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ABSTRACT. When considering hub-and-spoke networks with single allocation, the absence of alternative

routes makes this kind of systems specially vulnerable to congestion effects. In order to improve the design

of such networks, congestion costs must be addressed. This article deploys two different techniques for ad-

dressing congestion on single allocation hub-and-spoke networks: the Generalized Benders Decomposition

and the Outer Approximation method. Both methods are able to solve large scale instances. Computational

experiments show how the adoption of advanced solution strategies, such as Pareto-optimal cut generation

on the Master Problem branch-and-bound tree, may be decisive. They also demonstrate that the solution

effort is not only associated with the size of the instances, but also with their combination of the installation

and congestion costs.

Keywords: single allocation hub location problem, Benders decomposition method, outer-approximation

algorithm, large scale optimization.

1 INTRODUCTION

Hub-and-spoke networks became an important field of discrete location research. The relevance
is largely explained by their widespread use in cargo and passengers transportation and telecom-
munication systems [5, 16].

In hub-and-spoke networks, direct transportation of flows between pairs of origin-destination
nodes is usually extremely costly. As an alternative, flows from different origins but addressed
to the same destination can be consolidated at transshipment nodes, known as hubs, prior to
be routed, sometimes via other hubs, towards their destinations. Hubs are then responsible for
flow aggregation and redistribution. The bundle of flows at the hubs increases the traffic on
inter-hub connections, enabling the use of more efficient and higher volume carriers, resulting
then in lower per unit transportation costs [47]. Thus economies of scale can be achieved by
bulk transportation. Furthermore, hub-and-spoke networks allow lower infrastructure costs and
greater overall efficiency of logistics [37].
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Generally, in the design of hub-and-spoke networks, there is a connection between every hub
pair; no two non-hub nodes can be serviced by a direct link; an origin-destination demand is
routed through one or at most two hubs; and the economies of scale at inter-hub connections are
represented by a discount factor (0 ≤ α ≤ 1). Usually the main decisions involve the location
of hub facilities, the allocation of origin and destination nodes to hubs (formation of the spokes),
the establishment of discounted transportation connections and the routing of flows through the
network.

Moreover, according to the characteristics considered, different assumptions may be addressed,
including: Single or multiple allocation of the non-hub nodes to the installed hubs, the number
of hubs to be located may or may not be known beforehand, direct service between non-hub
nodes may be enabled, capacity constraints on the amount of traffic a installed hub can handle,
consideration of congestion effects at the installed hubs, flow dependent economies of scale on
inter-hub connections, and furthermore there may be not a direct connection between every hub
pair, implying then an incomplete hub network structure [6] or a network topology where the
hubs are connected by means of a spanning tree [18]. A general review of different problems of
hub-and-spoke networks can be found at Campbell [14,15], while a exhaustive survey is present
on Campbell et al. [16] and Alumur & Kara [5].

One of these problem variants is the single allocation hub location problem (SAHLP) where each
non-hub is allocated to a single hub only, a fixed cost is incurred each time a node is selected
to be a hub, and the path connecting each pair of origin-destination nodes has one or two hubs
present. When there are no installation costs but the number p of hubs to be located is known
beforehand, the problem is named as the single allocation p-hub location problem (SApHLP). As
both problems are closely related, they share the same mathematical programming formulations,
differentiating only by the presence or not of a constraint establishing that p hubs must be located
and a term on the objective function summing the fixed cost of the installed hubs.

Furthermore, while the multiple allocation hub location problem is closely related to the facility
location problem [40], the SAHLP is more akin to the quadratic assignment problem [46]. Hence
it is harder to handle, requiring different approaches regarding solution techniques and proper
formulations.

Among the available mixed integer linear programming formulations [3, 14, 24, 28, 46, 55], two
are worthy of notice: the models of Skorin-Kapov et al. [55] and Ernst & Krishnamoorthy [28].
While the first has the tightest linear programming relaxation (optimality gaps smaller than 1%),
yielding integer solution values for the integer variables most of the time at the expense of com-
puter memory and time; the latter presents a good trade-off between formulation size (fewer
variables and constraints) and computer effort to solve it.

When solution methods are considered, the SAHLP and the SApHLP do not share the same
strategies. Most of the algorithms [2,28,29,38,39,46,51,54] to solve the SApHLP are based on
specialized heuristics and branch-and-bound procedures, while those [1,17,21,53,56] addressed
to the SAHLP rely on meta-heuristics like genetic and simulated annealing algorithms.
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Independently of which hub-and-spoke problem is addressed, one of the main overall advantages
of such systems is the exploitation of scale economies. However this may induce the formation of
networks that tend to overload a small number of hubs, resulting in some inter-hub connections
more heavily-utilized than others. This is specially true when single allocations are involved,
since the flow leaving from and arriving at a non-hub node goes through only one hub. Hence it
is unavoidable to take congestion effects into consideration.

A common way of addressing congestion in SAHLP and SApHLP networks is to limit the
amount of traffic a installed hub can handle [7, 8, 20, 30, 41, 44, 52]. Unfortunately, capacity con-
straints do not mimic the explosive nature of congestion: the more flow a hub attracts, the harder
the handling process becomes, the greater the costs. Usually these costs increase extremely rapid
due to queuing and delay effects. Hence, elaborate cost functions are needed such as the one
employed by Elhedhli & Hu [26].

Elhedhli & Hu [26] are the first authors to consider explicitly the congestion effects on the ob-
jective function for the SApHLP. Using a power-law function widely utilized to estimate delay
costs in airport applications [34]. They propose a non-linear formulation where these convex
cost functions, that increase rapidly as more traffic flows through the installed hubs, are present
on the objective function. They linearize their model utilizing a set of infinite piece-wise linear
and tangent hyperplanes, and then solve it by means of a Lagrangian relaxation algorithm. They
solve only toy instances (up to 25 nodes) with an average optimality gap close to 1%. The ob-
tained solutions have a more balanced overall distribution of flows through the network than the
ones attained by disregarding the congestion effects [26].

In this study, instead of linearizing the implied nonlinear formulation, two very efficient algo-
rithms based on the Generalized Benders Decomposition (GBD) method [33] and on the Outer
Approximation technique (OA) [23, 31, 57] are employed to handle the nonlinear SAHLP under
congestion. These algorithms are different from the former deployed for the multiple allocation
variant proposed at Camargo et al. [11]. The main contributions of the present article are the
proper derivation of pareto-optimal Benders cuts as devised by Papadakos [49], the exploitation
of the special structure of the formulation in order to enable the blending of GBD and OA cuts at
the same master program, and the implementation of this strategy in a branch-and-cut framework.

Due to the combination of the best features of each method, the proposed scheme is able to solve
large instances to optimality. As far as the authors know, there is no previous report of such
large problems solved by the OA technique. Furthermore, a fair comparison of both techniques
is presented demonstrating the advantages of one method over the other as a function of some of
the instance parameters.

The paper is organized as follows. Section 2 provides general notations and definitions of the
nonlinear SAHLP under congestion effects. The GBD and OA algorithms are presented in sec-
tions 3 and 4, respectively. Finally, the computational results are shown in section 6, while the
final remarks and future research plans are done in section 7.
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2 NOTATION AND FORMULATION

In this section, the SAHLP under congestion is formulated as a mixed integer nonlinear pro-
gram (MINLP) using the model of Skorin-Kapov et al. [55] as a starting basis. The formulation
requires the following definitions: Let N be the set of demand node locations which exchange
flows and let K be the set of candidate nodes to become hubs. Usually K ⊆ N , but it is assumed
henceforth that all demand nodes are candidates to have a installed hub, implying K ≡ N . For all
node pairs i and j (i, j ∈ N : i 6= j), wi j represents the flow demand from origin node i to des-
tination node j which is routed through either one or two installed hubs. Normally wi j 6= w j i .
Let also Oi =

∑
j∈N wi j and Di =

∑
j∈N w j i be the total of demand that is originated from

and destined to node i ∈ N , respectively.

Further, let fk be the fixed installation cost of a hub at node k ∈ N and let ci jkm be the trans-
portation cost per unit of flow from node i to node j routed via hubs at nodes k and m, that is,
the standard transportation cost of route i − k − m − j (i, j, k, m ∈ N ). This transportation cost
is the composition of three cost segments: ci jkm = cik + αckm + cmj , where cik and cmj are
the standard transportation cost per unit of flow from node i to hub k and from hub m to node
j , and αckm is the discounted standard transportation cost between hubs k and m. The discount
factor 0 ≤ α ≤ 1 represents the scale economies on the inter-hub connections. If only one hub is
present in any given route then k = m and no discount factor is applied for the route i −k −k − j .

The MINLP uses flow variables xi jkm ≥ 0 to represent the fraction of demand wi j (i, j ∈ N )
that is routed through hubs k and m (k, m ∈ N ), in this order; the variables gk to account for the
total flow passing through hub k ∈ N ; and the integer variables zik ∈ {0, 1} to indicate if node
i ∈ N is allocated to hub k ∈ N (zik = 1) or not (zik = 0). When a hub is located at node k ∈ N ,
then zkk = 1; otherwise zkk = 0.

The congestion cost function is usually defined as a power-law τk(gk) = a gk
b that increases

rapidly as more traffic goes through hub k ∈ K , where the parameters a > 0 and b ≥ 1
are scalars related to the hub features. The function τk(gk) is increasing on [0, +∞), proper
convex and smooth, and it is normally used to estimate delay costs in airport applications [34],
being already used by Elhedhli & Hu [26] for the same problem. In this research, the adopted
power law function is designed to consider congestion effects after a given flow threshold 0k

(usually set to 70% of the hub nominal capacity) is trespassed. Such function can be written
as τk(gk) = a (max{0, gk − 0k})b without loss of generality, since 0k can be set for any value
where the congestion effects start to degrade the network economies of scale.

In the SAHLP, as each non-hub node is allocated to a single installed hub only, demands wi j and
w j i are sent over the same route, enabling then the reduction of the number of variables xi jkm in
half [54]. Furthermore, as the outgoing and the incoming flows of a non-hub must go and arrive
through the same hub, the cost component of local traffic can be written as

∑
k 6=i (Oi +Di ) cik zik .

Thus enabling the redefinition of the costs ci jkm as

ci jkm = α
(
wi j ckm + w j i cmk

)
, ∀ i < j, k 6= m.
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These three simple manipulations improve the overall performance of the algorithms here pro-
posed. In the remainder of this paper, for the sake of simplicity in presentation, one must consider
i, j, k, m ∈ N and i < j . Hence the implied formulation is given as:

min
∑

k

[ fk zkk + τk(gk)] +
∑

k 6=i

(Oi + Di ) cik zik +
∑

i< j

∑

k 6=m

ci jkm xi jkm (1)

s. t.:
∑

k

zik = 1 ∀ i (2)

∑

m

xi jkm = zik ∀ i < j, k (3)

∑

k

xi jkm = z jm ∀ i < j, m (4)

∑

i

(Oi + Di )zik −
∑

i< j

(wi j + w j i )xi jkk = gk ∀ k (5)

zik ≤ zkk ∀ i 6= k (6)

xi jkm ≥ 0 ∀ i < j, k, m (7)

gk ≥ 0 ∀ k (8)

zik ∈ {0, 1} ∀ i, k (9)

The objective function (1) minimizes the total cost associated with the demand transportation,
the congestion effects and the hub installation costs. Constraints (2) assure that all nodes are
allocated to a hub. Constraints (3) guarantee that routes beginning at origin node i , then passing
firstly at hub k, and finishing at destination node j will only exist if node i is allocated to hub
k. Likewise, constraints (4) guarantee that routes beginning at origin i and passing at hub m
just before finishing at destination j will only exist if node j is allocated to hub m. Constraints
(5) are responsible for accounting the total hub traffic, avoiding the double computation of the
local traffic component. Constraints (6) allow a node i to be allocated to hub k only if hub k is
installed, while (7), (8) and (9) are the non-negativity and the integrality constraints of variables
xi jkm , gk and zik , respectively.

Although there are other formulations for the SAHLP [14, 24, 28], the formulation of Skorin-
Kapov et al. [55] is chosen because it provides the tightest linear programming bound. This is a
key feature, since nonlinear terms tend to weaken any mixed-integer programming formulation,
enlarging the integrality gap as the nonlinearities become dominant. The chosen formulation has
also a very interesting property: for a fixed feasible vector z, the formulation is decomposable
for each i − j pair, recalling that the variables gk can be recovered by replacing xi jkk by zik z jk .

The total hub flow gk has three different forms of being assessed in the literature. For some
applications, such as the ones regarding public service networks, such as postal, health care, and
public security systems, where the most overloading tasks are the sorting and the assembling
of flows at the first hub of a given path, Ernst & Krishnamoorthy [30] propose constraints (10).
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These constraints assume that the hubs may only be overloaded by the incoming flows originated
at the non-hub nodes directly allocated to them.

∑

i

Oi zik = gk ∀ k. (10)

For those applications where the aforementioned assumption does not hold, Ernst & Krish-
namoorthy [30] further suggest that the total hub flow gk can be determined by adding the
demands destined to the non-hub nodes directly allocated to a given hub, yielding then con-
straints (11).

∑

i

(Oi + Di )zik = gk ∀ k. (11)

As observed by Labbé et al. [41], constraints (11) compute the total hub flow gk in a wrong way.
For those non-hub nodes which are allocated to the same hub, the flows originated from and
destined to them are accounted twice: One time on the parcel Oi and another time on the parcel
Di . Labbé et al. [41] correct this misconception by proposing constraints (5).

Constraints (5) and (10) induce very different optimal networks, as well as require distinct com-
putational efforts. In order to illustrate these differences, a small experiment was carried out by
optimally solving, via CPLEX 12, the instance AP20.2, with 20 nodes and α = 0.2, of the well-
known Australian Post (AP) standard data set [28, 30]. The adopted power-law congestion cost
function had parameters a = 0.01 and b = 2. Figure 2 shows how the network design and the
required solution time were affected after constraints (10) were exchanged for (5). The attained
values for when no congestion is accounted are also shown. Once again constraints (11) are
meaningless since they wrongly compute the total hub flow, therefore they were not considered
in this experiment.

In Figure 1(a), the total load (gk) of each installed hubs is represented by a bar above the hub’s
index. When congestion effects are disregarded, only two hubs (1 and 10) are installed at the
optimal solution. When congestion effects are accounted by computing the total hub flow through
constraints (10) or (5), the optimal networks have three (hubs 3, 10 and 11) and six (hubs 1, 3,
8, 9, 10 and 11) hubs, respectively. In other words, they have very distinctive optimal infra-
structures.

When the computational efforts are observed, the differences are more pronounced. Figure 1(b)
presents, in logarithmic scale, the required solution time for the three considered situations. As
can be seen, when constraints (5) are utilized, the required solution time is 204 times greater than
when using constraints (10). Constraints (5) greatly hardens the problem, because the term xi jkk

is a linearization of the product of zik z jk , which greatly affects the attained lower bounds during
the branch-and-bound search.

Constraints (5) and (10) have different design purposes, being suitable for distinct applications.
For those applications in which constraints (10) are more adequate, Camargo et al. [13] have
devised a new technique that hybridizes methods of OA [23,31] and Benders decomposition [9].
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(a) Optimal network infra-structure for different forms of
accounting the total hub flow.

(b) Computational effort for different forms of accounting
the total hub flow.

Figure 1 – Comparison for different forms of accounting the total hub flow for instance AP20.2.

The proposed technique blends OA and classical Benders cuts in a straightforwardly manner,
since there is no coupling of the g and x variables on constraints (10). Their algorithm is capable
of solving instances up to 200 nodes in reasonable time. Remark that previous articles on the
literature solved only small problems up to 25 nodes [26, 27].

Unfortunately, for those practical situations where one needs to account the total hub flow using
constraints (5), which are more general, the technique already proposed by Camargo et al. [13]
can not be directly applied, due to coupling of the g and x variables. Furthermore, as far as the
authors know, there are no other studies in the literature that address congestion effects deploying
constraints (5).

In the light of the aforementioned reasons, this article proposes a new hybrid OA/Benders al-
gorithm that exploits the structure of the formulation, and optimally solves instances up to 100
nodes. Further, the method clearly outperforms an implemented GBD [33] algorithm, a well
known technique for solving MINLPs.

Moreover, whenever two formulations – one tight and large, and another weak and small–are
available for a given problem, the proposed scheme can be applied, if the global utilization of
the common resources is accounted using the smaller model and is computed independently of
the large scale system variables. This kind of manipulation simplifies the handling of the non-
linearities, by confining them to a kind of sandbox, while uses the large scale system to improve
the formulation bounds.

For sake of presentation and understanding of the required concepts of the hybrid technique, the
next section is dedicated to the application of the GBD method for the proposed model.

3 GENERALIZED BENDERS DECOMPOSITION

The Benders decomposition algorithm [9] is a partition method for solving mixed-integer linear
and non-linear programming problems. In general terms, the algorithm relies on a projection
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problem manipulation, followed by solution strategies of dualization, outer linearization and
relaxation. The complicating variables (integer variables) of the original problem are projected
out, resulting into an equivalent model with fewer variables, but many more constraints. When
attaining optimality, a large number of these constraints will not be binding, suggesting then a
strategy of relaxation that ignores all but a few of these constraints.

Benders proposes a procedure to add these constraints on demand by using two levels of coor-
dination. At a higher level, known as master problem (MP), a relaxed version of the original
problem having the set of the integer variables and its associated constraints is responsible for
fixing the values of these integer variables and for providing a lower bound (LB) for the problem.
At a lower level, known as subproblem (SP), the dual of the original problem with the values of
the integer variables temporarily fixed by the MP is responsible for rendering a new cut or a
Benders cut to be added to the MP and for generating a upper bound (UB) for the problem. The
algorithm iterates, solving the MP and the SP one at a time, until the UB and the LB converge
towards an optimal solution, if one exists.

Since the pioneering work of Geoffrion & Graves [32], the Benders decomposition method has
been successfully deployed in solving large-scale problems: e.g., the uncapacitated network de-
sign problem with undirected arcs [43], the locomotive and car assignment problem [19] and,
more recently, the multiple allocation hub location problem [10–12].

In Sections 3.1, 3.2 and 3.3, formal descriptions of the MP, the associated SP, implementation
issues and solution strategies are presented.

3.1 Benders master program

Projecting the problem (1)–(9) onto the space of the z variables results into the equivalent
problem:

min
z∈Z

∑

k

fk zkk +
∑

k 6=i

(Oi + Di ) cik zik + φ(z)

where Z = {z ∈ {0, 1} | constraints(2) and (6) hold} and φ(z) is the following SP:

φ(z) = min
(x,g)∈G






∑

k

τk(gk) +
∑

i< j

∑

k 6=m

ci jkm xi jkm






being

G =
{
(x, g) ≥ 0 | constraints (3)–(5) hold

}
.

Since the constraints defining z are enough to ensure feasibility, the SP is bounded. Further, as
φ(z) has a convex and differentiable objective function and linear constraints, its Karush-Kuhn-
Tucker conditions are necessary and sufficient for optimality, hence amenable to dualization
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techniques. So associating vectors of dual variables u, v and β to constraints (3), (4) and (5),
respectively, and because there is no duality gap, φ(z) can be re-written as:

φ(z) = max
u,v,β

{
min

(x,g)∈G

{ ∑

k

τk(gk) +
∑

i< j

∑

k 6=m

ci jkm xi jkm +
∑

i< j

∑

k,m

ui jk xi jkm

∑

i< j

∑

k,m

vi jm xi jkm −
∑

i< j

∑

k

βk(wi j + w j i )xi jkk −
∑

k

βk gk

}

−
∑

i< j

∑

k

ui jk zik −
∑

i< j

∑

m

vi jm z jm +
∑

i,k

βk(Oi + Di )zik

}

Since the supremum is the least upper bound and with the help of variable η ≥ 0, the whole
problem (1)–(9) is then equivalent to following MP:

min
z∈Z

∑

k

fk zkk +
∑

k 6=i

(Oi + Di ) cik zik + η (12)

s. t.: η ≥ min
(x,g)∈G

{ ∑

k

τk(gk) +
∑

i< j

∑

k 6=m

ci jkm xi jkm +
∑

i< j

∑

k,m

ui jk xi jkm

∑

i< j

∑

k,m

vi jm xi jkm −
∑

i< j

∑

k

βk(wi j + w j i )xi jkk −
∑

k

βk gk

}

−
∑

i< j

∑

k

ui jk zik −
∑

i< j

∑

m

vi jm z jm +
∑

i,k

βk(Oi + Di )zik ∀ u, v, β (13)

η ≥ 0 (14)

Because a large number of the constraints of the MP (12)–(14) will not be binding when opti-
mality is attained, the GBD algorithm solves the MP through a strategy of relaxation that ignores
all but a few of the constraints (13). These constraints are then added, via a iterated procedure,
to the MP as needed. Thus for a given iteration t , where z = zt and after the solution of the
associated SP and the recovery of the optimal values of ut , vt and β t , the optimal value of φ(zt )

is given by:

φ(zt ) = min
(x,g)∈G

{ ∑

k

τk(gk) +
∑

i< j

∑

k 6=m

ci jkm xi jkm +
∑

i< j

∑

k,m

ut
i jk xi jkm

∑

i< j

∑

k,m

vt
i jm xi jkm −

∑

i< j

∑

k

β t
k(wi j + w j i )xi jkk −

∑

k

β t
k gk

}

−
∑

i< j

∑

k

ut
i jk zt

ik −
∑

i< j

∑

m

vt
i jm zt

jm +
∑

i,k

β t
k(Oi + Di )z

t
ik (15)
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Further, constraints (13) can be rewritten for iteration t in the form:

η ≥ min
(x,g)∈G

{ ∑

k

τk(gk) +
∑

i< j

∑

k 6=m

ci jkm xi jkm +
∑

i< j

∑

k,m

ut
i jk xi jkm

∑

i< j

∑

k,m

vt
i jm xi jkm −

∑

i< j

∑

k

β t
k(wi j + w j i )xi jkk −

∑

k

β t
k gk

}

−
∑

i< j

∑

k

ut
i jk zik −

∑

i< j

∑

m

vt
i jm z jm +

∑

i,k

β t
k(Oi + Di )zik (16)

Therefore, by eliminating the minimum in (16) by using (15), the relaxed Benders master pro-
gram (RMP) is stated as:

min
z∈Z

∑

k

fk zkk +
∑

k 6=i

(Oi + Di ) cik zik + η (17)

s. t.: η ≥ φ(zt ) −
∑

i< j

∑

k

ut
i jk(zik − zt

ik) −
∑

i< j

∑

m

vt
i jm(z jm − zt

jm)

+
∑

i,k

β t
k(Oi + Di )(zik − zt

ik) ∀ t = 1, . . . , T (18)

η ≥ 0 (19)

where T is the maximum number of iterations in order to attaining the optimal solution. In the
next section, the resolution of SP φ(z) is presented.

3.2 Benders subproblem

For a hub structure zt fixed by the MP (17)–(19) at iteration t , the SP φ(zt ) is given by:

min
∑

k

τk(gk) +
∑

i< j

∑

k 6=m

ci jkm xi jkm (20)

s. t.: gk +
∑

i< j

(wi j + w j i )xi jkk =
∑

i

(Oi + Di )z
t
ik ∀ k (21)

∑

m

xi jkm = zt
ik ∀i < j, ∀ k (22)

∑

k

xi jkm = zt
jm ∀i < j, ∀ m (23)

xi jkm ≥ 0 ∀i < j, ∀k, m (24)

gk ≥ 0 ∀k (25)
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In the SP (20)–(25), there are two sets of variables, x and g, coupled by the constraints (21).
After dualizing these constraints by the associated dual multipliers β, a decomposable problem
is implied:

d(β) = min
∑

k

(τk(gk) − βk gk) −
∑

i< j

∑

k

βk(wi j + w j i )xi jkk

+
∑

i< j

∑

k 6=m

ci jkm xi jkm +
∑

i,k

βk(Oi + Di )z
t
ik

subject to constraints (22)–(25).

The problem d(β) is decomposable in two smaller SPs and a constant: A linear problem, dL(β),
having only the xi jkm variables; a non-linear problem dN L(β), having just the gk variables; and
a fixed term. Further, the SP dN L(β) is convex and differentiable, being therefore its Karush-
Kuhn-Tucker conditions necessary and sufficient for optimality.

Hence for each k, given a structure zt fixed by the RMP at iteration t , the optimal solution of β t

minimizes dN L(β) or:

β t
k = τ ′

k(g
t
k) ∀ k (26)

In order to determine the optimal value of β t
k , the value of gt

k has to be computed first. As the
variables xi jkm can also be stated as the product of zik z jm for any RMP solution zt , the optimal
value of gt

k can be obtained by rewriting equation (21) in the following way:

gt
k =

∑

i

(Oi + Di )z
t
ik −

∑

i< j

(wi j + w j i )z
t
ik zt

jk ∀ k (27)

This small and apparently innocuous detail makes it possible to easily calculate the value of gt ,
avoiding therefore the use of non-linear programming methods for evaluating φ(zt ). Moreover,
this equation (27) has an additional advantage since it also allows the decomposition of the SP
dL(β) in smaller problems, one for each i − j pair. Henceforth the optimal values of ut and vt

can now be computed by solving the dual linear programming of these smaller problems:

max
∑

k

ui jk zt
ik +

∑

m

vi jm zt
jm (28)

s. t.: ui jk + vi jm ≤ ci jkm ∀ k 6= m (29)

ui jk + vi jk ≤ −βk(wi j + w j i ) ∀ k (30)

ui jk ∈ R ∀ k (31)

vi jm ∈ R ∀ m (32)

3.3 Implementation and solution strategies

The efficiency of GBD algorithm depends mainly on the number of iterations required to attain
global convergence. This number is intimately related to the quality of the Benders cuts assem-
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bled. Strong cuts usually mean fewer iterations. In order to have strong cuts, the solution of the
SP has to be judiciously done, since the Benders algorithm is very sensitive to the selection of
the dual variables. If care is not taken, a poor behavior of the algorithm may be expected.

Magnanti & Wong [42] propose a methodology for tackling this issue and hence accelerate the
Benders algorithm. They notice that when the dual SP has multiple optimal solutions different
Benders cuts can be generated. Instead of adding them all to the MP, they propose a SP to be
solved, very similar to (28)–(32), in order to find the strongest cut, which dominates all the other
cuts in the sense of pareto-optimality. Magnanti & Wong define the strength of a cut compared
to another cut according to the following definition:

Definition 1. A cut is said to be pareto-optimal if it is not dominated by any other cut. Let U =
{(u, v) : satisfying constraints (29) − (32)} be the set of feasible values for the dual variables
u and v. A Benders cut (18) corresponding to (u1, v1) ∈ U dominates that corresponding to
(u2, v2) ∈ U, if:

∑

i< j

∑

k

u1
i jk zik +

∑

i< j

∑

m

v1
i jm z jm ≥

∑

i< j

∑

k

u2
i jk zik +

∑

i< j

∑

m

v2
i jm z jm, ∀ z ∈ Z

with strict inequality for at least one point z ∈ Z. Similarly, it is said that (u1, v1) dominates
(u2, v2) and it is called pareto-optimal.

In order to build up the pareto-optimal cut generation SP, they use the notion of core points:

Definition 2. A point z0 ∈ Z is a core point if it belongs to the relative interior of the convex
hull of Z or z0 ∈ ri(Zc), where ri(∗) and Zc are the relative interior and convex hull of set Z,
respectively.

In the original algorithm of Magnanti & Wong, they have two different SPs to solve at each
iteration: One associated to the current MP solution zt , SP (28)–(32), and another related to a
initial fixed given core point z0. This additional SP differs slightly from the original SP, having
the form:

max
∑

k

ui jk z0
ik +

∑

m

vi jm z0
jm (33)

s.t.:
∑

k

ui jk zt
ik +

∑

m

vi jm zt
jm = d̄ i j

L (β, u, v) (34)

constraints (29) − (32) (35)

where d̄ i j
L (β, u, v) is the optimal value of the objective function of the SP associated with the

MP zt . This Magnanti & Wong SP (33)–(35) generates pareto-optimal cuts that speed up the
convergence of the method. In order to achieve a good performance, one must assess the com-
putational burden of finding these pareto-optimal cuts faced to the number of iterations that they
might save.

Pesquisa Operacional, Vol. 32(3), 2012



“main” — 2012/12/4 — 14:56 — page 477 — #13

RICARDO SARAIVA DE CAMARGO and GILBERTO DE MIRANDA JR. 477

More recently, Papadakos [49] shows that it is possible to deal with a different version of the
Magnanti & Wong SP that decreases the computational effort for cut generation by disregarding
constraint (34). As a drawback, this enhancement only works if a different core point z0 is used
at each iteration [49].

Even though, as pointed out by Mercier et al. [45], there are not practical methods to find good
core points, Papadakos [49] proves that given a valid initial core point z0 ∈ ri(Zc) and z ∈ Z
then any convex combination of z0 and z is also a core point. This successful approximation
scheme is given by:

z0
ik = λ z0

ik + (1 − λ) zt
ik ∀ i, k, t

where 0 < λ < 1. As also observed by Papadakos [49] and Mercier et al. [45], λ = 1/2 gives
the best results empirically.

Furthermore, the selected starting core point that demonstrated the best overall performance
during the computer experiments is taken as:

z0
kk = 0.5 ∀k (36)

z0
ik = 0.5/(n − 1) ∀i 6= k (37)

where n = |N |.

Proposition 1. The point described by (36) and (37) is a valid core point, i.e. z0 ∈ ri(Zc).

Proof. In order to proof Proposition 1, it is necessary to show that z0 can be expressed as convex
combination of at least two integer feasible solutions. A point z is a convex combination of
several other points zr , r = 1, . . . , m, if:

z =
m∑

r=1

λr zr

m∑

r=1

λr = 1

λr ≥ 0 ∀ r = 1, . . . , m

It is possible to verify that z0 respects the convex combination definition by making z1 equal to
the solution where all nodes are hubs and zr , r = 2, . . . , (n +1), equal to the n possible solutions
having a single installed hub, and establishing λ1 = 0.5 − 0.5/(n − 1) and λr = 0.5/(n − 1),
r = 2, . . . , (n + 1). �

A sketch of the implemented algorithm is detailed in Algorithm 1 where U B, L B, ε, θ∗
RM P and

ϑ∗ are the upper bound, lower bound, stopping precision, the objective function optimal value of
the RMP, and the objective function value of the current solution, respectively.
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Algorithm 1: Generalized Benders Decomposition

1 Set U B = +∞, L B = −∞, t = 1, z0.

2 If (U B − L B) < ε, then stop. Terminate, a near optimal solution has been obtained.

3 Calculate the values of β t using equation (26) and the values of gt using z0.

4 Solve the subproblem dL (β) for z0.

5 Add a new Benders cut to the RMP using (18) and z0 in the place of zt .

6 Solve the RMP (17)–(19), obtaining θ∗
RM P and the optimal values for the integer variables zt .

7 Set L B = θ∗
RM P and update zt in subproblems dL (β) and dN L (β).

8 Calculate the values of β t using equation (26) and the values of gt .

9 Solve the subproblem dL (β).

10 Compute the optimal value of φ(zt ) and set:

ϑ∗ = φ(zt ) +
∑

k

fk zt
kk +

∑

k 6=i

(Oi + Di ) cik zt
ik .

11 Add a new Benders cut to the RMP using (18).

12 Update core point z0.

13 If ϑ∗ < U B, then set U B = ϑ∗.

14 Increment t and go to 2.

Usually, the solution time of the MP (line 6) is usually much higher than the SP because of the
integrality constraints. A common strategy to short it is to reduce the number of MP solved by
embedding the pareto-optimal cuts generation procedure in a standard Branch-And-Cut frame-
work, Algorithm 2.

Before starting the branch-and-cut, a cut pool � is set up. Some cuts can be added early in the
tree to avoid the exploration of too many infeasible branch-and-bound nodes. However, adding
too many unnecessary cuts can slow down the LP relaxation at each node. A good starting cut
pool is obtained by solving the LP relaxation of the MP and adding five to ten cuts. In Algo-
rithm 2, solving a node ρ ∈ � means solving the LP relaxation of MP, augmented with branching
constraints of ρ and the cuts in pool �. The adopted implementation algorithm has been carried
in the Branch-And-Cut framework of CPLEX 9.1 using the standard callback classes.

Algorithm 2: Branch-and-Cut Generalized Benders Decomposition

1 Set � = {ρ}, where ρ has no branching constraints.

2 If � is empty, then stop.

3 Select ρ∗ ∈ �.

4 � = � \ ρ∗.

5 Solve ρ∗, obtaining z∗, η∗.

6 Calculate the values of β∗ using equation (26) and the values of g∗ using z∗.

7 Solve the subproblem dL (β∗) for z∗.

8 Compute the optimal value of φ(z∗).

9 If η∗ > δ φ(z∗), then add a new Benders cut to the RMP using (18).

10 Branch, yielding in nodes ρ′ and ρ
′′
, � = � ∪ {ρ

′
, ρ′′}.

11 Go to 2.
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where δ is a scalar parameter set to 1.10. Line 9 only allows the inclusion of cuts that might
improve the overall lower bound of the algorithm.

Although the GBD algorithm solves the SAHLP under congestion successfully, see the com-
putational results Section 6, an specialized OA procedure is also presented in the next sec-
tion. Both techniques are very competitive and clearly outperformed CPLEX 9.1 on the tests
carried out.

4 THE OUTER APPROXIMATION METHOD

The OA method is a simple but effective technique based on a cutting plane approach for solving
MINLPs [23, 31, 57]. The OA technique has been applied on structural optimization of flow-
sheet processes [35], on the synthesis of heat exchanger networks [4,50], on general engineering
processes [35] and on logistics applications [22, 36]. A general survey of the technique can be
found at Grossmann & Kravanja [35].

The method is a coordination technique between a MP and a SP akin in essence to the GBD.
Nevertheless the OA MP is written on the space of all the problem variables, opposing to the
GBD projection onto the space of the complicating ones. This feature enhances the strength of
the associated cutting planes and ensures the convergence in fewer iterations than the observed in
GBD. As a drawback, the solution of the MP requires a greater computational effort worsening
as the problem size increases.

In order to understand the development of the OA technique for the SAHLP under congestion,
a general overview of the method is required. Given a MINLP in its most basic algebraic rep-
resentation, where x and z are the sets of continuous and discrete variables, respectively,

f : Rq×s 7→ R and g : Rq×s 7→ Rm

are two continuously differentiable functions, and Z and X are polyhedral sets:

min f (z, x) (38)

s. t.: g j (z, x) ≤ 0 ∀ j = 1, . . . , m (39)

z ∈ Z , z ∈ Zq (40)

x ∈ X (41)

It is possible to reduce this problem to a pure nonlinear program by choosing a fixed vector
z = zh, zh ∈ Z , for some iteration h, yielding the following nonlinear SP:

min f (zh, x) (42)

s. t.: g j (z
h, x) ≤ 0 ∀ j = 1, . . . , m (43)

x ∈ X (44)
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When solved, the above SP (42)–(44) permits to infer the gradient of the functions f (z, x) and
g j (z, x), ∀ j at (zh, xh). If no further feasibility constraints are required, then a straightforward
manipulation enables the problem (38)–(41) to be equivalent to a mixed integer program (MIP):

min ξ (45)

s. t.: ξ ≥ f (zh, xh) + ∇ f (zh, xh)T
(

z − zh

x − xh

)
∀ h = 1, . . . , H (46)

0 ≥ g(zh, xh) + ∇g(zh, xh)T
(

z − zh

x − xh

)
∀ h = 1, . . . , H (47)

z ∈ Z , z ∈ Zq (48)

x ∈ X (49)

ξ ∈ R (50)

where H is the maximum number of iterations and ξ is an objective function variable under-
estimator.

Problem (45)–(50) is known as the OA MP. Constraints (46) and (47) are responsible for per-
forming the OA of the objective function and the feasible region, respectively. When functions
g(z, x) are proper convex and a constraint qualification holds for every solution of (42)–(44),
then constraints (47) are necessary and sufficient to outer approximate the feasible region.

5 THE HYBRID OA/BENDERS TECHNIQUE

The LBs attained by the OA technique are greater or equal to the ones obtained by the GBD,
resulting then in fewer iterations for convergence [23]. However, in order to have these better
LBs, the OA’s RMP has the number of variables and constraints greater than the GBD’s RMP.
Consequently, the size of the largest instance that the OA technique is capable of solving is much
smaller than the largest of the GBD.

One way of circumventing the limitations of the OA’s RMP in handling large size instances is to
pay attention to its constraint matrix structure. Sometimes, when the RMP is a MILP, it can be
efficiently solved by means of a Benders decomposition algorithm. This is specially true when
the constraints of the problem being solved have a stair-case structure, see Figure 2(a), like the
ones of location-transportation problems.

Unfortunately, this is not the case when capacity limits or congestion control are enforced by
constraints that measure the level of utilization of the installed infra-structure. Normally, these
constraints destroy the stair-case structure, see Figure 2(b), usually deprecating the performance
of employed algorithms.

Nevertheless, whenever the MINLPs can be reformulated by adding new variables in order to
separate the non-linearities from the large scale system, regaining thus a stair-case structure, see
Figure 2(c), an hybrid strategy combining OA/Benders cuts can be efficiently used.
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large scale system

. . .

(a) Stair-case structure of typical location-transportation problems.

global constraints

. . .

(b) Stair-case structure destroyed by global constraints imposed on common
resources.

. . .

(c) Stair-case structure regained due to problem manipulation. The bold rect-
angle contains the new master problem variables.

Figure 2 – MINLP structures.

This strategy may allow the parallel solution of the SPs of OA and Benders methods. In other
words, both OA and Benders cuts can be added to the RMP at the same time. Moreover, assuming
that number of additional variables is much smaller than the number of variables of the large-
scale system, the required solution time of the RMP might be shortened when compared with the
standalone application of OA or GBD, because it has better bounds than the GBD’s RMP and it
has a smaller size than the OA’s RMP.

Pesquisa Operacional, Vol. 32(3), 2012



“main” — 2012/12/4 — 14:56 — page 482 — #18

482 ADDRESSING CONGESTION ON SINGLE ALLOCATION HUB-AND-SPOKE NETWORKS

In the case of formulation (1)–(9), the objective function is separable on the linear and nonlinear
terms. Hence applying the OA technique only requires the replacement of τk(gk) by ξk for each
k on the objective function and the addition of constraints (46) in the form (52). These are
responsible for the OA of function τk(gk). The equivalent formulation of the OA MP can then
be given as:

min
∑

k

[ fk zkk + ξk] +
∑

k 6=i

(Oi + Di ) cik zik +
∑

i< j

∑

k 6=m

ci jkm xi jkm (51)

s.t.: (2) − (9)

ξk ≥ τk(g
h
k ) + βh

k (gk − gh
k ) ∀ k, h = 1, . . . , H (52)

ξk ≥ 0 ∀ k (53)

Constraints (47) are not present in formulation (51)–(53), because the coupling constraints (5)
are linear, making unnecessary thus to perform a OA of the feasible region. Furthermore, as
expected, this formulation is still too large to be efficiently solved. The large size of x variables
set might represent a computer burden during the solution of the OA MP. One way of addressing
this drawback is to project these variables out provided that some manipulations are carried out.
The idea here is to enable the solution of the OA MP by means of a Benders decomposition
algorithm.

Observing the role of variables xi jkk on constraints (5), it is possible to replace it using additional
variables yi jk ≥ 0 and some coupling constraints on y, z and x . The equation (5) responsible for
computing gk variables is then reformulated as follows:

∑

i

(Oi + Di )zik −
∑

i< j

(wi j + w j i )yi jk = gk ∀ k (54)

where the values of yi jk can be computed using the following coupling constraints:

yi jk ≥ zik + z jk − 1 ∀ i < j, k

yi jk ≤ zik ∀ i < j, k

yi jk ≤ z jk ∀ i < j, k

yi jk ≥ 0 ∀ i < j, k

Moreover, in order to avoid the degradation of linear programming bounds, constraints (3) and
(4) are now rewritten as:

yi jk +
∑

m

xi jkm = zik ∀ i < j, k

yi jm +
∑

k

xi jkm = z jm ∀ i < j, m
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These manipulations allow the decomposition of the OA MP using the standard scheme of Ben-
ders decomposition. It is now possible to project the x variables out, making the OA MP more
manageable. For fixed values of yt and zt at some iteration t , the Benders primal SP is given by:

min
∑

i< j

∑

k 6=m

ci jkm xi jkm

s. t.:
∑

m

xi jkm =
(
zt

ik − yt
i jk

)
∀i < j, k (55)

∑

k

xi jkm =
(
zt

jm − yt
i jm

)
∀i < j, m (56)

xi jkm ≥ 0 ∀i < j, ∀k, m

Associating the dual variables u ∈ R and v ∈ R to constraints (55) and (56), respectively, the
following dual Benders SP is obtained for a given i − j pair:

max
∑

k

ui jk
(
zt

ik − yt
i jk

)
+

∑

m

vi jm
(
zt

jm − yt
i jm

)
(57)

s. t.: ui jk + vi jm ≤ ci jkm ∀k 6= m (58)

ui jk + vi jk ≤ 0 ∀ k (59)

ui jk ∈ R ∀ k (60)

vi jm ∈ R ∀ m (61)

Using (57) and the help of an auxiliary variable η ≥ 0, Benders cuts (64) can be derived, where
ut

i jk and vt
i jm are the optimal values of the dual variables of iteration t . Once again, no further

feasibility constraints are required, being the dual Benders SP always bounded. Moreover, it is
also possible to eliminate the variables gk from the OA MP using equations (54). Therefore the
resulting reformulated OA MP is now written as:

min
∑

k

[ fk zkk + ξk] +
∑

k 6=i

(Oi + Di ) cik zik + η (62)

s. t.:
∑

k

zik = 1 ∀ i (63)

η ≥
∑

i< j

∑

k

ut
i jk(zik − yi jk) −

∑

i< j

∑

m

vt
i jm(z jm − yi jm) ∀ t = 1, . . . , T (64)

ξk +
∑

i< j

βh
k (wi j + w j i )yi jk

−
∑

i

βh
k (Oi + Di )zik ≥ [τk(g

h
k ) − βh

k gh
k ] ∀ k, h = 1, . . . , H (65)

zik ≤ zkk ∀ i 6= k (66)
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yi jk ≥ zik + z jk − 1 ∀ i < j, k (67)

yi jk ≤ zik ∀ i < j, k (68)

yi jk ≤ z jk ∀ i < j, k (69)

yi jk ≥ 0 ∀ i < j, k (70)

η ≥ 0 (71)

ξk ≥ 0 ∀ k (72)

zik ∈ {0, 1} ∀ i, k (73)

In formulation (62)–(73), τk(gh
k ) is calculated using equation (54) for the pair (zh, yh), while

the quantity βh
k gh

k is computed recalling equation (26). It is important to remark that the final
form of the OA MP enables the parallel solution of SP involving the pair (g, β) and the (u, v)

variables. Whenever a new solution (z, y) is available, new Benders cuts (64) or new OA cuts
(65) can be added to the MP in any order.

Moreover, all the results concerning pareto-optimal cuts and core points can be reused here, since
a starting core point on the y space can be readily obtained by making y0

i jk = z0
ik z0

jm . But even
when using pareto-optimal cuts, the solution of (62)–(73) does not imply the generation of cuts
as strong as those obtained by the classical OA MP, i.e. without projecting out the x variables.
However, it provides a good trade-off between the strength of the cuts and the computational
effort on solving the MP.

A sketch of the implemented algorithm is detailed in Algorithm 3, where θ∗
O AM P and 8∗

O AS P
are the objective function optimal value of the OA MP and the OA SP, respectively.

At lines 3 and 13 of Algorithm 3, the OA MP is solved after relaxing and imposing the integrality
constraints (73), respectively. In lines 3 through 12, Benders and OA cuts are added to the OA
MP while the difference between the under-estimator variable and the values of the SP objective
function are greater than a threshold δ.

In a similar way to Algorithm 1, the OA MP resolution time is usually much larger than the
SP time, due to the integrality constraints. Therefore, the generation of Benders and OA cuts
is embedded in a standard branch-and-cut framework, akin to Algorithm 2. The next section
presents computation experiments comparing the deployed solution strategies.

6 COMPUTATIONAL EXPERIMENTS

In order to assess the performance of the proposed algorithms and the impact of the single al-
location feature of this class of problems under hub congestion, three sets of computational
experiments were designed.

The first one demonstrates how the hub infrastructure changes when congestion costs are con-
sidered and that, depending on how the congestion cost function parameters are set, it is possible
to solve to optimality large instances by using the GBD algorithm (Algorithm 1).
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Algorithm 3: Outer Approximation Method

1 Set U B = +∞, L B = −∞, t = 1, h = 1, z0 and y0.

2 If (U B − L B) < ε, then stop. Terminate, a near optimal solution has been obtained.

3 Solve the OA MP (62)–(72), obtaining θ∗
O AM P and the optimal values for the variables zt , yt .

4 Set L B = θ∗
O AM P .

5 Update core point z0 and y0

6 Use z0 and y0 instead of zt and yt , respectively, in subproblem (57)–(61).

7 Solve the subproblem (57)–(61) using core points z0 and y0.

8 Add a new Benders cut to the OA MP using (64).

9 Calculate the values of βh using equation (26) and the values of gh .

10 Add a OA cut to the OA MP using (65)

11 Increment t and h.

12 If (η∗ − 8∗
O AS P ) > δ then goto 3

13 Solve the OA MP (62)–(73), obtaining θ∗
O AM P and the optimal values for the variables zh , yh .

14 Set L B = θ∗
O AM P .

15 Solve the subproblem (57)–(61).

16 Add a new Benders cut to the OA MP using (64).

17 Update core point z0 and y0

18 Solve the subproblem (57)–(61).

19 Add a new Benders cut to the OA MP using (64).

20 Calculate the values of βh using equation (26) and the values of gh .

21 Add a OA cut to the OA MP using (65)

22 ϑ∗=
∑

k

[
fk zh

kk + τk(gh
k )

]
+

∑

k 6=i

(Oi + Di ) cik zh
ik +

∑

i< j

∑

k 6=m

ci jkm zh
ik zh

jm

23 If ϑ∗ < U B, then set U B = ϑ∗.

24 Increment t and h and go to 2

The second set verifies how a given instance becomes harder to solve as the congestion and the
installation costs vary. It infers that the instances become harder to solve when the two effects
are combined. Hence being important to deploy a more elaborate GBD: Algorithm 2. This
experiment also shows that the computational burden is not only explained by the instance size,
but by the parameters settings too.

Finally, when the combination of the congestion and the installation cost parameters are stressed,
a further approach is required. Thus a comparison of the OA Algorithm 3 and of the GBD
Algorithm 2 is presented on the final set of experiments.

In all the experiments, the well-known Australian Post (AP) standard data set introduced by
[28,30] is used. The names of the instances are coded as APn.α, where n is the number of nodes
and α = {2, 4, 6, 8} represents the selected discount factors 0.2, 0.4, 0.6 and 0.8, respectively.
These instances have sizes ranging from 10 to 200 nodes, Euclidean distances to represent the
transportation costs, and installation costs for the first 50 nodes only.

Pesquisa Operacional, Vol. 32(3), 2012



“main” — 2012/12/4 — 14:56 — page 486 — #22

486 ADDRESSING CONGESTION ON SINGLE ALLOCATION HUB-AND-SPOKE NETWORKS

As K ≡ N is considered in the experiments, hub fixed costs were generated for all instances
using a Gaussian distribution with average equal to fo and variance set to 40% to mimic how
different installation costs vary in realistic problems. Here fo represents the scaled difference
in objective value between a scenario in which a virtual hub is located in the center of mass
and a scenario in which all nodes are hubs, as introduced by [25]. Further, as done by [25], the
nodes with higher flows are selected to have the higher fixed costs, hardening in general the se-
lection of potential hubs. For alternative articles considering this test bed and the methodological
generation of hub set-up costs refer to [10–12, 25, 26, 48].

The nominal capacity of each hub k was generated by taking the total demand of the node (Ok +
Dk) added to a random fraction (U [15%, 50%]) of the total demand, recalling that the hub total
traffic does not drop linearly with the number of installed hubs, equation (5). The algorithms
were implemented in C + + using the IBM CPLEX 11 Concert Technology under a Linux
operating system. The experiments were run on a regular PC desktop with a Intel Core 2 Quad
3.2G H z processor and 8Gb of RAM, and had 72, 000 seconds as a time limit.

In the first set of experiments, the parameters a and b were set to 0.0001 and 2, respectively. The
obtained results are presented in Table 1. The entry LP plots the number of cycles where the
GBD MP was solved disregarding the integrality constraints (hot-start cycles). The entry Integer
shows the number of additional integer cycles needed to prove optimality. Columns Solution
Time and Installed Hubs show the total computational time required and the number of installed
hubs.

An interesting feature of this class of hub-and-spoke problems can be observed in Table 1 when
compared to the results reported in Camargo et al. [11]. The single allocation systems are much
more affected by congestion effects than the multiple ones. This is expected, since, in the present
case, there are no alternative paths for a given origin destination pair once the network is de-
signed. This enhanced sensitivity can be deduced from Table 1 where an addition of 1.35 hubs
on average was required to handle the congestion effects even for very small congestion cost
parameters.

In this sense, the economies of scale play a fundamental role in the network design, once they
allow the affordance of the congestion extra costs prior to installing additional infrastructure.
Further, the computational burden to prove optimality grows as the efficiency of the economies
of scale in counterbalancing the congestion effects is reduced. Figure 3 shows this trend by
plotting the log scale of the solution time of instances AP40, AP50 and AP70 under congestion.

Observing the rows with small economies of scale, APn.8, the required number of additional
hubs to manage the congestion costs is significant, raising the following question: If the network
is unable to provide large discounts on inter-hub connections due to the lack of transportation
technology or other environmental reasons, is it a good strategy to design such networks using
the single allocation approach? Future research may then address the economies of scale as a
function of the total flow on the inter-hub connections and the associated impact on the network
design under hub congestion.
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Table 1 – Obtained results for Algorithm 1.

No congestion costs Accounting congestion costs

Instance
Benders Cycles Time Installed Benders Cycles Time Installed

LP Integer [s] Hubs LP Integer [s] Hubs

AP10.2 5 1 0.05 2 5 58 6.96 4

AP10.4 5 1 0.05 2 5 113 24.14 4

AP10.6 5 1 0.05 3 5 36 2.96 4

AP10.8 5 2 0.07 4 5 14 0.56 6

AP20.2 5 3 0.08 3 5 19 6.96 4

AP20.4 5 1 0.36 2 5 26 10.91 4

AP20.6 5 2 0.59 4 5 13 3.46 5

AP20.8 5 3 1.16 3 5 29 11.71 5

AP30.2 5 1 2.5 3 5 10 13.2 4

AP30.4 5 2 2.87 2 5 45 122.42 4

AP30.6 5 2 2.94 2 7 9 13.22 3

AP30.8 5 4 3.38 2 5 13 20.62 4

AP40.2 5 1 4.93 4 5 8 20.19 5

AP40.4 5 2 5.35 3 5 16 49.8 4

AP40.6 5 2 6.01 3 5 13 36.8 4

AP40.8 5 3 7.68 3 5 21 81.02 4

AP50.2 10 1 33.78 3 10 9 82.07 4

AP50.4 10 1 35.04 3 10 19 170.05 3

AP50.6 10 1 19.24 2 10 71 1155.74 4

AP50.8 5 5 31.07 2 5 95 2548.9 4

AP70.2 5 1 66.65 3 5 1 67.9 4

AP70.4 5 1 69.73 3 5 13 312.58 4

AP70.6 5 2 68.24 3 5 25 753.45 4

AP70.8 5 3 63.93 3 5 44 1301.2 5

AP100.2 5 1 213.28 3 5 6 528.97 4

AP100.4 5 2 268.02 3 5 9 748.88 5

AP100.6 5 4 538.37 2 5 35 2134.25 4

AP100.8 10 3 608.2 2 10 60 17957.64 3

AP150.2 5 1 2151.49 3 5 14 9591.41 4

AP150.4 5 1 2728.8 3 5 37 37795.5 4

AP200.2 5 1 13183.19 4 5 10 46230.17 5

For the second set of experiments, the instance AP10.2 was selected in order to show how a given
instance becomes hard to solve as the congestion costs are increased. The parameter b was set to
2, while the congestion cost function parameter a was scaled from 0.0001 to 100. Instances with
low congestion cost parameter a tend to have low solution times. When the congestion costs
are increased, the computer effort is augmented. However, if the congestion costs are very high,
the computational burden to solve the associated instance is not worsened in the same manner.
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Figure 3 – Computer burden trend (log(Time[s])).

This can be seen in Figure 4 as the computational effort stabilizes after a given threshold of the
parameter a is trespassed. In other words, all the economies of scale were preserved, at the cost
of an additional investment on the network infrastructure.

This phenomenon suggests that this class of problems has its inherent difficulty associated to
other components than the congestion cost parameters, such as the hub installation costs. In
order to investigate the role of these costs, the same instance AP10.2 was used, but having the
parameters a and b fixed to 0.001 and 2, respectively. A scaling factor multiplying the installation
costs was adopted ranging from 0.5 to 20.

As happened in the later case, Figure 5 shows that after a given threshold of the increased hub
installation costs, the computing time to prove the instance optimality is stabilized. Hence from
Figures 4 and 5, is possible to infer that the problem under study becomes harder to solve if a
given instance presents high hub installation costs and also a very aggressive congestion cost
function.

In the next experiments, for fixed parameters a = 0.001 and b = 2, a comparison of computing
times and number of integer cycles to attain optimality of Algorithm 1 and 2 is depicted in the
fourth, fifth, seventh and eighth columns, respectively, of Table 2. Observe that different instal-
lation scaling factors were adopted, as indicated in the second column, making these instances
harder to solve than the ones present in Table 1.
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Figure 4 – Computer effort versus congestion costs.

Figure 5 – Computer effort versus installation costs.
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Algorithm 1 requires 7 times more computing time and 11 times more integer cycles than Algo-
rithm 2, on average. It is also interesting to remark that there are computing times in Table 2 that
are comparable to the ones associated with instances of 150 and 200 nodes of Table 1. Definitely
indicating that the complexity of this problem it is not only a matter of instance size.

Table 2 – Algorithm 1 versus Algorithm 2.

fk Algorithm 1 Algorithm 2

Instance scaling Benders Cycles Time Benders Cycles Time

factor LP Integer [s] LP Integer [s]

AP10.2 1.5 5 83 25.18 5 11 14.81

AP10.4 1.5 5 131 90.74 5 12 29.02

AP10.6 1.2 5 87 34.88 5 8 10.61

AP10.8 1.2 5 212 310.04 5 14 38.35

AP20.2 3.5 5 199 4486.89 5 13 415.82

AP20.4 1 5 169 1369.07 5 14 310.28

AP20.6 0.8 5 226 1470.8 5 23 315.33

AP20.8 0.6 5 304 5209.17 5 16 232.86

AP30.2 2.5 5 152 3090.3 5 20 1770.87

AP30.4 2 10 205 11005.81 10 12 2539.44

AP30.6 1.5 10 206 23195.05 10 12 1401.31

AP30.8 1.5 10 209 33624.85 10 11 2874.71

AP40.2 3 10 154 8599.01 10 13 3547.57

AP40.4 2 10 179 10456.33 10 28 1976.87

AP40.6 1.5 10 136 4202.79 10 18 1725.92

AP40.8 1.5 10 160 30842.53 10 14 1405.04

AP50.2 6 10 92 6693.18 10 14 3499.35

AP50.4 5 10 92 9828.01 10 14 1602.16

AP50.6 3 10 100 6030.94 10 18 2946.36

AP50.8 2 10 161 49098.57 10 16 5899.16

Furthermore, after observing the evolution of the upper and lower bounds of both algorithms
during the solution process of instance AP40.6 of Table 2 (refer to Figure 6), the main advantage
of Algorithm 2 over Algorithm 1 is its ability to reduce the tail-off effect. In order to close 1%
of optimality gap, Algorithm 2 takes close to a 1000 seconds or 42% of the total time, against
3, 600 seconds or 87% of Algorithm 1. An akin behavior occurs on all the other instances.

The tail-off effect is more pronounced if the instances combine the two characteristics pointed
above, large hub installation and an aggressive congestion costs, making the deployment of Al-
gorithm 2 an interesting solution approach. However, when this combination is stressed-out
even more, a different strategy is made necessary, as demonstrated in the third and final set of
experiments.
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Figure 6 – Convergence curve for Algorithms 1 and 2.

In these final experiments, the congestion cost parameter is set to 0.01 and the installation cost
scaling factors were adopted, as indicated in the second column of Table 3. Recall that in the first
two sets of experiments, parameter a was set to 0.0001 and 0.001, respectively. In other words,
the combined effect of having high congestion and installation costs makes these instances even
harder to solve.

Table 3 presents the comparison results of Algorithms 2 and 3. The Algorithm 3 or the OA tech-
nique demonstrates a superior performance on these very hard instances, being 3.3 times faster
and taking 3 times less integer cycles on average to prove optimality than the Algorithm 3. Notice
that Algorithm 2 fails to prove optimality in four instances, ending with an average optimality
gap close to 1% (instances AP70 and AP100).

Although, on one hand, Algorithm 3 demonstrates a remarkable performance tackling hard in-
stances, on the other hand, the solution effort for solving each OA MP is still very high, even after
projecting the x variables out to reduce its dimension. In this sense, this technique is preferable
only if large optimality gaps of the first integer cycles of Algorithm 2 are detected as can be seen
in Table 4.

In order to clarify the former statement, a direct comparison of the three implemented algorithms
is presented in Table 4. In this experiment, instances AP10.2 and AP20.4 were selected, being
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Table 3 – Algorithm 2 versus Algorithm 3.

fk Algorithm 2 Algorithm 3

Instance scaling Main Cycles Time Main Cycles Time

factor LP Integer [s] LP Integer [s]

AP10.2 3 5 11 328.67 3 5 98.64

AP10.8 2.5 5 16 568.08 3 4 110.81

AP20.2 2.5 5 16 2283.76 3 6 418.01

AP20.8 2.5 5 11 3108.63 2 3 1330.92

AP30.2 2.5 5 20 7976.71 2 5 4237.58

AP30.8 3 5 8 6389.15 2 6 2612.24

AP40.2 3.5 5 18 17789.13 2 6 4220.5

AP40.8 2.5 5 11 8734.13 2 5 1563.89

AP50.2 5 5 12 29335.13 2 4 8345.67

AP50.8 4 5 17 48764.24 2 6 25678.30

AP70.2 7 5 12 > 72000 2 4 33345.67

AP70.8 6 5 17 > 72000 2 6 21236.13

AP100.2 10 5 12 > 72000 2 4 30041.07

AP100.8 8 5 17 > 72000 2 6 27849.51

the hub installation scaling factor and congestion parameter a varied according to the second and
third columns, respectively.

The boldfaced entries in Table 4 represents the minimum computational effort for the instances
solved. The deployment of Algorithm 3 is more interesting than the others when the optimality
gaps of the first integer cycles of Algorithms 1 and 2 are greater than 40% on average for the
tested problems.

A final comment is made here necessary. For the authors knowledge, there is no report on
the literature that OA methods are able to solve such large scale problems. Notice that the in-
stances AP100.2 and AP100.8 have 10,000 integer variables and 49,500,000 continuous vari-
ables. Therefore, solving the OA master programs by using the Benders decomposition method
is a promising technique, i.e. whenever the problem structure is amenable and the GBD is not a
good alternative.

7 FINAL REMARKS

Addressing congestion effects by explicitly considering them as costs on the objective function
yields a more realistic modeling approach, specially when suitable nonlinear functions are se-
lected. Once the rapid growth of the congestion costs is portrayed, a flow load balancing over
the installed infrastructure is induced, leading thus to a superior network design.

This research presents two different techniques for solving large scale instances of single allo-
cation hub location problem under congestion: the GBD technique and the OA method. Both
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Table 4 – A direct comparison of the three implemented algorithms.

Instance

Instance Parameters Algorithm 1 Algorithm 2 Algorithm 3 Initial

fk congestion Time Time Time optimality

scaling factor parameter a [s] [s] [s] gap [%]

1.00 0.0001 6.98 10.19 11.19 8.17

1.00 0.0005 7.34 9.03 10.70 11.31

1.00 0.0010 6.19 3.14 5.15 26.42

AP10.2 1.00 0.0050 11.26 5.69 6.48 18.73

2.00 0.0010 38.27 15.01 8.22 54.02

2.00 0.0100 84.77 59.19 11.95 73.02

3.00 0.1000 249.59 195.94 86.71 86.15

1.00 0.0001 10.91 14.39 20.48 5.12

1.00 0.0005 57.15 33.99 50.90 19.03

1.00 0.0010 1199.79 293.38 566.50 33.07

AP20.4 1.00 0.0050 1429.65 376.77 569.71 43.05

2.00 0.0010 46474.47 1393.10 303.96 59.93

2.00 0.0100 >72000 24286.90 2267.52 78.84

3.00 0.1000 >72000 >72000 43747.74 85.23

are capable of solving instances up to 100 nodes, being the GBD (Algorithm 1) able to manage
larger instances of 150 and 200 nodes.

Finally, the complexity on this class of problems is not only associated with the size of the
instances. When an aggressive congestion cost function and large hub installation costs are com-
bined, the computational effort to solve these instances may become remarkable. In these cases,
the addition of pareto-optimal cuts on the MP branch-and-bound tree is an interesting way to
reduce the tail-off effect, improving the overall performance of both of the portrayed methods:
GBD and OA. In general, on one hand the GBD method is more scalable with instance size, on
the other hand, the OA technique is less affected by the tail-off effect.
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