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ABSTRACT: Evapotranspiration (ET) is the main component of water balance in agricultural 

systems and the most active variable of the hydrological cycle. In the literature, few studies have 

used the forecast the day before via Artificial Neural Networks (ANNs) for the northern region of 

São Paulo state, Brazil. Therefore, this aimed to predict the reference evapotranspiration for 

Jaboticabal, the major sugarcane-producing region of São Paulo state. We used a historical series of 

data on average air temperature, wind speed, net radiation, soil heat flux, and daily relative 

humidity from 2002 to 2012, for Jaboticabal, SP (Brazil). ET was estimated by Penman-Monteith 

method. To forecast reference evapotranspiration, we used a feed-forward Multi-Layer Perceptron 

(MLP), which is a traditional Artificial Neural Network. Numerous topologies and variations were 

tested between neurons in intermediate and outer layers until the most accurate were obtained. We 

separated 75% from data for network training (2002 to 2010) and 25% for testing (2011 to 2013). 
The criteria for assessing the ANN performance were accuracy, precision, and trend. ET could be 

accurately estimated with a day to spare at any time of the year, by means of artificial neural 

networks, and using only air temperature data as an input variable. 
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INTRODUCTION 
 

Brazil climate patterns are widely diverse (Alvares et al., 2014). In the North region, there is a 

rainy equatorial climate without any dry season, while in the Northeast, the rainy season has low 

rainfall and is restricted to a few months, featuring a semi-arid climate and presenting high climate 

predictability. On the other hand, tropical systems and mid-latitudes influence Southeast and 

Midwest, which present a well-defined dry season (winter), and a rainy season (summer) with 

convective rainfall. Finally, the southern region of Brazil is characterized by medium predictability, 

and due to its latitudinal location, suffers more influence of mid-latitude systems, where frontal 

systems are the main causes of rainfall during the year (Sampaio & Silva Dias, 2014). 

Evapotranspiration (ET) is the main component of water balance in agricultural systems and 

the most active variable of the hydrological cycle (Dong & Dai, 2016; Aparecido et al., 2017a). ET 

is a key parameter for watershed management studies (Raziei & Pereira, 2013), for crop water 

requirement estimates and for irrigation project and management (Kumar et al., 2008). Weather 

conditions have marked influence on ET; subsequently, small mistakes in its estimate have a high 

impact on the water balance calculation for a region (Carvalho et al., 2015). 

Reference evapotranspiration (ET0) is measured by techniques and relatively complex 

physical principles (Allen et al., 2011), and the most direct and accurate way to estimate it is by 

water balance in the soil using lysimeters. However, due to limitations associated with the method, 

the adoption of physical mathematical models has become a practical alternative to ET estimation. 

From the results of numerous studies conducted in recent decades, the combined Equation of 

Penman Monteith (PM), modified by Allen et al. (1998), is the best to represent physical and 

physiological factors involved in the evapotranspiration process. The main disadvantage of this 

Equation is its large number of meteorological variables for operation. Therefore, once many 

weather stations do not have all the mandatory sensors, which, even when present, often provide 
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low-quality data.  This a significant observation to be regarded, especially for developing countries 

where reliable sets of radiation, relative humidity, and wind speed data are not always available 

(Trajkovic & Kolakovic, 2009). 

Evapotranspiration knowledge is essential for activities related to watershed management in 

meteorological and hydrological modeling, mainly for water management in irrigated agriculture 

(Dutta et al., 2016). According to Back (2007), various water-balance models are embraced to scale 

irrigation systems and to study probabilities of drought or water excess occurrences. Regarding 

these models, the water entry into a system is made by precipitation and irrigation, and the main 

water outlet is driven through evapotranspiration. 

In the delineation of land use classes, Artificial Neural Networks (ANNs) approach has shown 

significant results when compared to traditional methods of classification (Were et al., 2015). Kim 

et al. (1995) highlighted the robustness of an artificial intelligence system, which offers a great 

reference for discrimination of land cover classes if compared to conventional classification 

systems. 

ANNs are computational models inspired by the biological nervous system, with a similar 

operation to some human procedures; in other words, it learns by experience, generalizes examples 

through others, and can abstract characteristics. The ability to learn through examples and 

generalize information learned is the main attraction of troubleshooting through ANNs (Nath et al., 

2016). Generalization, which is associated with the network capacity to learn through a small set of 

examples giving consistent answers to unknown data, demonstrates the ANN’s ability to go far 

beyond a simple mapping of input and output relations. ANNs are able to extract information not 

presented in explicit form through examples (Feng et al., 2015; Liu et al., 2015). 

An estimate determines the current value based on historical data, while a forecast predicts a 

future value using the same historical data (Aparecido et al., 2017b). In the literature, estimates are 

more common than are forecasts. For example, Kumar et al. (2002) estimated ET0 through ANNs 

for India using solar radiation, maximum and minimum temperatures, maximum and minimum 

relative humidity, and wind speed as inputs. In addition, Zanetti et al. (2007) estimated  ET0 by 

Penman-Monteith, using ANNs for Campos dos Goytacazes, in Rio de Janeiro state.  

Nonetheless, few studies performing ET0 forecasts were found in the literature, for example, 

Trajkovic et al. (2003), who forecasted ET0 via Penman-Monteith method in Serbia and 

Montenegro for a day in advance, using ANNs with air temperature, relative humidity, wind speed, 

and the sunshine as inputs. Results have proved ANNs can be applied for reference 

evapotranspiration forecasting, with high reliability. Moreover, Izadifar and Elshorbagy (2010) 

made evapotranspiration prediction on an hourly scale for one day in advance using neural networks 

and genetic algorithms. Lastly, accurate forecasting results were observed, and the weather 

elements with greater influence on ET were net radiation and soil temperature. 

Since studies on evapotranspiration prediction with a day in advance by ANNs are scarce in 

the northern region of São Paulo state, the aim of this study was to perform reference 

evapotranspiration prediction for the region of Jaboticabal – SP (Brazil), which is a major 

sugarcane-producing region of the state. 

 

MATERIAL AND METHODS 

In this survey, we used historical series of data on average air temperature, wind speed, net 

radiation, soil heat flux, and daily relative humidity, which covered the period from 2002 to 2012, 

for Jaboticabal, SP (Figure 1). Reference evapotranspiration was estimated by Penman-Monteith 

method (Equation 1). 

                                 (1) 

where,  

 



Walison B. Alves, Glauco de S. Rolim, Lucas E. de O. Aparecido, et al. 

Eng. Agríc., Jaboticabal, v.37, n.6, p.1116-1125, nov./dec. 2017 

1118 

ET0 is the reference evapotranspiration;  

Rn is net radiation (MJ m-2 day-1);  

G is soil heat flux (MJ m-2day-1);  

U2 is wind speed (2 m s-1);  

g is psychrometric coefficient (0.062 kPa C-1);  

es-e is water vapor saturation pressure deficit (kPa), and  

Δ is the curve slope of the water vapor saturation pressure (kPa °C-1) calculated by [eq. (2)]. 
 

 =                      (2) 

 

where,  

Δ is the curve slope of water vapor saturation pressure (kPa °C-1);  

es is vapor saturation pressure of water (kPa), and  

T is air temperature. 
 

 

FIGURE 1. Geographical location of Jaboticabal region in the state of São Paulo, Brazil. 
 

Normalization 

To construct an artificial neural network, the data should be firstly normalized. This step aims 

to adapt input data to the dynamic range of neural network activation functions, which in this case 

are hyperbolic tangent (intermediate layer) and linear function (outer layer). As mentioned by 

Bishop (1995), the input data must be normalized because, if they differ by orders of magnitude, the 

network outputs cannot express their significance in the result. Data normalization process was 

performed according to [eq. (3)]: 

                                                                                                 (3) 
where,  

X* is the normalized variable;  

X0 is the original variable;  

X is the average obtained from samples to form the training set;  
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S is the standard deviation of original variables, also from the training set, and  

NS is the number of standard deviations to be considered. 

 

NS value was obtained empirically, respecting neural network dynamic range, which should 

contain the results found in X* calculations. Normalization was applied initially to the training set 

and then extended to the testing set, using the same normalization factor (Nascimento et al., 2009). 

Seasonality of climate variables must be taken into consideration. After normalization, data 

are seasonally adjusted to reveal residue of the series to be modeled, allowing hidden feature 

detection. When employing a neural model, Nelson et al. (1999) observed forecasts that are more 

accurate with seasonally adjusted data if compared to those collected without such pre-processing. 

Researchers as Calôba et al. (2002) performed deseasonalization of data through trend removal, and 

then withdrawal cycles. 

To forecast reference evapotranspiration, we adopted a feed-forward Multi-Layer Perceptron 

(MLP), which is a traditional Artificial Neural Network. Numerous topologies and variations were 

tested between neurons in the intermediate and outer layers until the most accurate were obtained. 

Neural network modeling consisted of preliminary analysis and identification of model type, 

network training and verifying, and process validation. Here, MLP learning was supervised, and 

algorithm learning was backpropagation for multilayer nets.  

A simplified MPL-ANN typically has three stages: input, processing, and output (Figure 2). 

In this study, MLP was used to forecast the reference evapotranspiration for the next day (ETP+1) 

using air temperature data (from the previous day). 

 

 

FIGURE 2. Simplified neural network Multilayer Perceptron (MLP). 
 

Mathematically, one MLP with N layers, H hidden neurons, and an output neuron can be 

expressed by [eq. (4)]: 

                   (4) 

where,  

Y is the ANN output,  

Oh is an output value of the h-th hidden neuron, being Oh given by [eq. (5)]. 

                   (5) 

 

where,  

Xn are the ANN inputs; 

Wh and (Wnh) are the synaptic weights between the hidden neurons and the ANN outputs and 

inputs, respectively, and 

X0 is 1, W0 and W0h are ANN training algorithm initial values.  
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The activation function is the logistic sigmoid given by [eq. (6)]: 

                                (6) 

 

The criteria for assessing ANN performance were accuracy, precision, and trend. Accuracy 

was assessed by absolute percentage error (MAPE %), precision by the adjusted determination 

coefficient (R2), and trend by systematic error (in the same units as the original data) (Equations 7 

and 9, respectively). 

                                             (7) 

 

                                                         (8) 

 

                                                                                                       (9) 

 
where,  

R2 is the determination coefficient (%); 

n is data number (years); 

k is the number of independent variables in the regression; 

Yesti is the estimated variable; 

Yobsi is the observed variable, and  

Yest-C is the variable estimated by linear regression between the observed (Yobsi) and estimated 

(Yesti) variables. 
 

To consider an ANN valid without rigging data and/or evidence of contradictory results, the 

data must be divided into sets, one for the training of neurons, and the other the testing of results. 

Thus, in this study, we separated 75% from data for network training (2002 to 2010) and 25% for 

testing (2011 to 2013). 

The ANN setting was empirically determined. Initially, all seasons of the year were 

considered. However, as evapotranspiration prediction was based only on average temperature, and 

it varies largely throughout the four different seasons, training and MLP network testing were 

separated by season. Nevertheless, the separate training and testing processes do not minimize 

reference application since the final user (farmer) would only have to indicate year and temperature 

season to obtain an evapotranspiration prediction.  

Activation Function 

The basic function of an artificial neuron element, also known as a processor, is to perform 

the summation estimated by factors, known as the synaptic weights of input vectors, and to apply 

the result as input to a nonlinear function, i.e. activation function. Three activation function classes 

represented in figure X are usually employed: 

1) Signal Function: for this type of function, there is: 

F(x) = 1 if x > 0 

0 if x ≤ 0 
 

2) Linear Function by parts: for this function, there is: 
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F(x) = 0 if x ≤ 0 

x + a if -a< x < a 

1 if x ≥ a 

3) Sigmoid function: is the activation function mostly used in artificial neural networks, 

defined as an increasing monotonic function with asymptotic and softness properties. An 

example of sigmoidal function is the logistic function, set by: F(x) = ax e – 1 + 1 

Where: a is the function slope parameter. In many cases, a sigmoid function output interestingly 

varies between -1 and 1; in these cases, a hyperbolic tangent function is applied, which is given by:  

F(x) = tgh2 x = x 

In this proposed model, the signal function was used in two layers (intermediate and outer). 

The air temperature was verified to be the only entrance.  As this factor varies greatly among the 

four seasons, it was necessary to calibrate the separate network for each station to increase 

accuracy. The first intermediate layer, also called the hidden layer, encompassed 15 neurons for 

four seasons. 

The number of neurons varied essentially in the second intermediate layer (Figure 3), which 

took 9 neurons in spring (Figure 3.a), 7 in summer (Figure 3b), 5 in autumn (Figure 3.c), and 9 in 

winter (Figure 3.d). 

 

 

FIGURE 3. ANNs configuration for the summer seasons (a), spring (b), autumn (c) and winter (d). 
 

To finish the topology setting, the second intermediate layer should be connected to a single 

MLP Neural Network output, with the changes already mentioned in each season (the four seasons 

have only one output), generating the evapotranspiration prediction. 
 

RESULTS AND DISCUSSION 

The air temperature varied from 21.8 to 26.5 °C, whereas reference evapotranspiration (RET) 

ranged from 3.6 to 5.8 mm, for summer and winter seasons, respectively (Figure 4). 
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FIGURE 4. Reference Evapotranspiration (mm) and air temperature (° C) decennial averages of 

2002 and 2010 for the region of Jaboticabal, SP. 
 

The ANNs trained to predict the next-day ET0 (ET0+1) for the region of Jaboticabal were 

accurate since maximum MAPE was 12.67%. The largest MAPEs in training and testing were 

observed in winter and the lowest in autumn. ANN calibrated for autumn season showed a MAPE 

of 9.01%, R2 adj = 0.89, and ES = 5.62 mm in the training; and MAPE of 6.58%, R2 adj = 0.94, and 

Es = 3.14 mm in the testing (Table 1). 

MAPE of 9.01% is noteworthy low because, in an average evapotranspiration of 6.0 mm day-

1, it corresponds to a variation of only ± 0.54 mm day-1. In a similar study, but performing 

estimation, Kumar et al. (2002) found an error lower than 0.3 mm day-1 ET0 when using ANNs. 

Trajkovic et al. (2003) reported it is possible to predict ET0 by Penman-Monteith using ANNs. 

However, these authors used a large number of input variables such as air temperature, humidity 

relative, wind speed, and sunshine hours for the forecasting. The great advantage of the method 

proposed in this study is to get ET0+1 by Penman-Monteith, using only daily records of air 

temperatures. 

 

TABLE 1. Accuracy (MAPE, mean absolute percentage error), accuracy (R2
adj, determination 

coefficient) and trend (ES, systematic error) in the training and testing of reference 

evapotranspiration provided by ANN for the next day, for the summer seasons spring, 

fall and winter in the region of Jaboticabal, SP. 

Seasons Training (2002 – 2010)   Test (2011 – 2013) 

  MAPE (%) R² adj (%) ES   MAPE (%) R² adj (%) ES 

Spring 11.87 0.93 4.98   10.14 0.96 4.78 
Summer 10.82 0.92 5.91   8.07 0.92 3.03 

Autumn 9.01 0.89 5.62   6.58 0.94 3.14 
Winter 12.67 0.92 2.21   12.13 0.95 1.53 

 

ANNs trained to perform ET0+1 prediction for summer, spring, autumn, and winter, in the 

region of Jaboticabal, disclosed the same number of neurons (15 neurons) in the first layer (Layer), 

while in the second layer, the number of neurons was different for each season (Table 2). Multiple 

layers use is necessary to enhance ANN ability in solving complex problems (non-linearly 

separable) since the Convergence Theorem of Perceptron (ANN with only one layer) has the 

capacity to solve only linearly separable problems (Minsky & Papert, 1969). 
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TABLE 2. Weights found in the training of artificial neural networks (ANN) to predict the reference 

evapotranspiration for summer, spring, fall and winter in the region of Jaboticabal, SP.  

Ideal Weights in ANN of Spring Ideal Weights in ANN of Summer 

Layer1 Layer2 Layer1 Layer2 

N1 0.739557740 N1 0.359960170 N1 0.554409264 N1 0.273879160 

N2 0.621621622 N2 0.156106855 N2 0.316600877 N2 0.198932464 

N3 0.646191646 N3 0.563147120 N3 0.592770881 N3 0.147495271 

N4 0.714987715 N4 0.622419010 N4 0.491074771 N4 0.361478990 

N5 0.808353808 N5 0.828832063 N5 0.653032134 N5 0.479904980 

N6 0.850122850 N6 0.815752367 N6 0.440351209 N6 0.416797463 

N7 0.840294840 N7 0.553990763 N7 0.427170478 N7 0.760425850 

N8 0.749385749 N8 0.658502106 N8 0.574955286   

N9 0.754299754 N9 0.540275049 N9 0.764127764   

N10 0.668304668   N10 0.756756757   

N11 0.604422604   N11 0.746928747   

N12 0.542997543   N12 0.823095823   

N13 0.641277641   N13 0.852579853   

N14 0.756756757   N14 0.899262899   

N15 0.712530713   N15 0.953316953   

Ideal Weights in ANN of Autumn Ideal Weights in ANN of Winter 

Layer1 Layer2 Layer1 Layer2 

N1 0.798525799 N1 0.808353808 N1 0.578137867 N1 0.796068796 

N2 0.791154791 N2 0.869778870 N2 0.778567383 N2 0.840294840 

N3 0.751842752 N3 0.882063882 N3 0.868991991 N3 0.742014742 

N4 0.761670762 N4 0.904176904 N4 0.828263809 N4 0.840294840 

N5 0.820638821 N5 0.808353808 N5 0.693855958 N5 0.835380835 

N6 0.835380835   N6 0.750151195 N6 0.712530713 

N7 0.835380835   N7 0.468336564 N7 0.729729730 

N8 0.796068796   N8 0.731155985   

N9 0.842751843   N9 0.804824739   

N10 0.796068796   N10 0.786584101   

N11 0.783783784   N11 0.756754841   

N12 0.72972973   N12 0.867844985   

N13 0.810810811   N13 0.682145627   

N14 0.874692875   N14 0.566080528   

N15 0.845208845   N15 0.427343501   

Legend = Layer 1 is first layer of neurons, Layer 2 is second layer of neurons. 
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ANNs trained in this study showed a good performance because the minimum R2adj was 0.93 

(Figure 5.B) during ET0+1 predictions. In the seasonal analysis, accuracy was high for all seasons, 

as the minimum R2  was 0.925 in spring (Figure 5B). Moreira and Cecilio (2016) endorsed ANNs to 

estimate air temperature in the Northeast of Brazil and observed high-precision results. 
 

 

FIGURE 5. Performance of artificial neural networks (ANN) trained to predict the reference 

evapotranspiration for summer (a), spring (b), autumn (c) and winter (d) in the region 

of Jaboticabal, SP. 

 

CONCLUSIONS 

Reference evapotranspiration can be estimated with a day to spare at any time of the year by 

artificial neural networks, showing high accuracy and using only air temperature data as an input 

variable. 
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