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Abstract

Atherosclerosis retains the leading position among the causes of global morbidity and mortality worldwide, especially in the
industrialized countries. Despite the continuing efforts to investigate disease pathogenesis and find the potential points of
effective therapeutic intervention, our understanding of atherosclerosis mechanisms remains limited. This is partly due to the
multifactorial nature of the disease pathogenesis, when several factors so different as altered lipid metabolism, increased
oxidative stress, and chronic inflammation act together leading to the formation and progression of atherosclerotic plaques.
Adequate animal models are currently indispensable for studying these processes and searching for novel therapies. Animal
models based on rodents, such as mice and rats, and rabbits represent important tools for studying atherosclerosis. Currently,
genetically modified animals allow for previously unknown possibilities in modelling the disease and its most relevant aspects.
In this review, we describe the recent progress made in creating such models and discuss the most important findings obtained
with them to date.
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Introduction

Atherosclerosis lies at the basis of severe human
diseases that account for a large part of global morbidity
and mortality, such as ischemic heart disease, myocardial
infarction, and stroke. This disease can affect any artery in
the human body, but is especially dangerous in large vital
vessels, such as the carotid and coronary arteries. Certain
parts of blood vessels that have bends or bifurcations are
more susceptible to atherosclerotic plaque formation.
Growing atherosclerotic plaque can by itself reduce the
vessel volume leading to pathological consequences for
the alimented organ or tissue. However, thrombotic events
that occur at the surface of so-called unstable plaques are
more dangerous. Thrombosis associated with rupture or
erosion of atherosclerotic plaques is the cause of many
cases of sudden cardiac death (1).

According to current understanding, atherosclerosis is
a multifactorial disease that involves altered lipid metab-
olism, increased oxidative stress, impaired mitochondrial
function, and chronic inflammation (2,3). The initial stages
of atherosclerotic plaque development take place at the
surface of the blood vessel and include local disturbance

of endothelial function. Activation of endothelial cells leads
to increased permeability of the endothelium for circulating
lipids and to the recruitment of patrolling immune cells.
Both innate and adaptive immune responses take part in
this process (4,5). The developing atherosclerotic lesion is
associated with increased entry and subsequent accumu-
lation of atherogenic lipoproteins in the sub-endothelial
space of the arterial wall, the intima-media layer (6,7).
This process is followed by massive intracellular accumu-
lation of lipids by migrated cells, both recruited immune
cells and migrated resident arterial wall cells, such as
pericytes and vascular smooth muscular cells (VSMCs)
that alter their phenotype to acquire the ability for
phagocytosis. The so-called foam cells, with cytoplasm
filled with lipid droplets, are common constituents of
growing atherosclerotic plaques. The advanced plaques
have a prominent lipid core that can contain a necrotic
core formed through uncontrolled cell death and deficient
clearance. Peripheral parts of the atherosclerotic plaque
are characterized by excessive deposition of the extra-
cellular matrix.
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Non-resolving inflammation plays a crucial part in the
formation of the most dangerous unstable plaques that
are prone to thrombogenesis (8). It was found that deletion
of certain inflammatory genes leads to a reduction of
atherosclerosis independently from changes of the circu-
lating lipid levels (9). Mechanistically, thrombosis at the
surface of an unstable plaque can be explained by the
rupture of the plaque fibrous cap that has protective
functions, and the exposure of the lipid-rich core of the
plaque that contains tissue factors to the circulating blood.
As a result, the coagulation cascade is activated, leading
to platelet aggregation and thrombosis. However, about
30% of all thrombotic events are associated with intact
atherosclerotic plaques that have only superficial endothe-
lial erosion and are proteoglycan-rich (1,10).

Matrix metalloproteinases (MMPs) are secreted by
macrophages and other inflammatory cells in the plaque.
MMPs are responsible for matrix degradation that leads
to collagen depletion in the fibrous cap of the plaque, and
is typically associated with plaque rupture (11). Collagen
depletion in the fibrous cap is associated with massive
death of VSMCs that synthesize the extracellular matrix.

The exact mechanisms of plaque erosion remain
unclear. Among the pathways responsible for this process,
different authors have named local platelet-mediated
neutrophil activation, release of myeloperoxidase, TLR-2
signaling in the endothelium, neutrophil-mediated injury,
and apoptosis of endothelial cells. Neutrophils appear to
play a special role in this process. Activated neutrophils can
release their contents, including DNA and proteins, into the
extracellular space forming the so-called neutrophil extra-
cellular traps (NETs) during the process called NETosis,
a special type of cell death. Formation of NETs was shown
to contribute to atherosclerosis (12,13). In summary, athero-
sclerosis development involves a complex network of
various cells and signaling pathways that may also vary
from one stage of atherosclerosis development to another.
Studying of these mechanisms requires equally complex
tools, such as animal models that have already delivered
a large amount of information that improved our under-
standing of atherosclerosis pathogenesis (14).

Animal models of atherosclerosis

Common requirements for animal models of human
diseases include compatibility with human anatomy and
physiology, translational potential, relative ease of main-
tenance, and affordable cost. When modelling athero-
sclerosis, it is important that animal models share the
topography of the lesions with that observed in humans.
Reproduction of atherosclerosis features in animal models
is based on accelerated plaque formation that can be
achieved by different approaches. The most frequent
methods include cholesterol-rich diets and modifications
of genes involved in lipoprotein metabolism. Mice and rabbits
remain the most common choice for atherosclerosis model

creation, followed by pigs and non-human primates. This
review aims to summarize the information on the most
commonly used animal models of atherosclerosis and their
specific features

Each of the models has both advantages and limita-
tions. Murine models are characterized by a short life
cycle, high reproduction rate, and simplicity of manipula-
tion that makes their use convenient for modelling
atherosclerosis (15). Rabbits are phylogenetically closer
to humans than rodents, and rabbit genome sequencing
and transcriptomic profiling of atherosclerosis have been
successfully completed. These features make rabbits one
of the most suitable species for studying atherosclerosis
(16). Other advantages of rabbit models include the ease
of manipulation, relatively low cost, short gestation period,
large numbers of progeny, relatively suitable size, and
short lifespan. Rabbits are often used for translational
research such as pre-clinical testing of drugs and diagnostic
methods for patients (17,18).

Genetically modified animals revolutionized the
approaches to animal model creation in many disease
areas, including atherosclerosis. Methods of introducing
modifications to DNA through molecular manipulations
are being constantly improved. Currently, it is possible
not only to insert or inactivate genes of interest, but to
create conditional knock-outs silencing certain genes
in particular organs and tissues or in response to an
external signal.

Currently, genetically modified mice are commonly
produced using one of the two basic technical approaches.
The first method is used to manipulate a single gene, for
example for knocking out or single nucleotide changing. In
this method, embryonic stem cells are modified with a DNA
construct containing DNA sequences homologous to the
target gene, and then injected into blastocysts (19). The
other approach is used for insertion of the new genetic
information into the mouse genome or for over-expression
of certain endogenous genes. It involves pronuclear injec-
tion into a single cell of the mouse embryo, where it
randomly integrates into the mouse genome (20). Many
rodent transgenic models of atherosclerosis and associated
conditions have already been developed and characterized,
therefore in most cases, there is no need to design a model
anew (Table 1).

Rabbit models of atherosclerosis

Rabbit models of atherosclerosis became less fre-
quently used since 2000, when apolipoprotein E (apoE)
and low-density lipoprotein (LDL) receptor knock-out mice
were developed (17).

The popularity of rabbit models is explained by the
fact that these animals are relatively inexpensive and
easy to maintain (21). Lipoprotein metabolism in rabbits
is comparable to that of humans, however, rabbits are
characterized by a relative deficiency of hepatic lipase.
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In terms of lipid metabolism, rabbits are superior to mice
for modelling the human situation, since in rabbits,
significant amounts of cholesterol are present in apolipo-
protein B-containing LDL and very low-density lipoprotein
(VLDL), while in mice, the predominant plasma lipoprotein
is high-density lipoprotein (HDL) (22,23). However, rabbit
models of atherosclerosis have their limitations. One of
them is massive inflammation and hepatic toxicity that

develop in response to long-term cholesterol-rich feeding
aimed to induce hypercholesterolemia (24). Nevertheless,
rabbit models of atherosclerosis have been successfully
used for more than 100 years, and allowed studying
several fundamental disease mechanisms, including
establishing the key role of elevated plasma cholesterol
in atherosclerotic plaque formation (24). Modern tech-
niques allowed creating more reliable rabbit models of

Table 1. Overview of rabbit and mouse models of human atherosclerosis.

Animal model Name Main features References

Rabbit models
Watanabe heritable
hyperlipidemic rabbits

WHHL rabbits - spontaneously developing hypercholesterolemia
and atherosclerosis on normal diet

- 8-14-fold increased serum levels of cholesterol
and triglycerides compared to normal Japanese

white rabbits

(27–29)

Animal model for

spontaneous myocardial
Infarction (WHHLMI rabbit)

WHHLMI rabbits - spontaneously developing hypercholesterolemia

and atherosclerosis on normal diet
- 8-14-fold increased serum levels of cholesterol
and triglycerides compared to normal Japanese

white rabbits
- ability to form calcified plaques
- acute myocardial infarctions

(30,31)

Apolipoprotein
E knock-out rabbits

ApoE-/- rabbits - develop mild hyperlipidemia on normal diet
- develop marked atherosclerosis on cholesterol diet

(26)

Lipoprotein (a) in

transgenic rabbits

Lp(a)-rabbits - develop atherosclerosis on cholesterol-rich diet

- demonstrate special aspects of lipoprotein metabolism
- lesions were shown to be significantly increased in
the aorta, the iliac artery, and the carotid artery

(32)

Mouse models

Apolipoprotein
E knock-out mice

ApoE-/- mice - spontaneously developing atherosclerosis on
normal diet

- lesion progression, cell types present in the

atherosclerotic plaque and presence of oxidized
LDL reflect the situation observed in humans

(39,40,43–46)

LDL receptor-deficient mice Ldlr-/- mice - milder lipoprotein profile alteration compared to

ApoE-/- mice
- atherosclerotic lesions develop in

time-dependent manner

(37,50,52)

PCSK9 adeno-associated
virus mice

PCSK9 adeno-
associated virus mice

- develop atherosclerosis on fat-rich diet
- allow the study of plaque calcification

(53–57)

SR-BI knockout and
ApoE-hypomorphic mice

SR-BI KO/Apoe
R61h/h mice

- development of atherosclerosis and coronary heart
disease on diet rich in fat, cholesterol, and cholate

- formation of advanced plaques
- severe coronary heart disease and even

premature death seen in humans

(58,59)

apoE3Leiden.CETP mice apoE3Leiden.
CETP mice

- form all stages of atherosclerotic lesions in
diet-induced manner

- human-like response to treatment with such

drugs as statins, fibrates, and ezetimibe

(61)

Apolipoprotein E-deficient
fibrillin-1 mutant mice

ApoE-/-Fbn1C1039G+/- mice - resemble plaque rupture
- resemble human-like complications

(62)
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atherosclerosis, such as Watanabe hereditary hypercho-
lesterolemic animals (25), apolipoprotein E knock-out
(ApoE-/-) animals (26), and diet-induced atherosclerotic
New Zealand White rabbits (27).

Watanabe heritable hyperlipidemic rabbits
The Watanabe heritable hypercholesterolemic (WHHL)

rabbit line was established based on a mutation that causes
a defect in the LDL receptor. Such animals are character-
ized by spontaneously developing hypercholesterolemia
and atherosclerosis (25). Homozygous WHHL rabbits that
are kept on a normal diet present with hypercholesterolemia
from birth, with LDL being the predominant circulating
lipoprotein. These rabbits develop various forms of athero-
sclerotic lesions, from early fatty streaks to advanced
lesions in the aorta, coronary arteries, and cerebral artery
(27). This rabbit model was one of the first models that
allowed demonstrating the suppressive effect of statins on
plaque destabilization and associated thrombogenesis (28).
Furthermore, this model allowed investigating the effect of
insulin resistance on atherosclerosis lesion formation due to
early insulin resistance and glucose tolerance development
in such animals. High-fructose and high-fat diet induced
aortic lesions with a lipid core and calcifications in WHHL
rabbits replicating the human situation (29). Moreover,
these animals demonstrated spontaneous development of
aortic atherosclerosis and myocardial infarction.

Watanabe heritable hyperlipidemic rabbits for
spontaneous myocardial infarction

Watanabe heritable hyperlipidemic rabbit model for
spontaneous myocardial infarction (WHHLMI) was cre-
ated in the attempt to further refine the WHHL model by
selective breeding of myocardial infarction-prone animals
for several years (30). The resulting animal had a high
incidence (up to 97%) of fatal myocardial infarction caused
by coronary atherosclerosis. Moreover, atherosclerotic
plaques developing in these animals shared common
features with human unstable plaques, such as a thin
fibrous cap and the presence of a necrotic core. During
recent years, WHHLMI rabbits were evaluated for study-
ing human coronary atherosclerotic plaque initiation,
formation, and development. Histopathological examina-
tion of 187 animals revealed various types of coronary
atherosclerotic lesions, including fatty streaks, fibroather-
omas, fibrous lesions, advanced lesions with calcification
and signs of neovascularization, and lesions resembling
human unstable plaques (31).

Apolipoprotein E knock-out (ApoE-/-) rabbits
ApoE-/- rabbits were designed as a model for investigat-

ing the relationship between atherosclerosis and human
hyperlipidemia (26). These animals represent a promising
alternative to apoE-/- mice, because of the better match of
the rabbit lipoprotein profile to that of humans. Knocking

out the ApoE gene was achieved by different research
groups using a range of genome editing approaches, such
as RNA-guided CRISPR-associated protein 9 (Cas9)
endonucleases, zinc finger nucleases, and transcription
activator-like effector nucleases (TALENs) methods. Even
when kept on a normal diet, ApoE-/- rabbits develop mild
hyperlipidemia. Total cholesterol level in such animals
remains about 200 mg/dL, and can be increased up to
1000 mg/dL upon feeding with a cholesterol-rich diet (0.3%
cholesterol and 3% soybean oil) for two weeks, while
wild-type rabbits fed with a cholesterol-rich diet only
demonstrate a cholesterol level increase up to 170 mg/dL.
Moreover, ApoE-/- rabbits develop more pronounced aortic
atherosclerosis than wild-type rabbits when fed a choles-
terol-rich diet for 10 weeks. Due to important roles of both
ApoE and LDL receptor in the regulation of cholesterol
metabolism, using ApoE-/- rabbits together with LDL
receptor-deficient WHHL rabbits appears to be promising
for modelling human hyperlipidemia (26).

Lipoprotein (a) transgenic rabbits
The transgenic rabbit model expressing human apo-

lipoprotein(a) was developed using white Japanese rabbits.
Unlike rodents, rabbit apoB is capable of binding to
recombinant human apo(a) forming lipoprotein(a) (Lp
(a))-like particles in the plasma (32). Transgenic Lp(a)
rabbits develop more pronounced atherosclerosis in
response to a cholesterol-rich diet and also demonstrate
other special aspects of lipoprotein metabolism. The
lesions in such animals were shown to be significantly
increased in the aorta, the iliac artery, and the carotid
artery compared with normal rabbits, which makes this
model illustrative for the investigation of some aspects of
human atherosclerosis (32).

Rodent models of atherosclerosis

Rodents have been a popular choice for developing
atherosclerosis models since 1960s (33). Historically, the
first murine model of atherosclerosis was diet-induced
disease in mice fed with cholesterol and cholate-contain-
ing foods (34). However, rapid development of genetic
engineering methods widely broadened the possibilities
of creating murine models. Two apoE-/- mice strains
were created independently by 2 research groups in the
early 1990’s (35,36). An important feature of apoE-/-

mice is the ability to develop atherosclerosis even while
being fed standard rodent chow diets. Another com-
monly used murine model of atherosclerosis is LDL
receptor-deficient (ldlr� /�) mice that replicate human
familial hypercholesterolemia (37). Currently, mice are
the most frequently used animals in atherosclerosis
research due to multiple advantages, from the ease in
maintaining to the availability of numerous established
variants of genetic modifications.
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Apolipoprotein E knock-out (apoE-/-) mice
In the blood plasma, apoE can be associated with

chylomicron remnants, LDL, and HDL. It acts as a ligand
for the hepatic uptake of chylomicron remnants and
intermediate density lipoproteins by LDL receptors (LDLR)
and the LDLR-related protein 1 (LRP-1) (37). The homology
between human and mouse apoE reaches 70% (38). This
protein has been identified as a promising target for crea-
tion of atherosclerosis models early on (35,36). Creation
of apoE-/- mice was achieved by the replacement of the
wild-type gene with a mutated variant that does not produce
functional protein (39).

In apoE-/- mice, atherosclerosis development is initi-
ated spontaneously, even when animals are kept on a
regular rodent diet, but can be accelerated by applying
cholesterol- and fat-enriched Western type diet. Athero-
sclerotic lesions typically develop in the aortic root, the
aortic arch, innominate artery, carotid arteries, and other
arteries, depending on the diet and the duration of
cholesterol-rich feeding (40). A distinctive feature of this
model is the rarity of lesion development in the carotid
arteries. Lesion progression, cell types present in the
atherosclerotic plaque, and presence of oxidized LDL in
apoE-/- mice reflect the situation observed in humans.
The murine model represents all stages of atherosclerotic
lesion progression, but does not allow modelling the plaque
rupture that occurs in humans (39).

Development of apoE-/- mice was an important step
in the study of atherosclerosis and helped to establish
some important disease mechanisms. In particular, the
role of chronic inflammation in atherosclerosis initia-
tion and progression was studied using this model (41).
Moreover, apoE-/- mice are frequently used for testing
potential therapeutic agents and environmental factors
that may affect atherosclerosis development. For instance,
this model allowed evaluating the effect of probucol on
atherosclerotic development, which appeared to be
paradoxical in apoE-/- mice and LDL receptor-deficient
mice (42,43). Another study has evaluated the effect
of dietary vitamin E supplementation in apoE-/- mice
and demonstrated its beneficial effects on atherosclero-
sis development (44). Antiatherogenic effects of angio-
tensin-converting enzyme inhibitors or the angiotensin-II
receptor antagonists were also studied using this model
(45,46).

LDL receptor-deficient mice (ldlr–/–)
LDL receptor (LDLR) is a plasma membrane protein

that mediates the hepatic clearance of plasma lipoproteins
containing apolipoproteins apoB100 or apoE (14). Muta-
tions in the LDLR gene are associated with familial
hypercholesterolemia in humans. Naturally, this protein
appeared to be an attractive target for creating knock-
out animals prone to atherosclerosis development. Mice
lacking the ldlr gene (ldlr-/-) were created using the

gene targeting approach in 1994 (37). These mice are
characterized by a milder lipoprotein profile alteration
compared to apoE-/- mice, with a plasma cholesterol
level being around 250 mg/dL on a regular diet (47).
Without dietary induction, ldlr-/- mice develop athero-
sclerosis relatively slowly. However, application of high-
fat and cholesterol diet can accelerate the process
dramatically, with plasma cholesterol levels rising
above 1500 mg/dL (37,48). In ldlr-/- mice, circulating
cholesterol is present almost entirely in the LDL frac-
tion, which replicates the human lipoprotein profile and
can therefore be used for modelling purposes (49–51).
In these animals, atherosclerotic lesions develop in a
time-dependent manner, and the formation of plaques
begins in the proximal aorta, later spreading to other
arteries (52).

PCSK9 adeno-associated virus mice
A novel murine model of atherosclerosis, PCSK9

adeno-associated virus mice, was developed without
using germline genetic engineering (53). Designing of
this murine model required only a single injection of a
recombinant adeno-associated virus (AAV) containing
PCSK9 gain-of-function mutant forms of PCSK9, human
PCSK9D374Y or mouse PCSK9D377Y (AAVmPCSK9).
These genes in combination with a high-fat diet were
sufficient to reduce the LDLR expression, increase plasma
LDL cholesterol, and induce atherosclerosis in mice or
hamsters (54). Aortic root lesions developed in PCSK9
adeno-associated virus mice after the induction of athero-
sclerosis by a high-fat diet. Histological analysis of lesions
showed advanced plaque development with foam cells,
smooth muscle cells, and fibrous tissue present in the
plaques (53). Moreover, this model allowed the study of
plaque calcification (55,56). Diet-dependence is an impor-
tant feature of this model, which also allows the study
of atherosclerosis regression. It was shown that simply
switching these mice to a regular diet for 6 weeks could
induce lesion regression (57).

SR-BI knock-out and apoE-hypomorphic mice
This model was generated by breeding two mice

strains: SR-BI-deficient (SR-BI KO) mice and hypo-
morphic apoE mice (ApoeR61h/h): SR-BI KO/ApoeR61h/h

mice. The most significant feature of the SR-BI KO/
ApoeR61h/h mouse is the development of atherosclerosis
and coronary heart disease in response to an atherogenic
diet rich in fat, cholesterol, and cholate. It allows investi-
gators to control the time of disease onset, and also the
severity of symptoms (58).

This model is of specific interest due to the lack of
small animal models resembling severe atherosclerosis
symptoms (formation of advanced plaques), severe cor-
onary heart disease, and even premature death seen in
humans (59,60).
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ApoE3Leiden.CETP mice
The recently developed apoE*3-Leiden.CETP (E3L.

CETP) mouse model of atherosclerosis appears to
be the one that most closely replicates the features
of human disease. Among the similarities are the
ability to form atherosclerotic lesions of all stages (type
I to V) in a diet-induced manner and the response of
diseased animals to the treatment with such drugs as
statins, fibrates, and ezetimibe. The model was created
by combining the apoE*3-Leiden transgene that pro-
vides reduced clearance of triglyceride-rich lipopro-
tein, and the cholesteryl ester transfer protein (CETP)
transgene that makes the cholesterol profile more
humanized (61).

ApoE-deficient fibrillin-1 mutant (ApoE-/-

Fbn1C1039G+/-) mice
These mice are characterized by impaired production

of fibrillin-1, which is responsible for the fragmentation
of elastic fibers observed in aortic stiffening. This feature
is known to be a potential cause of plaque rupture. The
model also shares the common features of atherosclerotic
(apoE-/-) mice, and can therefore be used to study the
features of human unstable plaques. ApoE-/-Fbn1C1039G+/-

develop atherosclerosis in response to a high-fat diet,
and this process is accelerated compared to regular
apoE-/- mice (62).

Conclusions

Animal models proved to be indispensable for studying
human diseases, including atherosclerosis and searching
for novel therapeutic approaches. Currently, several reliable
rabbit and mice models of atherosclerosis have been
developed and validated. Most of them are based on
genetic modifications of key genes involved in atherosclero-
sis development, such as apolipoprotein E or LDL receptor
genes. The models vary in terms of blood lipid profile, the
ability to develop atherosclerotic lesions spontaneously or
induced by a special diet, and the presence of complicated
and unstable plaques. While induction of atherosclerosis
lesions in model animals can be achieved reliably, modelling
of complicated plaques, with such features as calcification,
neovascularization, intraplaque hemorrhage, and thrombo-
sis, is more challenging. Future studies should concentrate
on creating such models that would allow testing new
medications aimed at plaque stabilization.
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