	63
s(III), As(V), MMA e DMA	FI-HG-AFS	Amostra sintética	104
s(III), As(V), MMA e DMA	FI-USN-AFS	Amostra sintética	72
		Água	111
sB e AsC	FI-USN-AFS	Água	73
s(III), As(V), MMA, DMA e AsB	AFS e GC	Cogumelo	158
s(III), As(V), MMA, DMA, AsB e AsC	HG-ICP-OES	Material biológico marinho	32
		(certificado)	
s(V), AsB e As total	HG-ICP-OES	Organismos marinhos	44
s(III), As(V), MMA e DMA	HG-ICP-OES	Água mineral	43
s(III), As(V), MMA, DMA, AsB e AsC	ICP-OES	Amostra sintética	92
s total, As(III), As(V), MMA, DMA, AsB e	ΓMA RNAA	Material biológico (certificado)	31
s(III), As total, As inorgânico e As orgânico		Águas	46
		Amostras ambientais	135
s(III)	ASV	,	
s(III) e As(V)	CSV	Água	142, 149
s(III), As(V), MMA e DMA	Ionização e	Água, urina, sangue e tecido	101
	captura de elétrons	de peixe em pó	
		Água	103
s(III) e As(V)	FAAS	Água	86
s total e AsB	FI-FAAS	Tecido de peixe	6
s(III), As(V), MMA, DMA, AsB,	FI-FAAS	Amostra sintética	126
sC, TMA e TMAsO	1111111	111105tra bilitotica	120
	MAG	Á	4.1
s(III), As(V) e As inorg.	MAS	Água	41
s(III)	MAS	Água	42
s(III) e As(V)	MAS	Água	119,129
		Amostra sintética	136
s(III) e As(V)	FI-MAS	Amostras sintéticas	96
s(III), As(V), MMA e DMA	GC	Areia e solo	98
s(III) e As(V)	Amperometria	Água mineral	119
s total, As(III) e As(V)	XRF	Solo	137
		,	
s(III) e As(V)	UV	Agua	13
s(III), As(V), MMA, DMA, AsB e AsC	FI-UV	Amostra sintética	58
	etecção indireta no UV		95
s(III)	AES-fonte de	Amostras de águas doce e de mar	81
	arco de hélio	(sintéticas e naturais)	
2 compostos de arsênio	ICP-AES	Tecido de animais marinhos	57
	ICP-AES	Amostra sintética	119
s(III), As(V), MMA, DMA e AsB			
s total s(III) e As(V)	ICP-AES ICP-AES	Alimentos de origem marinha	23
		Amostra sintética	138

Cont. Tabela 3.

Espécies de Arsênio	Técnica de Detecção	o Matriz	Ref.
As(V) e MMA	FI-AES	Material de referência	87
As(III), As(V), MMA, DMA,	FI-HG-ICP-AES	Amostra sintética	35
AsB e AsC		Urina	125
s(III), As(V), MMA e DMA	FIA-HG-ICP-AES	Amostra sintética	59, 104, 113
		Água e urina	114
As(III), As(V) e DMA	FIA-HG-ICP-AES	Solução padrão	127
As total	FIA-HG-MIP-AES	Tecido biológico (certificado)	30
s(III), As(V),MMA e DMA	HG-MIP-AES	Água e urina	110
s(III), As(V), MMA e DMA	FIA-HG-QCAAS	Água	43
s total, As(III), As(V), MMA e DMA	ICP-MS	Urina	45
As(III)	ICP-MS	Água (certificada)	139
s(III), As(V), MMA, DMA, AsB, AsC e TM		Ùrina	14, 140
s(III), As(V), MMA, DMA, AsB, AsC e TM		Água	148, 152
s(III), As(V), MMA e DMA	ICP/MS	Urina, refrigerante e vinho	69
(iii), 115(+), 1111111	101/1112	Urina	93, 94
		Água	147, 150, 151
		Sedimentos	155
s(III), As(V), MMA, DMA, AsB e AsC	ICP-MS	Músculo de peixe	123
15 espécies de arsênio	ICP-MS	Material de referência	115
s(III), MAA, DMA, AsB e TMAsO	ICP-MS	Urina	89
As(III) e As(V)	ICP-MS	Extrato de cinza	120
As(III) C As(V)	ICI -WIS	Solo	156
s(III), As(V), MMA, DMA, AsB e AsC	ICP-MS	Água	117
	ICP-MS		164
s(III), As(V), MMA e DMA		Material vegetal Amostra sintética de sedimento	84
s(III), As(V), MMA, DMA, Astotal e As mi s(III), As(V), MMA, DMA, AsB, AsC, TMA e TMAsO	HHPN-ICP-MS	Tecido de peixe	160
As(III)	ETV-ICP-MS	Água doce e do mar	71
As total		Material particulado em filtro de ar	75
As total	LA-ICP-MS	Material particulado em mito de al	75
As total	FIA-ICP-MS	Água	50
As total	FIA-HG-ICP-MS	Amostra sintética	159
as(III), As(V), MMA, DMA e AsB	HG-ICP-MS	Urina	25
s(III), As(V), MMA e DMA	FIA-ICP-MS	Urina	69, 108
s(III), As(V), MMA, DMA, e AsB	FIA-ICP-MS	Tecido de peixe	116
s(III), As(V), MMA, DMA, AsB e AsC	FIA-ICP-MS	Amostra sintética de peixe e	10
s(III), As(V), MMA, DMA, ASD C ASC	TIA-ICI -WIS	de sedimento	10
		Água	90
g(III) Ag(V) MMA DMA AgD a AgC	FIA-TN-ICP-MS	Agua mineral e urina	124
s(III), As(V), MMA, DMA, AsB e AsC			
As(III) e As(V)	FIA-HG-ICP-MS	Água do mar	48
-(V) MMA DMA A-D - A	ELA HC ICD MC	Água	49
s(V), MMA, DMA, AsB e Arseno-açucar	FIA-HG-ICP-MS	Tecido de ostra	163
s(III), As(V), MMAA e DMAA	FIA-HG-ICP-MS	Água (certificada)	52, 70, 128
As(III)	FIA-HG-ICP-MS	Água (certificada)	74, 134
A 1	ELA HO LOD MO	Padrão aquoso	64
As total	FIA-HG-ICP-MS	Água do mar	143
s(III), As(V), MMA e DMA	FI-MS	Agua	103
10 compostos de arsênio	FI-ES-MS-MS	Urina	59
s(III), As(V), MMA, DMA, AsB, AsC e TMA	FIA-HG-ICP-MS	Extrato aquoso de solo	60
s(III), As(V), MMA e DMA	HG-ICP-MS	Água	146
s(III), As(V), MMA e DMA	GC-MS	Água	157

As(III) - ânion arsenito, As(V) - ânion arseniato, AsB - cátion arsenobetaína, AsC - cátion arsenocolina, MMA - ânion monometilarsonato, DMA - ânion dimetilarsenato, TMA - cátion tetrametilarsônio, p-APA - para-aminofenilarsonato, As total - arsênio total, TMA - cátion tetrametilarsônio, TMAO - óxido de tetrametilarsônio, TMASO - óxido de trimetilarsina, AAS - Espectrometria de absorção atômica, AES - Espectrometria de emissão atômica, AFS - Espectrometria de fluorescência atômica. GFAAS - Espectrometria de absorção atômica com forno de grafite, ASV - Voltametria de redissolução anódica, CSV - Voltametria de redissolução catódica, DPP - Polarografia por pulso diferencial, ES-MS - Espectrometria de massas com "electrospray", FAAS - Espectrometria de absorção atômica com chama, FI - Análise por injeção em fluxo, GC - Cromatografia de gases, GC-MS - Cromatografia de gases com detetor de espectrometria de massas, HG - Geração de hidretos, HHPN - Nebulizador hidráulico de alta pressão, ETV - Vaporização eletrotérmica, ICP-AES - Espectrometria de emissão atômica com fonte de plasma induzido, ICP-MS - Espectrometria de massas com fonte de plasma induzido, LA - Abrasão superficial por laser (Laser Ablation), MAS - Espectroscopia de absorção molecular, MGLS - Separação gás-líquido com membrana, MIP - Plasma induzido por microondas, MS - Espectrometria de massas, NAA - Análise por ativação com neutrons, OES - Espectrometria molecular no ultravioleta.

CONCLUSÃO

Existe um interesse contínuo no desenvolvimento de métodos analíticos para especiação de arsênio em diferentes tipos de matrizes, tanto líquidas quanto sólidas. Estes métodos devem alcançar, sucessivamente, melhores limites de detecção, capazes de medir pequenas concentrações numa grande variedade de amostras, com sensibilidade, seletividade e, também simplicidade, para que possam ser utilizados em rotina nos laboratórios.

Esta revisão não é exaustiva, porém, resume os métodos de especiação e as técnicas de detecção que vêm sendo empregadas nos últimos 20 anos, indicando os avanços obtidos e as publicações mais relevantes que poderiam ser de interesse dos químicos analíticos. O Analytical Abstracts publicado em CD-ROM pela Royal Society of Chemistry (período de 1980 a março de 1998) complementado com as principais revistas de química analítica (até junho de 1998) serviram de base para a seleção das referências bibliográficas listadas neste trabalho.

AGRADECIMENTOS

Os autores C.M.B e R.E.S. agradecem ao CNPq os auxílios e bolsas concedidas.

REFERÊNCIAS

- 1. Van Loon, J. C.; Barefoot, R. R.; Analyst 1992, 117, 563.
- 2. Burguera, M.; Burguera, J. L.; *J. Anal. At. Spectrom.* **1993**, 8, 229.
- 3. Pacey, G. E.; Ford, J. O.; Talanta 1981, 28, 935.
- 4. Haswell, S. J.; O' Neill, P.; Bancroft, K. C. C.; *Talanta* **1985**, *32*, 69.
- Petropulu, M. O.; Varsamis, J.; Parissakis, G.; Anal. Chim. Acta 1997, 337, 323.
- Ballin, U.; Kruse, R.; Rüsell, H. A.; Fresenius J. Anal. Chem. 1994, 350, 54.
- 7. Howard, A. G.; Hunt, L. E.; Anal. Chem. 1993, 65, 2995.
- 8. Stockwell, P. B.; Corns, W. T.; Analyst 1994, 119, 1641.
- 9. Stummeyer, J.; Harazin, B.; Wippermann, T.; Fresenius J. Anal. Chem. 1996, 354, 344.
- Demesmay, C.; Olle, M.; Porthault, M.; Fresenius J. Anal. Chem. 1994, 348, 205.
- 11. Anderson, R.K.; Thompson, M.; Culbard, E.; *Analyst* **1986**, *111*, 1143.
- 12. Burguera, M.; Burguera, J. L.; Brunetto, M. R.; de la Guardia, M.; Salvador, A.; Anal. Chim. Acta 1991, 261, 105.
- 13. Chatterjee, A.; Das, D.; Mandal, B. K.; Chowdhury, T. R.; Samanta, G.; Chakabrorti, D.; *Analyst* **1995**, *120*, 643.
- R.; Samanta, G.; Chakabrorti, D.; Analyst 1995, 120, 643 14. Le, X. C.; Ma, M.; J. Chromatogr. A 1997, 764, 55.
- Blas, O. J. de; Gonzalez, S. V.; Rodriguez, R. S.; Mendez, J. H.; J. of AOAC Int. 1994, 77, 441.
- 16. Chana, B. S.; Smith, N. J.; Anal. Chim. Acta **1987**, 197, 177.
- 17. Le, X. C.; Cullen, W. R.; Reimer, K. J.; *Talanta* **1993**, 40,185.
- 18. Le, X. C.; Ma, M.; Wong, N. A.; Anal. Chem. 1996, 68, 4501.
- Hanna, C. P.; Tyson, J. F.; McIntosh, S.; Clin. Chem. 1993, 39, 1662.
- Quináia, S. P.; Rollemberg, M. do C. E., *J. Braz. Chem. Soc.* 1997, 8, 349.
- Hasegawa, H.; Sohrin, Y.; Matsuil, M.; Hojo, M.;
 Kawashima, M.; Anal. Chem. 1994, 66, 3247.
- Damkröger, G; Grote, M.; Janben, E.; Fresenius J. Anal. Chem. 1997, 357, 817.
- López, J.C.; Reija, C.; Montoro, R.; Cervera, M. L.; de la Guardia, M., J. Anal. At. Spectrom. 1994, 9, 651.
- Le, X. C.; Cullen, W. R.; Reimer, K. J.; Anal. Chim. Acta. 1994, 285, 227.

- Le, X. C.; Cullen, W. R.; Reimar, K. J.; Talanta 1994, 41, 495.
- López-González, M. A.; Gómez, M. M.; Cámara, C.;
 Palacios, M. A.; J. Anal. At. Spectrom. 1994, 9, 291.
- 27. Willie, S. N.; Spectrochim. Acta B 1996, 51, 1781.
- 28. López-González; M. A.; Gómez, M. M.; Palacios, M. A.; Cámara, C.; Chromatographia 1996, 43, 507.
- 29. Welz, B.; He, Y.; Sperling, B.; Talanta 1993, 40, 1917.
- 30. Schickling, C.; Yang, J.; Broekaert, J. A. C.; *J. Anal. At. Spectrom.* **1996**, *11*, 739.
- 31. Slejkovec, Z.; Byrne, A. R.; Smodis, B.; Rossbach, M.; Fresenius J. Anal. Chem. **1996**, 354, 592.
- 32. Albertí, J.; Rubio, R.; Rauret, G.; Fresenius J. Anal. Chem. 1995, 351, 415.
- Zhang, X.; Cornelis, R.; De Kimpe, J.; Mees, L.; Anal. Chim. Acta 1996, 319, 177.
- 34. Atallah, R. H.; Kalman, D. A.; Talanta 1991, 38, 167.
- 35. Rubio, R.; Padró, A.; Albertí, J.; Rauret, G.; Anal. Chim. Acta 1993, 283, 160.
- López, M. A.; Goméz, M. M.; Palacios, M. A.; Cámara,
 C.; Fresenius J. Anal. Chem. 1993, 346, 643.
- Schaumlöffel, D.; Neidhart, B.; Fresenius J. Anal. Chem. 1996, 354, 866.
- 38. Baluja-Santos, C.; Gonzalez-Portal, A.; *Talanta* **1992**, 39, 329.
- Wentzell, P. D.; Sundin, N. G.; Hogeboom, C.; Analyst 1994, 119, 1403.
- Rüde, T. R.; Puchelt, H.; Fresenius J. Anal. Chem. 1994, 350, 44.
- 41. Lopez, A.; Torralba, R.; Palacios, M. A.; Camara, C.; *Talanta* **1992**, *39*, 1343.
- 42. Palanivelu, K.; Balanasubramanian, N.; Ramakrishna, T. V.; *Talanta* **1992**, *39*, 555.
- 43. Rubio, R.; Padró, A.; Rauret, G.; Fresenius J. Anal. Chem. **1995**, 351, 331.
- 44. Albertí, J.; Rubio, R.; Rauret, G.; Fresenius J. Anal. Chem. 1995, 351, 420.
- 45. Bavazzano, P.; Perico, A.; Rosendahl, K.; Apostoli, P.; *J. Anal. At. Spectrom.* **1996**, *11*, 521.
- 46. Buldini, P. L.; Ferri, D.; Zini, Q.; Mikrochim. Acta 1980, 1, 71.
- Soto, E. G.; Lojo, M. C. V.; Rodríguez, E. A.; Dourado,
 J. N.; Rodríguez, D. P.; Fernández, E. F.; Fresenius J. Anal. Chem. 1996, 355, 713.
- 48. Creed, J. T.; Magnuson, M. L.; Brockhoff, C. A.; Chamberlain, I.; Sivaganesan, M.; J. Anal. At. Spectrom. 1996, 11, 505.
- 49. Risnes, A.; Lund, W.; J. Anal. At. Spectrom. 1996, 11, 943.
- Bowman, J.; Fairman, B.; Catterick, T.; J. Anal. At. Spectrom. 1997, 12, 313.
- 51. Howard, A. G.; Salou, C.; Anal. Chim. Acta 1996, 333, 89.
- 52. Hwang, C. J.; Jiang, S. J.; Anal. Chim. Acta 1994, 289, 205.
- 53. Driehaus, W.; Jekel, M.; Fresenius J. Anal. Chem. 1992, 343, 352.
- Pozebon, D., Dressler, V.L.; Gomes Neto, J.A.; Curtius, A. J.; *Talanta* 1998, 45, 1167.
- 55. Van Elteren; J. T.; Das, H. A.; Bax, D.; *J. Radioanal. Nucl. Chem.* 1993, 174, 133.
- Van Elteren; J. T.; Das, H. A.; Ligny, C. L. de; Agterdenbos, J.; Bax, D.; *J. Radioanal. Nucl. Chem.* 1994, 179, 211.
- 57. Morita, M.; Shibata, Y.; Anal. Sci. 1987, 3, 575.
- 58. Morin, P.; Amran, M. B.; Favier, S.; Heimburger, R.; Leroy, M.; *Fresenius J. Anal. Chem.* **1991**, *339*, 504.
- 59. Pergantis, S. A.; Winnik, W.; Betowski, D.; *J. Anal. At. Spectrom.* **1997**, *12*, 531.
- Hansen, S. H.; Larsen, E. H.; Pritz, G.; Cornett, C. J. Anal. At. Spectrom. 1992, 7, 629.
- Vélez, D.; Ybáñez, N.; Montoro, R.; J. Anal. At. Spectrom. 1997, 12, 91.

- Careri, M.; Mangia, A.; Musci, M., J. Chromatogr. A 1996, 727, 153.
- 63. Moreda-Piñeiro, J.; Cervera, M. L.; de la Guardia, M.; *J. Anal. At. Spectrom.* **1997**, *12*, 1377.
- 64. Kalähne, R.; Henrion, G.; Hulanicki; A. Garbos, S.; Walcerz, M.; Sprectrochim. Acta B 1997, 52, 1509.
- 65. Ruzicka, J.; Hansen, E. H.; *Flow Injection Analysis*, 2nd Ed., John Wiley & Sons, New York, 1988.
- Valcárcel, M; Luque de Castro, M. D.; Flow Injection Analysis - Principles and Applications, Ellis Horwood, Chichester, 1987.
- 67. Fang, Z., Flow Injection Separation and Preconcentration, VCH, Weinheim, 1993.
- 68. Fang, Z.; Flow Injection Atomic Absorption Spectrometry, John Wiley & Sons, Chichester, 1995.
- Sheppard, B. S.; Caruso, J. A.; Heitkemper, D. T.; Wolnik, K. A.; Analyst 1992, 117, 971.
- Magnuson, M. L.; Creed, J. T.; Brockhoff, C. A. J. Anal. At. Spectrom. 1996, 11, 893.
- Grégoire, D. C.; Ballinas, M. de L.; Spectrochim. Acta B 1997, 52, 75.
- Woller, A.; Mester, Z.; Fodor, P. J. Anal. At. Spectrom, 1995, 10, 609.
- 73. Mester, Z.; Fodor, P.; J. Anal. At. Spectrom. 1997, 12, 363.
- Huang, M.F.; Jiang, S.J.; Hwang, C. J.; J. Anal. At. Spectrom. 1995, 10, 31.
- 75. Wang, C. F.; Jeng, S. L.; Shieh, F. J.; J. Anal. At. Spectrom. 1997, 12, 61.
- Fedorov, O.N.; Ryabchuck, G.N.; Zverev, A. V. Spectrochim. Acta B 1997, 52, 1517.
- 77. Anderson, R. K.; Thompson, M.; Culbard, E.; *Analyst* **1986**, *111*, 1153.
- 78. Torralba, R.; Bonilla, M., Pérez-Arribas, L. V.; Palacios; A.; Cámara, C.; Spectrochim. Acta B 1994, 49, 893.
- 79. Subramanian, K. S.; Can. J. Spectroscopy 1988, 33, 173.
- Chakraborti, D. Adams, F.; Irgolic, K. J.; Fresenius J. Anal. Chem. 1986, 323, 340.
- 81. Ficklin, W. H.; Talanta 1990, 137, 831.
- 82. Sperling, M.; Yin, X.; Welz, B; Spectrochim. Acta B 1991, 46, 1789.
- 83. Petropulu, M. O.; Ochsenkühn, K. M.; Milonas, I.; Parissakis, G.; Can. J. Appl. Spectrocopy 1995, 40, 61.
- Demesmay, C.; Ollé, M.; Fresenius J. Anal. Chem. 1997, 357, 1116.
- 85. Aggett, J.; Kadwani, R.; Analyst 1983, 108, 1495.
- 86. Russeva, E.; Havezov, I.; Detcheva, A.; Fresenius J. Anal. Chem. 1993, 347, 320.
- 87. Petropulu, M. O.; Schramel, P. Anal. Chim. Acta 1995, 313, 243.
- 88. Ricci, G. R.; Shepard, L. S.; Colovos, G.; Hester, N. E.; *Anal. Chem.* **1981**, *53*, 610.
- 89. Inoue, Y.; Kawabata, K.; Takahashi, H. e Endo, G.; J. Chromatography A 1994, 675, 149.
- 90. Teräsahde, P.; Pantsar-Kallio, M.; Manninen, P. K. G.; *J. Chromatography A* **1996**, 750, 83.
- 91. Sturgeon, R. E.; Siu, K. W. M.; Willie, S. N.; Berman, S. S.; *Analyst* **1989**, *114*, 1393.
- 92. Rubio, R.; Peralta, I.; Albertí, J.; Rauret, G.; J. Liquid Chromatography 1993, 16, 3531.
- 93. Vela, N. P.; Caruso, J. A.; *J. Anal. At. Spectrom.* **1993**, *8*, 787.
- 94. Ding, H.; Wang, J.; Dorsey, J. G.; Caruso, J.; J. Chromatography A 1995, 694, 425.
- Lin, L.; Wang, J.; Caruso, J.; J. Chromatogr. Sci. 1995, 33, 177.
- 96. Hemmings, M. J.; Jones, E. A.; Talanta 1991, 38, 151.
- Múrer, A. J. L.; Abildtru, A.; Poulsen, O. M.; Christensen, J. M. *Talanta* 1992, 39, 469.
- 98. Wenclawiak, B.W.; Krah, M.; Fresenius J. Anal. Chem. 1995, 351, 134.

- Bermejo-Barrera, P.; Barciela-Alonso, M. C.; Férron-Novais, M.; Bermejo-Barrera, A.; J. Anal. At. Spectrom. 1995, 10, 247.
- 100. Lamble, K. J.; Hill, S. J.; Anal. Chim. Acta 1996, 334, 261.
- 101. Dix, K.; Cappon, C. J.; Toribara, T. Y.; *J. Chromatogr. Sci.* **1987**, *25*, 164.
- 102. Michel, P.; Averty, B.; Colandini, V.; *Mikrochim. Acta* 1992, 109, 35.
- 103. Yu, J. J.; Wai, C. M. Anal. Chem. 1991, 63, 842.
- 104. Ebdon, L.; Hill, S.; Walton, A. P.; Ward, R. W.; *Analyst* 1988, 113, 1159.
- 105. Hakala, E.; Pyy, L.; J. Anal. At. Spectrom. 1992, 7, 191.
- 106. Zhang, X.; Cornelis, R.; Kimpe, J.; Mees, L. J. Anal. Atom. Spectrom. 1996, 11, 1075.
- Tye, C. T.; Haswell, S. J.; O'neill, P.; Bancroft, K. C. C.;
 Anal. Chim. Acta 1985, 169, 195.
- 108. Heitkemper, D.; Creed, J.; Caruso, J.; *J. Anal. At. Spectrom.* **1989**, *4*, 279.
- Liu, Y. M.; Sánchez, M. L. F.; González, E. B.; Sanz-Medel, A.; J. Anal. At. Spectrom. 1993, 8, 815.
- 110. Costa-Fernández, J. M.; Lunzer, F.; Pereiro-García, R.; Sanz-Medel, A.; J. Anal. At. Spectrom. 1995, 10, 1019.
- 111. Méster, Z.; Fodor, P.; J. Chromatogr. A 1996, 756, 292.
- 112. Ko, F. H.; Chen, S. L.; Yang, M. H.; J. Anal. At. Spectrom. 1997, 12, 589.
- 113. Rauret, G.; Rubio, R.; Padró, A.; Fresenius J. Anal. Chem. **1991**, 340, 157.
- 114. Medel, A. S.; Aizpun; B.; Marchante, J. M.; Segovia, E., Fernandez, M. L.; Blanco, E.; *J. Chromatogr. A* **1994**, 683, 233.
- 115. Shibata, Y.; Morita, M.; Anal. Chem. 1989, 61, 2116.
- Beauchemin, D.; Siu, K. W. M.; McLaren, J. W.; Berman,
 S. S.; J. Anal. At. Spectrom. 1989, 4, 285.
- 117. Thomas, P.; Sniatecki, K.; J. Anal. At. Spectrom. 1995, 10, 615.
- 118. Low, G. K. C.; Batley, G. E.; Buchanan, S. J.; *J. Chromatogr.* **1986**, *368*, 423.
- 119. Butler, E. C. V.; J. Chromatogr. 1988, 450, 353.
- 120. Wang, J.; Tomlinson, M. J.; Caruso, J. A.; *J. Anal. At. Spectrom.* **1995**, *10*, 601.
- Veléz, D.; Ybáñez, N.; Montoro, R.; J. Anal. At. Spectrom. 1996, 11, 271.
- 122. Gómez, M.; Cámara, C.; Palacios, M. A.; López-González, A.; Fresenius J. Anal. Chem. 1997, 357, 844.
- 123. Beauchemin, D.; Bednas, M. E.; Berman, S. S.; McLaren, J. W.; Siu, K. W. M.; Sturgeon, R. E.; *Anal. Chem.* **1988**, 60, 2209.
- 124. Saverwyns, S.; Zhang, X. Vanhecke, F.; Cornelis, R.; Moens, L.; Dams, R.; J. Anal. At. Spectrom. 1997, 12, 1047.
- 125. Mürer, A.J. L.; Abildtrup, A.; Poulsen, O. M.; Christensen, J.M.; *Analyst* **1992**, *117*, 677.
- 126. Gailer, J.; Irgolic, K.J.; J. Chromatogr. A 1996, 730, 219.
- 127. Schlegel, D.; Mattusch, J.; Dittrich, K.; *J. Chromatogr. A* **1994**, *683*, 261.
- 128. Magnuson, M. L.; Creed, J. T.; Brockoff, C.A.; J. Anal. At. Spectrom. 1997, 12, 689.
- 129. Schlegel, D.; Mattussch, J.; Wennrich, R.; Fresenius J. Anal. Chem. 1996, 354, 535.
- 130. Puttemans, F.; Massart, D. L.; Anal. Chim. Acta 1982, 141, 225.
- 131. Larsen, E. H.; J. Anal. At. Spectrom. 1991, 6, 375.
- 132. Slaveykova, V.I.; Rastegar, F.; Leroy, M. J. F.; *J. Anal. At. Spectrom.* **1996**, *11*, 997.
- 133. Maher, W. A.; Anal. Chim. Acta 1981, 126, 157.
- 134. Howard, A. G.; Arbab-Zavar, M. H. Analyst 1981, 106, 213.
- 135. Wang, J. e Greene, B.; J. Eletroanal. Chem. 1983, 154, 261.
- 136. Howard, A. G.; Arbab-Zavar, M. H.; Analyst 1980, 105, 338.
- 137. Chappell, J.; Chiswell, B.; Olszowy, H. *Talanta* **1995**, 42, 323.
- 138. Chen, H.; Wu, J.; Brindle, I. D.; Talanta 1994, 42, 353.

- 139. Branch, S.; Corns, W. T.; Ebdon, L.; Hill, S.; O' Neill, P.; *J. Anal. At. Spectrom.* **1991**, *6*, 155.
- 140. Larsen, E. H.; Pritzi, G.; Hansen, S. H.; J. Anal. At. Spectrom. 1993, 8, 557.
- 141. Garcia, I. L.; Merlos, M. S.; Córdoba, M. H.; Spectrochim. Acta B 1997, 52, 437.
- 142. Henze, G.; Wagner, W.; Sander, S.; Fresenius J. Anal. Chem. 1997, 358, 741.
- 143. Santosa, S. J.; Mokudai, H.; Tanaka, S.; J. Anal. At. Spectrom. 1997, 12, 409.
- 144. Mierzwa, J.; Adeloju, S. B.; Dhindsa, H.S.; *Analyst* **1997**, *122*, 539.
- 145. Vanifatova, N. G.; Spivakova, B. Y.; Mattusch, J.; Wenrich, R.; J. Capillary Electrophor. 1997, 4, 91.
- 146. Magnuson, M. L.; Creed, J. T.; Brockhoff, C. A.; Analyst 1997, 122, 1057.
- 147. Pantsar-Kallio, M.; Manninen, P. K. G.; *J. Chromatogr. A* **1997**, *779*, 139.
- 148. Saverwyns, S.; Zhang, X.; Vanhaecke, F.; Cornelis, R.; Moens, L.; Dams, R.; J. Anal. At. Spectrom. 1997, 12, 1047.
- 149. Henze, G.; Wagner, W.; Sander, S.; Fresenius J. Anal. Chem. 1997, 358, 741.
- 150. Thomas, P.; Analusis 1997, 25, M35.

70

151. Thomas, P.; Pereira, K.; Koller, D.; Analusis 1997, 25, 19.

- 152. Le, X. E.; Ma, M.; J. Chromatogr. A 1997, 764, 55.
- 153. Manning, B.A.; Martens, D. A.; *Environ. Sci. Technol.* **1997**, *31*, 171.
- 154. Gomez, M.; Cámara, C.; Palacios, M. A.; Lopez-Gonzales, A.; Fresenius J. Anal. Chem. 1997, 357, 844.
- 155. Yehl, P. M.; Tyson, J. F.; Anal. Commun. 1997, 34, 49.
- 156. Woller, A.; Garraud, H.; Boisson, J.; Dorthe, A. M.; Fodor, P.; Donard, O. F. X.; J. Anal. At. Spectrom. 1998, 13, 141.
- 157. Claussen, F. A.; J. Chromatogr. Sci. 1997, 35, 568.
- 158.Slejkovec, Z.; Van Elteren, J. T.; Byrne, A. R.; *Anal. Chim. Acta* **1998**, *358*, 51.
- 159. Beauchemin, D.; J. Anal. At. Spectrom. 1998, 13, 1.
- 160. Goessler, W.; Kuehnelt, D.; Schlagenhaufen, C.; Slejkovec, Z.; Irgolic, K. J. J. Anal. At. Spectrom. 1998, 13, 183.
- Guo, T.; Baasner, J.; Tsalev, D. L.; Anal. Chim. Acta 1997, 349, 313.
- 162. Van Elteren, J. T.; Slejkovec, Z.; *J. Chromatogr. A* **1997**, 789, 339.
- 163. Dagnac, T.; Padró, A.; Rubio, R.; Rauret, G.; Anal. Chim. Acta 1998, 364, 19.
- 164. Dem Broeck, K. V.; Vandecasteele, C.; Geuns, J. M. C.; Anal. Chim. Acta 1998, 361, 101.