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ABSTRACT 

The analysis of water quality for irrigation assists in solving problems with irrigation 
equipment, such as obstruction in localized systems, being fundamental in precision 
irrigation. This study aimed to develop and evaluate an affordable multiparametric probe, 
as well as the performance in the remote data transmission by Bluetooth classic and Wi-
Fi. The probe was based on the Arduino Nano platform. The sensors consisted of a pH 
(potential of hydrogen) sensor, a turbidity sensor (TSW30), and a total dissolved solids 
sensor. Bluetooth classic (HC-06 module) and ESP8266 module (ESP-01) were 
implemented for wireless transmission. A fuzzy inference system was used to evaluate 
the performance of sending data, using the variables bit error rate (BER) and percentage 
efficiency (Ef). The low-cost multiparametric probe allowed the measurement of pH, 
turbidity, and total dissolved solids. The Wi-Fi standard (IEEE 802.11 g/b/n), via 
ESP8266 version 01, presented the best results of consistency and efficiency of 
information transmission, according to fuzzy modeling. 

 
 
INTRODUCTION 

The analysis of water quality for irrigation can assist 
in minimizing problems with irrigation equipment, such as 
obstruction in localized systems (Allende et al., 2015). The 
sensitivity to clogging depends on the emitter characteristics 
and the physical, chemical, and biological water quality 
(Baeza & Contreras, 2020; Zhoua et al., 2019). 

Water quality can be obtained through laboratory 
analysis of samples or the use of portable equipment such 
as multiparametric probes. Mendonça et al. (2017) 
recommended the use of probes, as they allow the automatic 
collection of data through contact with water bodies, not 
requiring sample collection or transport for analysis in 
laboratories, in addition to displaying real-time results. 
High costs and the need for installation in a safe place can 
be cited as limitations. In this sense, Cunha et al. (2020) 
emphasized the need to develop multi-parameter meters 
based on more accessible platforms and sensors, with support 
for communication technologies that enable data collection 
and remote access in real-time. The use of embedded micro-

controlled platforms and accessible sensors, with 
connectivity based on basic assumptions of the well-known 
Internet of Things (IoT), is present in irrigated agriculture 
(Ogidan et al., 2019; Pandit et al., 2019; García et al., 2020). 
However, few studies have addressed the performance of the 
various existing communication architectures. 

The application of transmission quality metrics is 
indispensable for a concise inference. For this purpose, 
there are indicators such as the bit error rate (BER), received 
signal strength indication (RSSI), header error check 
(HEC), and packet error rate (PER) (Conti et al., 2003; Wel 
& Yan, 2007). In addition, Chiasserini & Rao (2003) 
emphasized that the joint and simultaneous appreciation of 
these metrics as an intelligent combination is preponderant 
for satisfactory inference. 

Fuzzy logic is widely applied for applications in 
multivalued analysis and decision support systems (Sá & 
Wen, 2019; Veronez et al., 2019). A fuzzy inference 
system (approximate estimation method) can be used to 
model the behavior of a process in terms of reliability even 
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with ambiguous and uncertain information (Mousa et al., 
2014; Rizvi et al., 2020). Therefore, it may help in the 
evaluation of information transmitted by wireless 
communication protocols. 

In this context, this study aimed to develop and 
evaluate an affordable multiparametric probe, as well as the 
performance in the remote data transmission by Bluetooth 
classic and Wi-Fi. 
 
MATERIAL AND METHODS 

The development of the multiparametric probe 
turned to the automatic analysis of water quality 
physicochemical variables from the pH (potential of 
hydrogen), turbidity, and total dissolved solids (TDS) 
sensors. The experiment was carried out at the Laboratory 
of Hydraulics and Irrigation of the Federal University of 
Ceará, Fortaleza, CE, Brazil. 

Prototyping platform and sensors 

The selected hardware model was the Arduino Nano 
and the IDE (Integrated Development Environment) 
software, exclusively for this type of development. The 
Arduino Nano is a small board (45 x 18 mm), complete and 
compatible with the breadboard based on ATmega328 
(Arduino Nano 3.x), functioning as a microcontroller. 

The pH (potential of hydrogen) was measured using 
a Ph4502c sensor module and a Bnc Diymore probe 
electrode. According to the manufacturer, it has the 
following characteristics: working voltage of 5 ± 0.2 volts, 
operating current of 5 to 10 mA, operating temperature 
range from 0 to 60 °C, analog output (0 to 5 volts), and pH 
measurements from 0.0 and 14.0, with an alkaline error of 
0.2 pH units. 

A TSW30 TZT teng Official Store turbidity sensor 
with interface board and signal conditioning was used for 
turbidity quantification. According to the manufacturer, it 
has the following specifications: operating voltage of 5 
volts, a maximum current of 30 mA, temperature from 30 
to 80 °C, analog output (0 to 4.5 volts), and measurement 
range from 0.0 to 1000 ± 30 NTU. 

A KS0429 Keyestudio total dissolved solids (TDS) 
sensor was also used. It has a working voltage in the range 
of 3.3 to 5.5 volts, a working current from 3 to 6 mA, a 
maximum temperature of 55.0 °C, and analog output (0 to 
2.3 volts). The measurement range is from 0.0 to 1000.0 
ppm or 0.0 to 1000.0 mg L−1, with a measurement error of 
±10% f. s. (25 °C). 

Sensor calibration 

The direct calibration methodology was used for the 
Ph4502c sensor module, from pH standard solutions, that is, 
previously known values (pH values of 1.79, 4.5, 6.88, 12.13, 
and 13.99) and quantified by a benchtop pH meter. 

The indirect method was used for the turbidity 
sensor calibration. For this purpose, a Digimed DM-TU 
portable digital turbidimeter previously calibrated in 
Nephelometric Turbidity Unit (NTU) and solutions 
obtained from water and soil at different concentrations 
were used. In the process, the sensor under calibration and 
the portable meter acted on the same samples. A total of 
eight solutions with turbidity values of 1.3, 158.0, 255.4, 
315.2, 427.4, 571.5, 632.8, and 713.0 NTU were used. 

The direct method was applied to obtain the 

calibration regression of the total dissolved solids (TDS) 
sensor, using solutions with known electrical conductivity 
(0.50, 1.0, and 2.0 dS m−1). 

The simple linear regression model was chosen for 
the calibration equations of all sensors. The slopes and 
intercepts of the models were estimated by two approaches. 
The ordinary least squares (OLS) method was used to 
estimate the parameters in the first approach. The 
parameters in the second approach were estimated using the 
generalized least squares (GLS) method, which is an 
efficient method to estimate coefficients of a linear model 
in the presence of heteroscedasticity and/or correlation 
between observations. 

The general form of the simple linear regression 
model in matrix notation is given by [eq. (1)]. 

Y = Xβ + ε (1) 

Where:  

Y is the vector of observations (response variable);  

X is a matrix containing the explanatory variable;  

β is the vector of coefficients, and  

ε is the error vector of the regression model. 
 

The β estimator by the ordinary least squares (OLS) 
method is vector b, obtained according to [eq. (2)]. 

b = (XTX)
-1

XTY (2) 
 

Different assumptions of the OLS method need to be 
satisfied so that the regression analysis can be properly 
used, producing the best linear unbiased estimator (BLUE). 
The independence assessment was performed using the 
Durbin-Watson test for first-order autocorrelation, 
homoscedasticity using the Breusch-Pagan test, and 
normality given by Kolmogorov-Smirnov. 

The β estimator (bGLS vector) in the generalized 
least squares method (GLS) can be expressed by [eq. (3)] 
when there is a certain residual correlation. 

bGLS = (XTW-1X)
-1

XTW-1Y (3) 
 
The matrix W can be constructed according to       

[eq. (4)] to correct the correlation between the cases. 

W = 

⎣
⎢
⎢
⎡

1 ρ
ρ 1
⋮

 ρN-1
⋮

ρN-2

    

… ρN-1

… ρN-2

⋱
ρN-3

⋮
1 ⎦

⎥
⎥
⎤
 (4) 

Where:  

ρ is a correlation coefficient, in absolute values. 
 

The ρ estimation considered that the error covariance 
structure was first-order autoregressive, AR(1). Thus, 
observations ε at time t, denoted by εt, are obtained by      
[eq. (5)]. 

εt = ρεt-1 + at (5) 

Where:  

at is white noise with zero mean and constant 
variance. 



Fuzzy modeling in evaluating the consistency and efficiency of data remotely monitored by a multiparametric probe

 

 
Engenharia Agrícola, Jaboticabal, v.42, special issue, e20210128, 2022 

In the case of uncorrelated observations, but with 
unequal variance, the variance-covariance matrix W is 
diagonal but has non-equal diagonal elements (wn). In this 
situation, the β estimator (bWLS vector) is commonly known 
as weighted least squares (WLS). Thus, the matrix W is 
given by [eq. (6)]. 

W = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1

w1
0

0
1

w2

⋮
0

⋮
0

    

… 0

… 0

⋱
0

1

wn⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (6) 

Therefore, if W is diagonal, but with unequal 
diagonal elements, the observations have unequal variance 
although not correlated. On the other hand, the observations 
will be correlated if W has elements outside the non-zero 
diagonals. Furthermore, W can represent heteroscedasticity 
and the correlation between residues, simultaneously. Thus, 
if necessary, the models were adjusted considering one of 
the following ways: GLS method for autocorrelation 
correction, WLS for non-homogeneous variance, and the 
generalized least squares method with correction for both 
dependence and heteroscedasticity. 

The adjustments were performed using the R 
software, more specifically the gls (generalized least squares) 
function of the nlme library, specifying the argument corAR1 
to correct autocorrelation by the first-order autoregressive 
structure and/or weights for heteroscedasticity. Details on 
methodology and implementation in R can be found in 
Pinheiro & Bates (2000). 

The indicators correlation coefficient (r), coefficient 
of determination (R2), root mean square error (RMSE), 
index of agreement (d) by Willmott et al. (1985), and the 
confidence or performance index (c) were used to measure 
the statistical performance of the models. The RMSE 
metrics and the index of agreement were calculated only for 
OLS adjustments since these parameters are associated with 
a simple linear regression of ordinary least squares (OLS), 
according to Willmott et al. (1985), being estimated from 
the decomposition of the mean error by the referred method. 

According to Luiz (2013), the coefficient of 
determination (R2) for the GLS and WLS methods is not a 
good estimator, as the sum of squared residuals and the total 
quadratic sum consider both sampling errors and model error. 
Thus, R2 was not estimated for generalized methodologies. 

The significance of the regressions was given using 
Student’s t-test for the slope (b) and linear (a) coefficients. 
All tests were performed at a 5% significance. The 
regressions were compared using the Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) to 
select the most appropriate estimation methodology. 

Bluetooth and Wi-Fi connectivity 

The multiparametric probe was built to support 
wireless data transmission collected by sensors from 
Bluetooth and Wi-Fi connectivity platforms, technologies 
that are compatible with Arduino. 

Bluetooth classic was implemented by the HC-06 
module. The data collected by sensors connected to the 
Arduino were transferred to HC-06 from the Arduino/HC-

06 interface, which uses serial communication, and then to 
a mobile application on a smartphone. A mobile 
application, acting as a master, was created for monitoring, 
while the module functioned as a slave. The basis of 
application routines was programmed in Delphi language, 
IDE Rad Studio Rio 10.3.3 Community Edition by 
Embarcadero®. The compilation was intended for the 
Android platform. The mobile software was named DTblue 
and is available at 
https://play.google.com/store/apps/details?id=br.com.madi
lopassos.DTblue, whereas the user manual is available at 
https://dt04.com.br/dtblue/manual.pdf. 

Regarding connectivity via wireless fidelity (Wi-Fi), 
The 802.11 g/b/n standard for wireless fidelity (Wi-Fi) 
connectivity was used from the ESP8266 ESP-01 module 
with Wi-Fi V3.0. The module was used as a Wi-Fi Serial 
Bridge to interface with Arduino Nano V3. The ESP-01 
functioned as the master, requesting data from the Arduino 
(slave) in this connection. 

A WebService was built with real-time visualization 
by web browsers to monitor the traffic data. The Hypertext 
Markup Language (HTML) and styles (e.g., colors, fonts, 
and spacing) by CSS (Cascading Style Sheets) were used 
for front-end development. The PHP Hypertext 
Preprocessor was used for the back-end. The Hypertext 
Transfer Protocol (HTTP) was used for information 
transfer. Paid services offered by the Umbler® platform 
were used for hosting and domain registration. It supports 
PHP technologies and MySQL database, which were used 
in the elaboration of the WebService. The registered domain 
has the electronic address http://dt04.com.br/. 

Probe evaluation and fuzzy modeling 

Five collections (tests), denoted by 01, 02, 03, 04, 
and 05, were performed with the sensors collecting and 
transmitting data at the same time after setting up the probe 
and building the tools to verify the consistency and 
efficiency of the water quality data. Solutions obtained by 
adding vinegar and sodium bicarbonate aiming at leading to 
reading variations were used to obtain data from the pH 
sensor. Turbidity data were obtained from “clean” water 
and water plus soil solution at different concentrations. 
Solutions of water and sodium chloride at different 
proportions were used for measurements with the total 
dissolved solids sensor. 

The Arduino Nano was programmed in each test (01, 
02, 03, 04, and 05) to send the collected data every 1.0 
minute for 8.0 hours at two monitoring distances (1.0 and 
10.0 m) by the Bluetooth classic and Wi-Fi transmission 
protocols using the HC-06 and ESP-01 modules, 
respectively. Thus, each database should consist of a total 
of 480 values per sensor. 

The variables bit error rate (BER) and percentage 
efficiency (Ef) were adopted for the creation of the fuzzy 
sets and performance classification. BER was calculated 
according to [eq. (7)]. 

BER = 
Ne

Nbits
 (7) 

Where:  

Ne is the number of bits received in error, and  

Nbits is the total number of bits received. 
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Ef was calculated to analyze the data transmission 
efficiency, that is, recorded for each request during the 
sending time. It was estimated as the ratio between the 
number of values received by the number that would be 
sent/received if there were no errors, according to [eq. (8)]. 

Ef = 
Nr

N
*100 (8) 

Where:  

Nr is the number of values received, and  

N is the total number of values sent (480.0 for 8.0 
hours every 1.0 minute). 

 
Once the input variables were defined, the 

performance classification was performed based on a fuzzy 
inference system. Its architecture consisted of three modules: 
fuzzification, inference, and defuzzification. In the first stage, 
the input variables BER and Ef of three membership 
functions were modeled with triangular and trapezoidal 
shapes and linguistic terms low, medium, and high. 

The classification proposed by Anderson (2011) 
was adopted to write BER in terms of linguistic variables, 
as well as the construction of its universe of discourse, while 
the clustering approach was used for the percentage 
efficiency in an attempt to discriminate clusters and guide 
writing in linguistic terms and because no classification was 

found in the literature. For this purpose, the Ef data for the 
Bluetooth and Wi-Fi platforms were applied to the k-means 
algorithm. Its objective function is defined by [eq. (9)]. 

Minimize J = ∑ ∑ xi
j-cj

2n
i=1

k
j=1  (9) 

Where:  

||xi (j) − cj || is the Euclidean distance between a data 
vector xi (j) and the center of the cluster cj, 
indicating the distance from n data points to the 
centers of k clusters. 

 
The number of clusters was identified by testing k 

values (k = 1, …, 5) to apply the visual method called the 
elbow. The number of clusters was determined by the 
maximum curvature point of the graph (Yuan & Yang, 
2019). The percentage efficiencies for the execution of the 
methodology were calculated for the data transmitted by 
Bluetooth and Wi-Fi in groups of 8.0 hours (total) and 
subgroups of 4, 2, and 1 hour. 

The number of clusters was fixed at 3 using the elbow 
method and after some experimentation. Thus, the linguistic 
terms for Ef were defined from the observed centroids. 

Table 1 shows the triangular and trapezoidal 
numbers for BER (a), Ef (b), and the output. The latter was 
associated with five membership functions. 

 
TABLE 1. Triangular and trapezoidal numbers for BER (a), Ef (b), and output (performance). 

Linguistic terms 
Input 

Linguistic terms 
Output 

BER Ef Performance 

Low [0 0 10−5 10−5] [0 0 50 60] Bad [0 0 20 20] 

Medium [10−6 10−4 10−3] [50 70 80] Poor [20 30 40] 

High [10−4 10−3 1 1] [70 80 100 100] Fair [30 45 60] 

Universe 0.00 to 1.00 0.00 to 100,00% Good [45 70 80] 

– – – Excellent [75 90 100 100] 

– – – Universe 0.00 to 100.00% 

 
Regarding the inference mechanism, nine control 

rules were established relating the three membership 
functions of BER with the three of Ef. The set of elaborated 
rules was interpreted by the Mamdani inference method, 
also known as the Mamdani controller (Mamdani, 1973). 
The maximum composition of the minima (max-min) was 
used for the composition of each control rule. The centroid 
or center of gravity method was chosen for defuzzification. 

The Python programming language was used to 
develop the model, implement the fuzzy logic, and cluster 
analysis, particularly the scikit-fuzzy and scikit-learn libraries. 
 
RESULTS AND DISCUSSION 

Multiparametric probe and sensor calibration 

The cost of manufacturing the affordable 
multiparametric water quality probe with all sensors and 
accessory components was around US$ 42.82, calculated 

as of 6/22/2021. 
The prototyping of low-cost multiparametric for 

different purposes probes is recurrent, as observed by 
Ungureanu et al. (2010), Faustine et al. (2014), and Win et 
al. (2019). However, Cunha et al. (2020) noted that the 
authors infer about stability in remote transmission, noise, 
reduced cost, and portability, without validating the 
collected information or models. 

Regarding the methods for estimating the regression 
parameters, the evaluation of the assumptions of the 
ordinary least squares (OLS) method by the Durbin-
Watson, Breusch-Pagan, and Kolmogorov-Smirnov tests to 
verify the premises of independence, homogeneity of 
variance, and normality for the pH, turbidity, and total 
dissolved solids (TDS) sensors are shown in Table 2. There 
was no premise regarding the residuals that must be verified 
for the generalized least squares (GLS) method (Luiz, 2013). 
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TABLE 2. Durbin-Watson, Breusch-Pagan, and Kolmogorov-Smirnov test statistics and sample size (n) of simple linear 
calibration equations. 

Sensor Durbin-Watson Breusch-Pagan Kolmogorov-Smirnov n 

pH 0.3755NS 1.1921* 0.1290* 50 

Turbidity 0.3932NS 12.3608NS 0.09123* 80 

TDS 0.2936NS 11.1543NS 0.3111NS 30 

*, NS – Significant and not significant at 5%, respectively; and TDS – Total dissolved solids. 
 

The assumption of the absence of autocorrelation 
between cases for calibration equations of all sensors was 
not met. Thus, a residual first-order correlation, AR(1), was 
found according to the Durbin-Watson test. Some causes of 
residual dependence may be due to measurement errors or 
omissions of important variables in the model. 
Nevertheless, unbiased coefficients can be obtained, but 
they will not be efficient and significance tests and 
confidence intervals are unreliable (Chen, 2016). 

The presence of correlation between the errors 
generated by the models is possibly related to how the 
calibration data were collected, as ten readings with the 
sensors were taken in the same experimental units 
(solutions) at different times, configuring a test with 
repeated measures. Thus, there may be a correlation 
between the data obtained at these times, and, overall, these 
correlations are higher at closer times (Yokoo, 2014). 

Heterogeneity of variance of error terms was 
observed for the adjustments of turbidity and total dissolved 
solids, with non-normality for the latter. Violation of 
homoscedasticity can be associated with the presence of 
measurement errors or the absence of independent variables 
in the model, promoting errors in the significance tests and 
confidence intervals and, even though the least-squares 
coefficients continue to be unbiased, they are not efficient 
(no minimum variance) (Figueiredo-Filho et al., 2011). 
According to the Gauss-Markov theorem, the coefficients 
obtained with the distance from normality for residuals are 
biased and inefficient. 

Thus, the ordinary least squares method did not 
produce the best linear unbiased estimator for the 
calibration equations of the pH, turbidity, and TDS sensors. 

Importantly, only the Ph4502c sensor module, which 
has automatic compensation for room temperature, did not 
provide relaxation of the assumptions of heterogeneity of 
variance or absence of normality of residuals. 

Therefore, the solution temperature can be a key 
factor to be measured, as it influences several other 
parameters. Pinto et al. (2011) stated that the potential 
difference generated between the indication and reference 
electrodes is not only a function of the solution pH but also 
sensitive to temperature changes. Thus, the solution 
temperature interferes with the pH reading, and the higher 
the temperature, the higher the pH (Pratami et al., 2020). 
Both measures are necessary and must be integrated into a 
monitoring system (Patil et al., 2015). The pH meter of the 
present study has a temperature sensor for automatic 
compensation of the air temperature, but the liquid 
temperature is not measured. 

Regarding the turbidity measurements, part of the 
temporal dispersion of the readings may be due to the water 
+ soil solutions used for calibration since a reduction in 
turbidity was observed with the deposition of material in 
suspension at the base of the container. In addition, the 
manufacturer reports temperature correlation with the 
readings provided by the sensor. Gillett & Marchiori (2019) 
also highlighted the need for periodic calibration after a 
certain period of use. In terms of total dissolved solids 
(TDS), the conductivity of ions in water depends on water 
temperature (Cloete et al., 2016). Ions move faster when 
water is hot and, therefore, the apparent conductivity is 
increased when water reaches higher temperatures 
(Rietmanm et al., 1985). 

Although the temperature of the solutions has not been 
measured, the developed multiparametric probe has support 
for a temperature sensor that can perform the proper 
compensation, and the DS18B20 can be used for this purpose. 

Table 3 shows the linear equations fitted by the OLS 
and GLS methods for the pH, turbidity, and TDS sensors. 
Only the intercept of the adjustment of total dissolved solids 
of the GLS method was not significant. 

 
TABLE 3. Models (ŷ) of the relationship between pH, turbidity, and total dissolved solids (TDS) values with voltage (x, volts). 

Method Sensor Equation 

 pH ŷ = −22.7850*x + 74.3480* 

OLS Turbidity ŷ = −436.3956*x + 1811.4481* 

 TDS ŷ = 604.8903*x −339.7890* 

 pH ŷ = −14.0615*x + 48.7629* 

GLS Turbidity ŷ = −396.2280*x + 1684.3480* 

 TDS ŷ = 490.0772*x −99.6983NS 

*, NS – Significant and not significant by the t-test at 5% for slopes and intercepts. 
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As the violation of non-correlation and 
heteroscedasticity was verified, the GLS method with both 
corrections was applied to estimate the coefficients of 
turbidity and total dissolved solids sensor equations. 
However, only the residual autocorrelation effect was 
considered for the pH adjustment. 

Table 4 shows the calibration performance 
measures, root means square error (RMSE), coefficient of 
determination (R2), correlation coefficient (r), index of 
agreement (d), and confidence index (c) for sensor 
adjustments of pH, turbidity, and TDS. 

 
TABLE 4. Statistics of model performance, root mean square error (RMSE), coefficient of determination (R2), correlation 
coefficient (r), index of agreement (d), and confidence index (c). 

Method Sensor RMSE R2 r d c 

 pH 1.1750 0.9342 0.9665 0.9827 0.95 

OLS Turbidity 56.9850 0.9401 0.9696 0.9843 0.95 

 TDS 165.1435 0.8335 0.9130 0.9538 0.87 

 
The turbidity and pH calibration equations for the 

OLS methodology showed the highest precision, according 
to the coefficients of determination (R2) of 0.9401 and 
0.9342, respectively, while TDS estimated the lowest R2 
(0.8335). The performance statistics express good precision 
of the adjustments. However, the use of linear models 

provided by OLS must be careful due to the relaxation of at 
least one assumption regarding the residuals. 

Thus, the evaluation and selection of the method 
with higher statistical consistency were based on the Akaike 
(AIC) and Bayesian (BIC) information criteria. The results 
are shown in Table 5. 

 
TABLE 5. Akaike information criterion (AIC) and Bayesian information criterion (BIC). 

Method Sensor AIC BIC 

 pH 162.0207 165.8447 

OLS Turbidity 877.8761 882.6402 

 TDS 395.5452 398.3476 

 pH 80.5616 84.3857 

GLS Turbidity 803.3822 808.1462 

 TDS 348.8896 351.6920 

 
The AIC and BIC values for all adjustments were 

lower for the coefficients estimated by the generalized least 
squares method. The Akaike criterion weighs between 
adequacy to data and adjustment complexity (Sobral & 
Barreto, 2016). As a rule of choice, the lower the AIC and 
BIC values, the better the model (Pho et al., 2019). In this 
case, the low AIC and BIC values denote the superiority of 
linear regressions by the generalized least squares estimator 
considering heteroscedasticity and/or residual 
autocorrelation. 

Some authors have evaluated only the statistical 
performance of the models and reported good precision in 
the sensor calibration equation using the OLS methodology. 
Cunha et al. (2020) implemented an integrated system 
(hardware and software) for surface water analysis and 
found R2 values between 0.996 and 0.998 for the pH sensor 
when comparing the readings with equipment available on 
the market. Gillett & Marchiori (2019) developed four low-
cost continuous turbidity monitor sensors, calibrated in the 

range from 0 to 100 NTU and attached to the outside of a 
transparent tube at angles of 90 and 180 degrees, and 
obtained R2 values ranging from 0.9934 to 1.0000 for a 
multiple linear fit. Jorge Junior (2019) observed R2 = 0.995 
for the calibration of the SKU SEN0189 turbidity sensor. 

Probe evaluation and fuzzy modeling 

Table 6 shows the results for the parameters of 
transmission quality (BER), efficiency (Ef), and 
performance (fuzzy logic) for monitoring data at distances 
of 1.0 and 10.0 meters with the Bluetooth classic 
communication technology (BT). Among others, BT 
comprises short-range transfer technologies (Lia et al., 
2018) at initial speeds of 1 to 2 Mbps, implementing the 
concept of frequency-division multiplexing, i.e., it adopts a 
frequency-hopping spread spectrum (FHSS) time-slot 
scheme based on the forward error correction (FEC) coding 
technique (Conti et al., 2003; Nikitha et al., 2018). 
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TABLE 6. Transmission quality (bit error rate, BER), efficiency (Ef), sample size (N), and performance for Bluetooth classic 
during 8 hours of monitoring and 1-min transmission interval. 

Test 
Bluetooth classic (1 meter) 

BER Ef (%) N Performance Membership 

01 0.00 97.50 468 Excellent 1.00 

02 0.00 97.92 470 Excellent 1.00 

03 0.036 98.12 471 Poor 1.00 

04 0.00 97.29 467 Excellent 1.00 

05 0.00411 97.71 469 Good 0.96 

Test 
Bluetooth classic (10 meters) 

BER Ef (%) N Performance Membership 

01 1.00x10-3 47.71* 229 Poor 0.67 

02 0.00 97.50 468 Excellent 1.00 

03 3.26x10-3 97.50 468 Good 0.75 

04 0.00 96.87 465 Excellent 1.00 

05 0.00 18.96* 91 Good 1.00 

*Device disconnected. 
 

Tests 01, 02, and 04 at a distance of 1.0 meter 
showed no inconsistencies in the packages sent (BER = 
0.00), but the sending efficiency (Ef) presented 
inconsistencies, with excellent performance, with a 
membership of 1.00, when associated. In the concept of 
membership, an element belongs to the set with a degree of 
membership, that is, an element can partially belong to more 
than one set at the same time (Pessoa et al., 2020). 

The IEEE 802.15.1 standard of tests 03 and 05 
provided noisy bits BER of 3.60×10−2 and 4.11×10−3, 
respectively. Despite the high transmission efficiency, test 
03 presented a classification of poor (membership of 1.00) 
and good for test 05. Tests 02, 04, and 05 at 10.0 meters 
showed no information loss (BER = 0.00), only a delay in 
sending, with excellent performance for tests 02 and 04 and 
poor for tests 01 and 05. 

Shin (2002) reported that unrestricted access to the 
ISM (Industrial, Scientific, and Medical) spectrum exposes 
Bluetooth devices to a high level of interference, classified 
into two categories. The first category is linked to non-
Bluetooth devices, such as IEEE 802.15 and HomeRF 
wireless PANs, and operates at the 2.4 GHz band, with 
IEEE 802.11 also operating at this band for wireless LAN. 
The second category is due to other Bluetooth connections 
(self-interference), as these networks adopt an ad-hoc 
topology called piconet and scatternet, which allows many 
Bluetooth devices to coexist in the vicinity. Thus, an open 

Bluetooth connection nearby may result in interference. 
Regarding the problems associated with non-

Bluetooth devices, failures observed during the tests (Table 
6) can be justified by the presence of the HC-06 (IEEE 
802.15.1) and ESP-01 (802.11 g/b/n) modules operating 
from simultaneously on the same board. In fact, Mathew et 
al. (2010) highlighted that, as they operate in the same 2.4 
GHz ISM band, there is mutual interference, a problem 
already addressed by Conti et al. (2003), Golmie et al. 
(2003), and Wel & Yang (2007). Chiasserini & Rao (2003) 
reported that influences between 802.11 and BT occur 
whenever the interference energy is sufficient to cause a 
decrease in the signal-to-noise ratio at the receiver and the 
two transmissions of the system overlap in both frequency 
and time. 

Conti et al. (2003) emphasized that a careful 
evaluation should consider the presence of thermal noise, 
propagation impediments, interference, the relative distance 
between the interfering systems, modulation formats, 
coding techniques, frequency hopping, packet structures, 
and traffic loads. 

Table 7 shows the results for readings at distances of 
1.0 and 10.0 meters with the standard 802.11 g/b/n Wi-Fi 
platform (ESP-01). No failures were observed in the 
transferred packets (BER = 0.00) for all tests at both 
distances. Thus, distance did not influence BER. 
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TABLE 7. Transmission quality (bit error rate, BER), efficiency (Ef), sample size (N), and performance for Wi-Fi during 8 hours 
of monitoring and 1-min transmission interval. 

Test 
Wi-Fi (1 meter) 

BER Ef (%) N Performance Membership 

01 0.00 95.42 458 Excellent 1.00 

02 0.00 97.71 469 Excellent 1.00 

03 0.00 98.12 471 Excellent 1.00 

04 0.00 96.87 465 Excellent 1.00 

05 0.00 97.29 467 Excellent 1.00 

Test 
Wi-Fi (10 meters) 

BER Ef (%) N Performance Membership 

01 0.00 93.33 448 Excellent 1.00 

02 0.00 97.50 468 Excellent 1.00 

03 0.00 96.66 464 Excellent 1.00 

04 0.00 96.87 465 Excellent 1.00 

05 0.00 96.66 464 Excellent 1.00 

 
Similarly, Ef had its results influenced by 

transmission delays, as observed in the Bluetooth tests. 
Also, it manifested a higher magnitude at 1.0 m (98.12%) 
and smaller at 10.0 m. (93.33%). Furthermore, the proposed 
fuzzy inference system produced an excellent output in all 
tests, with a degree of membership of 1.00. 

As previously described, Wi-Fi and Bluetooth 
standards influence each other. However, the IEEE 802.11 
standard defines physical media (PHY) and media access 
control (MAC) layer protocols (Golmie et al., 2003). When 
a node using IEEE 802.11b as the wireless standard wants 
to send a packet over the network, it uses the carrier 
detection protocol running on the media access control 
(MAC) layer to determine whether the media is busy or idle 
and uses their knowledge of 802.11 and BT activity to predict 
collisions (Chiasserini & Rao, 2003; Mathew et al., 2010). 

Challoo et al. (2012) studied the interference 
between Wi-Fi mainly as an aggressor in Bluetooth and 
ZigBee and concluded that IEEE 802.15.4 has a small 
impact on the IEEE 802.11 performance, while IEEE 
802.11 can have great significance on the ZigBee and 
Bluetooth performances. 

Furthermore, instabilities in connection and signal 
attenuation can influence performance. Correia et al. (2016) 
studied the potential and limitations of automation with a 
low-cost platform and developed a prototype for automatic 
irrigation monitoring and control, with remote activation 
via WEB application. The authors reported that the signal 
underwent attenuation in the distance between the router 
and the module of 10 m in a straight line due to the walls, 
furniture, and appliances arranged between the devices. 
 
CONCLUSIONS 

Low-cost platforms (hardware) enabled the 
development of the multiparametric probe with a total of 
US$ 42.82. 

The experimental calibration in the evaluation of 
probe sensors must be very careful because it can harm 
statistical inferences regarding the adjustments and, 
therefore, in the monitoring of water quality parameters. 

The applied fuzzy inference system was satisfactory 
and allowed the performance evaluations according to the 
conditions of the proposed study, managing to capture the 
distinctions between the investigated protocols from 
transmission quality (BER) and efficiency (Ef) parameters. 

Among the communication technologies supported 
by the probe, the platform for Wi-Fi communication (IEEE 
802.11 g/b/n) via ESP8266 version 01 presented the best 
performances compared to Bluetooth classic (IEEE 
802.15.1) by the HC-06 V2.0 + EDR module. 
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