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ABSTRACT 

The Darcy-Weisbach equation is the most recommended equation for determining the 
pressure loss in pressurized pipes because of its wide applicability. However, one of the 
largest obstacles to implementing this equation is the friction factor (f) calculation. This 
factor can be precisely determined using the Colebrook equation, which is implicit. Thus, 
the objective of this study was to compare six explicit equations for calculating the Darcy-
Weisbach friction factor with the implicit Colebrook equation based on the relative error. 
Based on the results, the equations of Vatankhah and Offor & Alabi were the most highly 
recommended. These six explicit formulas showed a mean relative error of less than ± 1% 
compared to the Colebrook equation, except for the Swamee and Jain equation, for which 
the laminar regime generated a mean relative error of 1.83%.  

 
 
INTRODUCTION 

The main problems encountered in the flow of 
pressurized conduits are related to the methods of 
determining the diameter, flow rate or pressure loss in the 
pipe for a given set of known variables. According to 
Bardestani et al. (2017), in optimization studies and 
hydraulic analyses of pipelines and water distribution 
systems, these problems are extremely significant because 
they affect both the hydraulic balance and system costs. 
The Darcy-Weisbach equation, which is shown in [eq. (1)] 
and is known as the universal equation, is one of the most 
complete mathematical equations used to determine the 
pressure loss in pipes because it is related to both the 
characteristics of the flowing fluid and the conduit 
material and can be applied to any type of material and 
any pipe diameter.  
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in which:  

hf is the head loss, m;  

L is the pipeline length, m;  

V is the average flow velocity, m s-1;  

D is the inner pipe diameter, m;  

g is the gravitational acceleration, m s-2, and  

f is the friction factor, dimensionless.  
 
The friction factor is dependent on the Reynolds 

number and the absolute roughness (ε, in m) of the inner 
wall of the pipe. The main limitation preventing the wide 
use of the Darcy-Weisbach equation is the estimation of 
the friction factor (f).  

According to Coban (2012), the implicit Colebrook 
equation (1939), which is shown in equation (2), provides 
the best approximation of the friction factor, especially for 
a turbulent flow regime. This equation relates the 
Reynolds number (R) and the relative roughness of the 
pipe (ε/D) (Brkić & Ćojbašić, 2017). The work of 
Colebrook & White (1937) is often cited as the source of 
the equation; however, the Colebrook equation was 
developed by Colebrook (1939) (Vatankhah 2018; Fang, 
Xu & Zhou 2011). 

Several explicit friction factor approximations have 
been developed to replace Colebrook's implicit standard 
equation; the most cited are the Moody (1947), Jain 
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(1976), Swamee & Jain (1976), Churchill (1973), Haaland 
(1983), Papaevangelou et al., (2010) and Fang et al., 
(2011) equations.  

Any effort to present a simple full-range solution for 
the friction factor would be of practical importance. Offor & 
Alabi (2016) suggested a new equation for the friction factor 
that focuses on precision and computational efficiency. 

Vatankhah (2018) proposed analytical solutions 
for the Colebrook equation with a minimal number of 
natural logarithms and noninteger powers (lower 
computational cost).     

According to Offor & Alabi (2016), the search for a 
fast, noniterative and accurate model, as an alternative to 
the Colebrook equation, led to several explicit models for 
obtaining the friction factor. The authors asserted that 
these explicit models differ in their precision and relative 
computational efficiency, depending on the degree of 
complexity, and they adopted the relative error as a 
precision indicator.  

Mikata & Walczak (2016) stated that the goal is not 
to discourage the use of the Colebrook equation, which is 

used in many engineering projects, but rather to determine 
the friction factor by using explicit equations that provide 
results similar to the empirically correct results obtained 
from the Colebrook equation. 

The hypothesis of this work is as follows: the 
implicit Colebrook equation for estimating the friction 
factor can be replaced with explicit formulas at less than 
1% relative error. Therefore, the objective of this work 
was to evaluate the approximations of six explicit formulas 
for calculating the friction factor of the Darcy-Weisbach 
equation and compare them to the implicit Colebrook 
equation in terms of their relative error.  
 
MATERIAL AND METHODS 

For this study, among the numerous equations 
available in the literature to obtain the friction factor of the 
Darcy-Weisbach equation, six explicit formulas, as 
described in Table 1, were selected based on the number of 
citations in scientific articles on irrigation and hydraulic 
projects, with a preference for the most recent equations.  

 
TABLE 1. Equations selected to determine the friction factor. 
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Note: f  = friction factor, dimensionless; ɛ = average protrusion height of the inner pipe surface, m; D = inner pipe diameter, m;  
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The friction factor approximations obtained via the 
explicit formulas were compared with the values obtained 
using the Colebrook equation (1939), which is an implicit 
equation that is used worldwide and covers the entire 
range of Reynolds number and relative surface roughness 
values, as shown in [eq. (2)].  
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in which: 

f is the Darcy-Weisbach friction factor, 
dimensionless;  

D  is the relative surface roughness, 

dimensionless;  

  is the average protrusion height of the inner pipe 
surface, m;  

D  is the inner pipe diameter, m, and  

R is the Reynolds number, dimensionless. 
 

To verify the accuracy of the friction factor 
approximations obtained using the explicit formulas, the 
relative error, as given by [eq. (3)], was calculated using 
the Colebrook equation result as the reference.  

1
ormulaempiricalf
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f

f
rorrelativeer                  (3) 

 
Following Papaevangelou et al., (2010), R values 

between 4,000 and 108, which cover the entire proposed 
range of the Moody (1944) diagram, were adopted. The 
ɛ/D values were based on the pipe materials most often 
used in irrigation and hydraulic projects, which include 
polyvinyl chloride (PVC), linear low-density polyethylene 
(LLDPE), galvanized steel and aluminum. The ε/D values 
for PVC and LLDPE were from Rocha et al. (2017), as 
specified in Table 2, and the values for galvanized steel 
(0.0007 m) and aluminum (0.0010 m) were obtained from 
Testezlaf (1982). Moreover, based on Moody’s (1944) 
diagram, values of 0.000001 m, 0.000005 m and 0.00001 m 
were considered. The values of R and ɛ/D are presented in 
Table 3.  

TABLE 2. Relative roughness (ɛ/D) values for PVC and LLDPE pipes. 

Material DN (mm) Di (mm) ɛ (mm) ɛ/D 

PVC 
35 35.71 

0.003334 
0.00009 

50 47.56 0.00007 
75 72.05 0.00005 

LLDPE 

10 9.55 

0.008116 

0.0008 
13 13.12 0.0006 
16 16.81 0.0005 
20 20.72 0.0004 
26 27.24 0.0003 

Source: Adapted from Rocha et al. (2017). 
 

TABLE 3. Relative roughness values (ɛ/D) and Reynolds numbers (R) used to verify the performance of the explicit formulas. 

ɛ/D R 

0.000001 4,000 

0.000005 8,000 

0.00001 10,000 

0.00005 20,000 

0.00007 40,000 

0.00009 80,000 

0.0001 100,000 

0.0003 150,000 

0.0004 200,000 

0.0005 400,000 

0.0006 800,000 

0.0007 1,000,000 

0.0008 2,000,000 

0.001 4,000,000 

0.005 8,000,000 

0.05 10,000,000 

 20,000,000 

 40,000,000 

 80,000,000 

 100,000,000 
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The R and ɛ/D values generated 320 combinations, 
and for each one, the friction factor was determined using 
the six explicit formulas and the Colebrook equation. For 
this purpose, an algorithm was developed using the 
MATLAB R2017a software, and the sequence of 
commands established by Clamond (2009) was used in the 
Colebrook equation implementation because of its speed 
of convergence. The program also determined the relative 
error with respect to the Colebrook equation for each 
combination tested. Based on the generated data, the 
results for each explicit equation were plotted as a function 
of R using the Microsoft Excel 2016® software package.  

RESULTS AND DISCUSSION 

The relative errors of the friction factor obtained 
using the Swamee & Jain equation (1976) for the 320 
combinations between ɛ/D and R are shown in Figure 1. 
The relative error ranged from -0.0302 to 0.0071, and for 
R ≤ 4,000, which is typical of the laminar regime, all ɛ/D 
values exceeded a 1% relative error, similar to the findings 
of Papaevangelou et al., (2010), who also found a relative 
error of less than 1% for R > 80,000. In the present study, 
a relative error of less than 1% was obtained for 80,000 ≤ 
R ≤ 20,000,000.  

 

 
FIGURE 1. Relative error of the Swamee & Jain equation (1976) as a function of the Reynolds number. 

 
The Swamee & Jain equation (1976) was proposed 

for the turbulent regime; thus, the largest relative errors 
should occur in the range corresponding to the laminar 
regime (R≤ 4,000).  

Figure 2 presents the relative error of the friction 
factor based on the Swamee & Swamee equation (2007),  

which represents an evolution of the Swamee & Jain 
formula (1976) and covers the entire R range and not just 
the turbulent regime. Therefore, the relative error did not 
exceed 1% in the interval corresponding to R ≤ 4,000. In the 
R range between 8×104 and 4×107, the relative error exceeded 
± 0.5% for certain ɛ/D values but did not exceed ± 1%.  
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FIGURE 2. Relative error of the Swamee & Swamee equation (2007) as a function of the Reynolds number. 

 
The performance of the Papaevangelou et al., equation (2010) is shown in Figure 3. The relative error exceeded ± 0.5% 

for certain ɛ/D values in the R range between 4,000 and 200,000. However, the relative error did not exceed ± 1% for any R, 
similar to the findings of Papaevangelou et al., (2010) who proposed the equation.    
 

 
FIGURE 3. Relative error of the Papaevangelou et al., equation (2010) as a function of the Reynolds number. 
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The relative error of the Fang et al., (2011) equation did not exceed ± 0.5% for any evaluated interval of R (Figure 4). 
This equation was ranked as very accurate in the present study and by Offor & Alabi (2016). 
 

 
FIGURE 4. Relative error of the Fang et al., equation (2011) as a function of the Reynolds number. 

 
In their study on the computational precision of 

models used to obtain the friction factor, Offor & Alabi 
(2016) proposed an explicit equation and verified that the 
relative error did not exceed ± 0.1% (Figure 5). In the 320 
combinations evaluated in this research, the relative error  

ranged from -0.05% to 0.13% (Table 4).  When analyzing 

a greater number of equations, Pimenta et al. (2018) 

observed that this equation rendered the best performance 

in obtaining the friction factor. 
 

 
FIGURE 5. Relative error of the Offor & Alabi equation (2016) as a function of the Reynolds number. 
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Using the Vatankhah equation (2018), the relative 
error for the friction factor ranged from 0.001% to 0.13% 
for any evaluated interval of R (Figure 6), yielding the best 
performance. Offor & Alabi (2016) suggested that a good 

trade-off between accuracy and relative computational 
efficiency can ensure an ideal explicit equation. The 
Vatankhah equation (2018) considered both simplicity and 
accuracy and has been proposed for practical applications. 

 

 
FIGURE 6. Relative error of the Vatankhah equation (2018) as a function of the Reynolds number. 

 
The overall mean values of the relative error and 

the standard deviation presented in Table 4 show that the 
best performance over the entire R range for the evaluated 
ε/D ratios was obtained using the Vatankhah equation 
(2018), followed by the Offor & Alabi equation (2016), 
the Fang et al., equation (2011), the Papaevangelou et al., 

equation (2010), the Swamee & Swamee equation (2007) 
and the Swamee & Jain equation (1976). This performance 
classification did not change even when the relative error 
was evaluated separately for the laminar and turbulent 
regimes (Table 4).  

 
TABLE 4. Mean values, range and standard deviation of the relative error for each equation. 

Reference/Equation 
Overall 
mean 

Mean 
Range  Standard deviation 

 Laminar regime 
Turbulent 

regime 

Swamee & Jain (1976) 0.00478 0.0183 0.0041 -0.0302 to 0.0071 0.0044 

Swamee & Swamee (2007) 0.00385 0.0039 0.0038 -0.0190 to 0.0074 0.0030 

Papaevangelou et al., (2010) 0.00215 0.0026 0.0021 -0.0057 to 0.0079 0.0015 

Fang et al., (2011) 0.00184 0.0018 0.0018 -0.0049 to 0.0043 0.0011 

Offor & Alabi (2016) 0.00046 0.0039 0.0005 -0.0005 to 0.0013 0.0003 

Vatankhah (2018) 0.00039 0.0001 0.0004 0.00001 to 0.0013 0.0003 

 
In general, the six equations presented an overall 

mean relative error of less than 0.01, thereby confirming 
this study’s hypothesis that the implicit Colebrook 
equation for estimating the friction factor can be replaced 
with explicit formulas that yield a relative error of less 
than 1%. The exceptions were the Swamee & Jain 
equation (1976), which presented a maximum relative 
error of -0.0302—i.e., -3.02%, and the Swamee & Swamee 
equation (2007) with a relative error of -1.90%. 

CONCLUSIONS 

The six explicit formulas, which reduce the 
complexity of the calculations, presented a relative error in 
relation to the Colebrook equation of less than ± 1% 
except for the equations of Swamee & Jain (1976) and 
Swamee & Swamee (2007). 

The results show that the explicit equation of this 
study evolved with the aim of achieving greater accuracy 
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and lower calculational complexity. Based on the 
performance, the Vatankhah equation (2018) is the most 
highly recommended, followed by the Offor & Alabi 
equation (2016), the Fang et al., equation (2011), the 
Papaevangelou et al., equation (2010), the Swamee & 
Swamee equation (2007) and the Swamee & Jain 
equation (1976).  
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