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PART 2: INVERSION OF COMPOUND PARAMETERS TO
CONSTITUENT PARAMETERS
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In Part 1 of this paper (Helbig, 1998 - Rev. Bras. Geof. 16 (2—3):103-114) it was shown that a
medium consisting of a periodic sequence of layersis, in the long-wavelength approximation,
equivalent to a homogeneous compound medium with elastic parameters that are generalized
averages of the constituents’ stiffnesses. Though the matrix-al gorithm described in Part 1 works
with anisotropic constituents, the most interesting application isto layer sequenceswith isotro-
pic constituents, i.e., to transversely isotropic (T1) compound media. Part 2 discusses the
possihility to obtain information about the (thin-layer) constituents from the properties of the
compound medium. Though every periodic sequence of isotropic layersresultsin a Tl medium,
the reverse is not true: there are Tl media that cannot be ”modeled” by a periodic sequence of
isotropic layers. Those that can be modeled can be inverted to layer sequences that result in
precisely the observed anisotropy. Thisinversion is not unique, but it constrains the possibili-
ties. The critical tool to determine the possibility of modeling a TI medium is the concept of
stability. Unstable compound media—that release energy on being deformed —would not exist.
However, for inversion we must insist that not only the compound medium, but also the poten-
tial constituents are stable. In preparing acatal og that coversall possible media, instability isthe
boundary beyond which the calculation becomes meaningless. Inversion means to determine
possible causes of the observed anisotropy, ideally the elastic parameters of the constituents and
their contribution to the compound medium. Thisis possible, though under severa restrictions:
Not al TI mediaarelong-wave equivalent to aperiodically layered sequence of isotropic layers.
Those that are can be “modeled” by a variety of layer sequences. Every Tl medium that can be
modeled at all can be modeled by as few as three layers, but the set of al models is a three-
parametric manifold. If aTI medium can be modeled by two constituents only, this can be done
only in one way, unless the constituents have the sameratio of S- to P-velocity. In that case, the
set of possible models forms a one-parametric manifold.
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INTRODUCTION

Part 1 of this paper (Helbig, 1998; henceforth Part
1) describesamatrix algorithm that allowsto determine
the” compound stiffnesses’ of the replacement medium
thatis, inthelong-wavelength approximation, equivalent
to a periodic sequence of thin layers. The matrix
agorithmworksfor layers of arbitrary anisotropy, and
should have applications in the determination of the
propertiesof industrial laminateslike plywood. However,
analytical resultsfor constituent layer of low symmetry
are too complicated for a general inversion to be
attempted.

In the context of exploration seismics, the
constituent layers can be assumed to be approximately
isotropic, thusthe replacement medium istransversely
isotropic (TI), withthe axisof symmetry perpendicular
to the layers. Though depositional planes are not
necessarily horizontal, it isassumed for the purpose of
thisdiscussion that the axis of symmetry isvertical. In
the standard coordinate system of seismic exploration
(x- and y-axis horizontal, z-axis downward) such a
medium has five elastic stiffnesses. The reliable
determination of all five stiffnesses is possible with
current technology, e.g, with acombination of standard
surface-to-surface seismics with multi-offset VSP
observations.

Once the five elagtic stiffnesses of a Tl medium
have been determined, several questions arise:

1. Could the observed transverse isotropy be
due to layering, i.e., can the medium be "modeled”
by a periodic sequence of isotropic layers?

That this is not aways the case is obvious:
according to Eq. 22 of Part 1, the two shear stiffnesses
¢ and ¢ of alaminated medium are, respectively,
the thickness-weighted harmonic and arithmetic
averages of the congtituents' shear stiffnesses m.
Thusc, £ ¢, with theequality signvalid only in case
of isotropy. Therefore, any Tl medium with ¢ 3¢,
cannot oweits anisotropy to lamellation withisotropic
constituents.

The question will be addressed at a more
fundamental level further down. As shall be seen, the
answer is always unambiguous, either "yes’ or "no”.

2.If the answer to question 1 is “yes”, can a
physically realizable model be found?

Theanswer isawaysyes, if " physicaly redizable’
isunderstood to mean that the hypothetical constituents
are alowed by the laws of physics, not that they are
available as natural or industrial materials. This poses
the next question:
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3.Can a realistic — or better, a geologically
likely — model be found?

The answer is not easy, but the possibilities can
be narrowed down. Even such vague information is
valuable, sinceit refersto details below the resolution
of the seismic method.

CONDITIONS FOR A TI MEDIUM TO BE
“INVERTIBLE”

The first question was addressed by Backus
(1962). An exhaugtivediscussion can befoundin Helbig
(2981). It should not be overlooked that the answer
obtained isnot necessarily the answer the explorationi st
has in mind: the layer sequence —if it exists — is not
unique, so that one needsfurther information to narrow
the set of all sequences that would be compatible with
the observations.

General constraints

The discussion is simplified if one considers an
elastic medium of a given symmetry as a particular
case of alower symmetry. For instance, isotropy is a
particular case of transverse isotropy, thus every
isotropic medium has also transversely isotropic
symmetry (and simultaneously has tetragonal,
orthorhombic, monoclinic, ... symmetry). Thisisin
keeping with the concept of "hierarchical inclusion”
(Fig. 1): any mediumistriclinic. If theelastic parameters
satisfy certain conditions, it can also be classed as
monoclinic (orthorhombic, transversely isotropic,
isotropic).

With this proviso the pertinent results of Part 1
can be summarized asfollows:

» Every sequence of isotropic layersis along-
wave equivaent to a Tl medium.

» Every sequence of isotropic layers with
identical q = (v/v,)? isalong-wave equivalent to aK-
medium.

» Every sequence of isotropic layers with
identical mis a long-wave equivalent to an isotropic
medium.

Theinverseof thelast two statementsisalso true:
for the K-medium thisistrivia, since it is defined as
the medium that is long-wave equivalent to periodic
layering with constant g. The fact that every medium
that i sisotropic for wavelengthsin the seismic spectrum
might on close inspection turn out to befinely layered
with constant shear stiffness mis a reminder that
inversions of this type cannot give unambiguous
answers, but can only narrow down possibilities.
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Figure 1 - Hierarchy of elastic media. All mediaaretriclinic. If for
amedium of aspecific symmetry the conditionslisted ”below” are
satisfied, it belongs aso to the next higher symmetry. Layered
sequences with isotropic constituents belong to the sub-sequence
at lower right (TI-K-medium—isotropy).

It was already mentioned that a Tl medium hasto
satiffy c , < c,, if itisto belong wave-equivalent to a
sequence of thin isotropic layers with distinct shear
stiffnesses m However, thisis not the only restriction.

Another observation of significancein thiscontext
isthat Rudzki’s(1911) fundamenta inequdity:

EZ: (Cu- Css)(sz- Css)'

'(013+055)2>0’ @
holds for all anisotropic media that are long-wave
equivalent to lamination of isotropic constituentswith
distinct shear stiffnesses. This is easily shown for
periodic sequenceswith two constituentsonly (Postma,
1955; Helbig, 1958). It was shown to hold for any
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number of constituents by Berryman (1979) and Helbig
(1979).

Thesignificanceof this parameter isthefollowing:
for £2=10, the slowness surface of P-waves is an
elipsoid of rotation (including asphere as special case),
and the slowness surface of SV-waves is a sphere.
For E£2 > 0 (< 0) thelowness surface of compressional
wavesliesoutside (inside) thedlipsoid, and that of SV
waves liesinside (outside) the sphere. If the slowness
surface of SV waves has concave parts (corresponding
to cuspoidal edges of the wave surface), they are in
thevicinity of the axisof symmetry and/or the plane of
symmetry for E? <0, and centered about an
intermediate direction for £2 > 0 (see Fig. 2, and also
Fig. 4 of Part 1). Thus no medium with a strictly
ellipsoidal P-wave surface and no mediumwith £2 £ 0
— particularly no medium with a SV-wave front with
cusps near the axis of symmetry or near the plane of
symmetry —can owe itsanisotropy soléely to lamination
of isotropic constituents.

Stability constraints

Further restrictionsare dueto the requirement that
the effective medium and the constituents are stable.
Stability of a medium is generally taken for granted:
Any instable medium —i.e.,, one that releases energy
under deformation—would have self-destructed at the
dlightest provocation. However, if acompound medium
is inverted to a layer sequence, one must be certain
that also the constituents so determined do not violate
the stability congtraints.

Theconditionthat any strainresultsinanincrease
of theinternal energy isequivalent to the condition that
all "leading minors’ are positive, for ingtance, for astrain
that has the non-zero components e, and e,. The
energy-density P connected to thisstrainis:

1 1
r=-s.e=5C,ee,

e=(0,0,e,,e,00)'pP P= %(e§c33 +2e.e,C, +e2c,,)

2

For the quadratic form in the parenthesis to be
positive for any value of the two strain components, it
is necessary and sufficient that the determinant of the
sub-matrix (the”minor” corresponding to the particular
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Figure 2 - Different types of slowness surfaces, depending on the
parameter E? = (c,,—c..)(c..—C) — (c13+c55)2. For E2> 0 the SV

11 755 33 755
surface can be concave near the axis of symmetry and near the

plane of symmetry (broken curve). For £? < 0 the SV surface can
be concavein anintermediatedirection (dash-dot curve). For E2=0
the SV-surface is a sphere and the P-surface an ellipsoid. Media
with transverse isotropy due to lamination with isotropic
constituents have P- and SV-slowness surfaces in the part of the
figure with the lightest gray.

strainindicated by heavy dots) ispositive. Itisobvious
from the structure of P that the different minors one
gets for arbitrary strains are all symmetric about the
main diagonal of the elastic matrix. Such aminor is
called a”principal minor”. A medium isthus stable if
al principa minorsarepositive. Inthetheory of matrices
(e.g., Ayres, 1962) it is shown that for this to be the
case it is sufficient and necessary that all leading
principal minorsof the matrix are positive.

For the elastic matrix of an isotropic medium
satisfying the condition of Part 1, Eq. 21, the application
tothefirst four leading principal minorsresultsin:

m 1
/q> O,4m2(/q_ 1)> 0
4am3*(3/q - 4)> 0,
3
pm>o,0<q</4, 3
Note that 1/2 £ q < 3/4 corresponds to values of
Poisson’sratio intherange—1<n £ 0.

For TI mediaonegetssimilarly withc,, = ¢, and

612 11 -2 C

(011 66)2>0D Cos (011'Cee)>0
P 0<c,<c,,
C, > - Cy C.>0
C211 4Cz13066 033(011-2066)2 P

C33(C11' 66)>C213 P

- \/(Cn - Cep)Cap < Cy5 < \/(Cn - Ces)Cag
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4

For the investigation of the consegquences of the
stability constraints (3) and (4) to layer-induced
anisotropy, itisconvenient to use new parameters. The
following parameters (Helbig, 1981) are based onthose
introduced in Backus (1962). Their efficacy isbest seen

Transversely Isotropic Constituents Isotropic Constituents
) o o (3
— \%s/ _ 1<033' 013> c T T - (a)
<1> CARES Y
Css
=r -t
1 /e _{am-{g(m _{am
11+4cee Ry
4<666><033 ‘ > <”> < <q>
ljcg- o
2\ g
=s -t
1 Vs
Ca3 - Cu3 =(q) =(—=
e J=ee(]
= < i > <cte> £](=1iff m= const)

©

intheform used for isotropic constituents:

Theindividual terms are all combinations of the
entriesin QM ((Part 1, Eq. 18)) and the corresponding
QU=), Theentriesfor transversely isotropic constituents
can either be read without the angled brackets as
definitionsfor the parameters of the compound medium,
or (with the angled brackets indicating thickness-
weighted arithmetic averages) asaveraging rulesfor a
stack of transversely isotropic layers.

From the structure of the expressionsfor 4 and &
for isotropic constituentsfollowsimmediately that for
g = const (i.e., for aK-medium) these two parameters
vanish. The same occursfor m= const, but in thiscase
thereisalsol =1,i.e,themediumisisotropic.

Obviousdly, t is the weighted arithmetic average
of q, the squared ratio of S- and P-velocity. The
expressions for r =4+t and s =k +t indicate that
these terms are also weighted averages of g, namely
with the weights #/m and /, m, respectively. Thus,
these expressions are restricted to the same range as
theindividual g. Thisdoes not only hold for the range
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Figure 3 - Constraint cubeinr st-space. Stability requiresthat in
amedium consisting of isotropic laminae the three parameters are
constrainedto acubewith onecorner at theorigin and asidelength
of 0.75 — compare (6). If al constituents have positive Poisson
ratio, the cube hasasidelength of 0.5. If theratio q of squared S- to
P-velocitiesin the constituentslies between ¢, and g,, the constraint
cube has the lower Ieft front corner at (q, ,, g,,), and the upper
right back corner at (q,, d,, d,,)-

Figure 4 - The constraint parallelepiped in ikt -space is obtained

by ”shearing” the cubeinther t- and st-planeswith ashear angle

of p/4.
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dictated by stability, but also for any other stablerange:
if one usesthe practical experiencethat geologic media
have a positive Poissons's ratio, g, r, s, and t are
restricted totherange0 < « < 1/2. If the geologic media
that might participate in alamination have g between
g andq,,thenq,r,s,andt arerestricted to therange
g, <*<gq,. Thiscan be of importance in inversion. It
doesnot help toinvert, but for amediumwithar, s, or
t outsidetherange of that of the constituents, lamination
with these constituents cannot be the (only) reason for
the observed anisotropy.

Thefour constraints;
O<r <§, O<s <§,
4 4
3 (6)

O<t<—, O<I £1,
4

can be seen asthe equations of ” permitted hyper-layers’
in the four-dimensional parameter space. The four
dimensions correspond to the four normalized
independent stiffnesses of a Tl medium. Every elastic
medium correspondsto apoint in parameter space. The
intersection of thefour layersisaclosed (and convex)
four-dimensional volume. Any transversely isotropic
medium that consists of isotropic laminaeisrepresented
by apoint insidethe constraint volume. A point outside

05 p

A=4/9

Figure 5 - Constraint volumefor | =4/9inr st space.
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the volume corresponds to a medium that cannot be
model ed by lamination with i sotropic constituents.

Thefirst three constraintsin Eq. (6) are physical
(dictated by stahility), whilethelast isan expression of
the Cauchy-Schwartz-K olmogorov inequality (see Egs.
(8) and (9) below). For thisreason (and also in order to
avoid the difficult representation of four-dimensional
solids) thediscussionisrestricted to ther st -subspace.
With the stability constraints of Eq. (6), the constraint
volumeisacubewith sides 3/4. If theq aredifferently
(more narrowly) constrained, the constraint cube
becomes correspondingly smaller (Fig.3).

If the elastic properties are expressed by the
parameters 4 =r —t, k=s —t, t, the cube changes
to a parallelepiped (Fig. 4). The internal geometric
relations are, of course, not affected by these two
“shearing” operations.

Ct<h<3Sot, ct<k<S-t,
4 4

7
o<t <:31, withO<I| £1 (7)

While every compound medium with isotropic
laminae is represented by a point inside the
corresponding constraint cube (constraint
parallelepiped), not every point inside the cube
(parallel epiped) can be so modeled: there aretwo further
constraint surfacesthat include aclosed volumetotally
inside the cube. To obtain these, we again use the
Cauchy-Schwartz-K olmogorov inequality:

o [] [] o W,
awa Wi£awixiaj , (8

1

where the x, correspond to "values to be averaged”
constrained to afiniteinterval andthew, correspondto
positive "weights’. Equality pertainsonly to identical
x.. One consequence of thisinequality isthe observation
that the harmonic average is at most equal to the
arithmetic average, whichwas used implicitly to derive
055 £ 066:

=

a4 . O
a

3=

where the weights /, correspond to the thicknesses of
the individual layers, and their sum Sh, = H the
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thickness of a“period”.
Berryman (1979) suggested adifferent use of the
inequality: for the w,, one chooses either :

w, = p(q,-q), or
w = p (q-9)
. h,
withp, = - (10)

Inthisformulation, ¢, is aconstant value smaller
than any of theq, (i.e., either zero or alower bound of
the actual values), and g, is a constant value higher
than any of theq, (i.e., either 3/4, 1/2 or an upper bound
of the actual values). As required, all weights are
positive. Weaobtain:

(& r.@,-2)<

aoé pi(éh_éi)iig
§ ari, 3
\ 106
éeo pi(eh ez) 9
G i+
¢ apnt I (12)
§ T, b
e . o 10
ga pilia pz_z
I g

and a second expression that is obtained by using the
second type of weights in Eq. (10). These two
inequalitiesare easily tranglated to the constraints:

| (t-q,)*<(r-q,)(s-q,),
I (a,-t)*<(a,T)(,s). (12)

With the stability limits g = 0 and ¢, = 3/4, one
obtains.
lt2<r s
| (3/4-t)%<(3/4-r)(3/4-S) , (13)

which were given in different form already by Backus
(1962).

For aformulation intermsof 4, k, and t one can
write

O ' =@y t)- (r-t) =(g,-t)-2 =Dg™- 4,
On-S = (q-t) - (s-t) =(g,-t)-&k =Da*-£,

r-gy=(r-t) +(t-qq) = ~A+(t-qy) =Ar+Da,
S-qy =(s-t) + (t-qy) = k+(t-qy) =4+Dg. (14)
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By inserting the corresponding terms from (14)
into (12) one obtains:

| (g F £(reDg~ )(k+Dg~ ), o)

where the algebraic signs go with the superscripted
signs. By defining Dg = Dg*,—Dq-, one canrewritethis
as.

(pa)’<(h- pa)lk-Da).  (1s5q)

where Dg can now take positive and negative values
(constrained by the expressionsin Eq. (6)).

The constraints (6)—(15a) define hypersurfaces
in the four-dimensional parameter spaces hktl or
rstl . The volume enclosed by these hypersurfacesis
convex, i.e., if any two points P, = (r , s, t,, 1) and
P,=(r, s, t, 1)) lieinsde the constraint volume
(satisfy all constraints), thenall pointsP =g P, + (1 -

q) P, with O £ g £ 1 on the straight segment joining
thetwo pointsalso lieinside the constraint volume.

To avoid the problems connected with depicting
the four-dimensional constraint volume, we take its
intersection with ahyperplanel = const. Fig. 5shows
the volume defined by (28) for| = 4/9.

More redlistic constraints (instead of the mere
requirement that all constituents be stable) restrict the
constraint volume further, but in planest = const the
constraint areas are always bounded by two hyperbolic
segments (including, intheplanest =t __ andt =t

min’

Figure 6 - Constraint volume in Akt -space for | = 4/9. Note that
the K-media are represented by points on the t-axis.
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Figure 7 - Top |€ft: contour plot of | =c/c. for a K-medium
with two constituents as function of log(m/m) and d = (2, — h,)/
(2(h, + h,)). Contours at 0.95, 0.9, .... Top right: two-layer
representation of a K-medium. Bottom: | atd=0.

the asymptotes to the hyperbol ag).

Thecorresponding constraint volumein Akt -space
isobtained by shearing paralel tothe planest = const
(Fig. 6).

Notethat the constraint volumesare” open”, i.e.,
their surface is excluded. With this specification, any
medium with m= Oisexcluded. It might betempting to
includefluid layersby admitting " inthelimit” vanishing
shear stiffness. However, the results thus obtained are
misleading: to deal with fluid layers, it isnot sufficient
tolet the shear stiffness of thelayersin question vanish.
One has also to change the boundary condition from
"welded contact” to "dliding contact”. Since in the
discussionin Part 1 thewelded contact iscrucia inthe
definition of the "fixed” and ”"variable” tensor
components, such a change cannot be added as an
afterthought.
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INVERSION AND UNIQUENESS

The conditions for an inversion of an observed
anisotropy with TI symmetry to a periodic sequence of
isotropic layers can now be spelled out: if the point
representing the medium in one of the parameter spaces
lies inside the corresponding constraint volume, such
aninversion exists. Further below it will be shown how
one can obtain such inversions. Before that, it is
important to discuss the meaning of such aninversion.
It isobviousthat theinversion cannot be uniqueinthe
sense that the observed anisotropy must be dueto this
type of layering. Without further information, thereis
no way to exclude other causes of anisotropy

Even if any other cause of anisotropy can be
excluded, aninversion of stiffness parametersto layer
parametersisnot necessarily unique. To show this, the
simplest (and perhaps most common) case, theinversion
of a K-medium to a sequence of layers with the same
squared velocity ratio is discussed.

Inversion of a K-medium

Any periodic sequence of isotropic layers with
constant g = (v/v,)* is long-wave equivalent to a K-
medium with the parameters given in (Part 1, Eq. 24).
All termsin Eq. (17) can be expressed throughq = ¢/
Cyy = (Ve lVp )2 <P =y ”2 and <l/n» = 1/v_,2 ThUS
even completeand accurate observationscanyi eI donly
these three parameters. The inversion of q is
elementary: each layer must have the same q as the
compound medium. Except for a scale factor, the
remaining two can be expressed as their ratio| =1/
(<ne <Un®). Any number of layers in the period is
possible. To narrow down the possibilities, the number
is restricted to two, with shear gtiffnesses m and m
and relative thicknesses /2, and 4, to be determined.

A symmetric parameterizationis:

m, =cmy,,m, =mg,/c, ie
m,/m, = c?, and h,:;—+d,
. (16)
h, = =-d
2
Thisleadsto
m
Css = 0 1 )
1 5 o +d
cge—— d2+ 2
e2 I} c
& 1 0
¢ &1 o, 2 d=*
Ce = MpGeg—-+d=+ T
§e2 o] c oz (179
[2]
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Figure 8 - Top: Three compound media: TI-medium. K-medium,
and isotropic medium. Under the conditions discussed in the text,
these media are long-wave equivalent to periodic sequences of
isotropic laminae. Below: Basic periods of five simple sequences
of isotropic laminae. Two layerswith arbitrary thickness but equal
g (equivaent to aK-medium); Two layerswith equal thicknessand
equal g (minimum representation of a K-medium); Two arbitrary
isotropic layers, An arbitrary isotropic layer combined with two
layers with equal thickness and equal q; Four isotropic layersin
two sets of equal thickness and equal g each. The numbers of
parameters are listed on the right.

i.e., there are two equations for the three unkowns m,
¢ and d. After elimination of all stiffnesses, the
dimensionlessratiol = c./c. isexpressedintermsof
the dimensionlessratiosc and d:

1

13%4,19 L 16 (17b)

cg e Cﬂ

Oneaobtainsthesimplest (and unique) inversion if
one assumestwo constituentswith equal contributions,
i.e., d=0. The ratio of the shear stiffnesses of the
constituentsisthen:

mpo_ .2 =1(o_ _
ELO la o= 2=t #I-T). (g

The graphical display of Eq. (18) in Fig.7 shows
thelow sensitivity of the parametersof aK-mediumto
deviation from equal contributions of two layers (d=0):
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for arealistic ratio m/m=2(I = 0.89), i.e,, a ratio of
the shearwave vel ocities of thetwo constituents of about

V2 :1,1 remainsessentially unchanged for -0.15 < d
<0.15. A reliable determination of the individual
contributions requires very accurate determination of
.

In the general case (withd?* 0) one could either
solvefor theratio of the two stiffnesses (with the two
contributions assumed or known), or for the two
thicknesses. The latter might be more realistic: if the
two congtituents are, e.g., sand and clay, the individual
shear stiffnesses are more or less known, but the
relative contribution of these two materials to a
compound rock isof great interest. Thetwo (equivalent)
solutionsare;

2 =m(2—(1—4 ¢ ¥ (1-1)(a-ad1)).

(19

If the shear stiffnesses of the two constituents
areknown, itiseasy to determinethe contributionsfrom
the observed cg, = <> = vy, 2, and ¢, = <U/mp = v 2.
Inthiscase, d can be determined from two independent

equations, which should give the sameresult:

Inversion of a general TI medium

Any homogeneous T| medium that satisfies the
inequalities (6)—(15) can be inverted to a periodic
sequence of isotropic layers. Thisinversion cannot be
unique, since one can alwaysfind sequenceswith three
or more layers to match the five constants. However,
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it might be of interest to ask for the minimum number
of constituents necessary to mach aset of Tl constants.

Thefirst concerninsuch aninversion operationis
the number of equations versus the number of
unknowns. A transversely isotropic medium has five
independent stiffnesses. It isnot easy to observe all of
them, but even with the most el aborate acquisition one
has at most five equations. A sequence of two
congtituentsisdetermined by precisely five parameters
(Fig. 8). Thus one might expect that any TI medium
can bemodel ed by two constituentsonly. Backus (1962)
has shown that thisis not the case.

To show this, we determine the two-layer
sequence that models a medium with given
(dimensionless) parameters 4, k, t and | . For a two-
layer sequence, these parameters are related to the
layer parameters as.

5= (1' 4d 2)(m1' mz)(q 2~ q 1)
2(m1+m2' Zd(ml' mz)) ,
k= (1' 4d 2)(ml' mz)(q 1~ 9 2)
2(m1+m2+2d(m1' mz)) ,
4m m,
(m1+m2)2' 4d 2(m1' m2)2 ,

and

) _d .+ 2+22d(q 1'Q2) ' (21)

To makethe layer parameters dimensionlesstoo,
the two shear stiffnesses are normalized with ¢,

R 2m,
m = ,
m1+m2+2d(m1' mz)
. 2m, (22)
m.,= )
m1+m2+2d(m1' mz)
Note that:
1-k= 2 (my + ) =+
m+nmp+2d(m—np)
and
|k _ —4 my np _ o x o (23)
E m M-
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It follows that the normalized shear stiffnesses
are formally the roots of:

hu?—(h-kyp" -rk=0, ie.,

HT,zz%(lféi (17%) 14 x%

S e T B

This solution is meaningful if both normalized shear
stiffnesses are real and positive. This is the case if
0 <A <1 (which is guaranteed) and if k/h <0. TI
media satisfying the constraints (6) — (15) thus are long-
wave equivalent to a layer sequence with two
constituents if and only if /4 and k& have different
algebraic sign. Thus media with 4 k£ > 0 cannot be
modeled by only two constituents.

If the two roots of Eq. (24) are positive and real,
the medium can be modeled by two constituents, and
the remaining parameters are easily determined:

L, +un, +298 -u
Co = 1 2 2(”1 z)=>

Loty 280 —w)
2

2 - (u;+uy)

>

2cg _(“1'1'”2)_

& = LI o -
2(}’-1‘“2) 20’-1_”2)
k
1+ =
_ h
k ’ ’
2\/[1—h—2x) + 400 -2)
1_@'”2)[*_k_z+ k*’
1-p, 1-u,
o i)k &k
’ wy -1 wy -1 (25)

This solution is unique: if a transversely isotropic
medium is long-wave equivalent to a periodic sequence
with two constituents only, it can be modeled in one
and only one way. It can, of course, be modeled in
many different ways with more than two constituents.

If & and & have the same sign, the product of the
two roots of Eq. (23) is negative, i.e., one of the roots
must be negative and thus cannot be accepted as a
normalized shear stiffness. Backus (1962) showed that
such a medium can be modeled by two K-media (the
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last model in Fig. 8). If the K-media are chosen as
minimum-representations (6 = 0), this requires seven
parameters. The inversion thus leaves two parameters
free for a two-dimensional manifold of equivalent
solutions. Actually, Backus (1962) stated in the text
that this was a model with four isotropic constituents,
and asserted without proof that by an intricate argument
the model could be reduced to three isotropic
constituents. An arbitrary combination of three isotropic
layers would have eight parameters. Helbig (1981)
showed that a medium with sig(%#) = sig(k) can be
modeled by a K-medium and an isotropic medium. This
combination of three isotropic constituents has — if the
K-medium is chosen with equal thickness for the two
constituents — six parameters, thus the inversion is still
a one-parametric manifold. Note that the K-medium
can only be determined within the limits shown in Eq.(19)
and in Fig. 7, so that the inversion is a two-parametric
manifold.

The proof'is lengthy (for details see Helbig (1981,
1994)). For this reasons, only the main lines are given:
a model with three constituents is described by:

hithy+h3=1,

h1 GluT +h ezu; +h3 63u§ =0,

b

m 2y 92 4y 3=
U1 1% n3

and

hypl thyps thypz =1,
h101+hy 0, +h303=1,

>

My by hs 1
Uy M2 H3 A (26)

where the shear stiffnesses have been normalized by
¢, The 6, and | satisfy the stability constraints for
isotropic media, and the p, G, T, and A the constraints
for a TI medium that is long-wave equivalent to a
periodic sequence of layers ((6) — (15)).

Assume that the normalized shear stiffnesses
0<p"<p, <p,” are known. The six equations (26)
split into two groups: three can be used to determine
the three /1, the remaining three to determine the three
0. The formal solutions are:
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1+ | - (me + mg)
hi= :
m M3
m + — —(me + )
mL m3
1+ | - (m + mg)
hZ— )
m ma
me + e — (M + )
mL mp
1+ | —(m + )
h3_ ]
rre+mlmz—(ml+mz)
and
s +tr ms—t(szrWB)
I
ql_ ’
e M3
1+| = (me + mg)
s+rml|rm—t(ml+mg)
q2: H
m mg
1+| = (m + mg)
s+rmlmz—t(m1+rm)
I
43 - (27)
mL me
L+ ——~(m + me)

In view of the ranking of the normalized shear
stiffnesses, the denominators of the expressionsfor 4,
and &, are positive, that for 4, negative. Sinceall / and
g must be positive, the remaining humerators and
denominators of all six expression must havethe same
signs as the first three denominators: the numerators
of the expressions for 4, and g, must be negative, the
other four numerators positive. Further threeinequalities
can bederived fromtheconditionsO < {r, s, t} < 3/4.
Thenineinequalitiesresult in upper boundsfor m” and
lower bounds for m’, and some " interaction bounds’
on one of the two if the other is given a value that
satisfiesthe” non-interaction bounds’. In any case, the
"outer” two shear stiffnesses can always be chosenin
such a way that the bounds are satisfied. For the
"central” shear stiffnessthereisalwaysaninterval in
the middle of the range such that all inequalities are
satisfied:
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[ 2<0,k<0 |

| Lemp<S
r

|h>0,k>0|

Sha-t _ + _3fa-s
| <mp< 28
h-r " Y-t 29

Instead of setting up all inequalitiesand choosing
the normalized shear stiffnesses correspondingly, one
can make use of the fact that the positive root of (24)
liesin theinterval for the central shear stiffness. This
isshown by writing (24) asafunction:

F(mt) = h mt2 -(h-R)nt-L k. (29)
Sincethefunctioniscontinuous, thereisprecisaly

oneroot intheintervals of Eq. (28) if the function has
different algebraic signs at the ends of theinterval:

F(I rt—)=—hr|_2(r s -1 t?)
F(?_):ktl—z(r s =1 tz)
Ya—t\_ 1 {(Ba-r)Bla-s)-1034-1))
F(l 3/4—r) h (3/4—r)2 (30)
s B 1o a=iF)
3fs~t (3fs-1f

Thusit is aways possible to choose three shear

stiffnesses in such a way that all inequalities are
satisfied. The remaining parameters are then
determined with Eq. (27).
Next it is shown that this choice of the central shear
stiffness forces the other two constituents to have the
same . By subtracting the expressions for g, and q,
in Eq. (27), oneobtains:
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01632 _FL x
A

)

1
X = 0

S . . G
R

Formally, 6, and 0, follow from (27) as

* * /’l+ *
Lk elou) (o

l—u; +u§ (}';\'—2— 1)

kel ud) i e ]

03 *
l—uz +HT(HT2— 1)

(32)

These two expressions must be equal and
independent of the — as yet undetermined — p *, U,
thus the coefficients of these two stiffnesses can be
set to zero to yield:

k+t(l- LL;
:—( F ):T+ k = (33)
1- U2 1- w2
To choose the outer shear stiffnesses we make
the arbitrary choice h = h,. With that we obtain:

01,3

K Tt 201 13
cé6)=c<)6“ 2“ ,c§5)=666%. (34)
Hit s

The condition %, = &, yields with (27) another
quadricin p":

*

s (ultm_l) .
2prps A

i
27\. 2!_11!_13
Wit s\
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u," is a root of both (24) and (35), thus the coefficients
must be proportional. This leads to:

u T+u =20 +ak)

. 1+ ak (36)
= —2

Hoks 1+ ah

with an as yet undetermined a. Once three shear

stiffnesses have been chosen, equations (27) can be

used to determine the remaining parameters. For

instance, one obtains for 0,

0= 1+ —h—
1_“1;”3 (37)

Practical inversion

In the previous section it was shown that it is
always possible to model any sequence of layers with
at most six free parameters. This is important as a lower
bound, but for the practical inversion of minor
importance. One often knows some parameters of
some constituents, which may not be those suggested
by the solution in Egs. (27)—~(37). In such a case the
problem is to determine the remaining constituents.
Since the three normalized shear stiffnesses are
constrained to genuine intervals —i.e., each can assume
an infinite number of values — the set of all possible
solutions is a three-parametric manifold. It is thus
possible to choose three parameters. The choice is not
entirely arbitrary: for instance, if # and k have the same
algebraic sign, u,” must lie in the corresponding intervals
Eq. (27), and the outer two shear stiffnesses must lie
outside the respective bounds:

R>0, k>0
* *
<Ax S <
M1 0 e U3
R<0, k<0
3,
u’l‘<x3/4 * o e
la-p 3= (38)
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h>0,k>0
* t -s s—t *
ml<llrrTB 2 Rem
—mg—t t—-——m
I I
h<0, k<O

<l (3a-t) m—(Ya-s) .

%I—_rnﬁ—(%—t)

(3la-s) — (34-t) e

3 - *
(3la-1) —# m (39)

If one of the outer stiffnessesis chosen, the other
hasto satisfy, respectively,

Any choice of shear stiffnessesthat satisfies EQs.
(28) and (38, 39) leadsin Eq. (27) to meaningful g, and
h.
The conditions for compound media with three
constituents and / £ < 0 have not been investigated.

CONCLUSIONS

Any sequence of isotropic layers leads to long-
wave transverseisotropy of the compound medium. If
the sequenceis periodic, the compound mediumis(long-
wave) homogeneous. The requirement that the
congtituents are stabl el eadsto inequalities between the
parameters of the compound medium. As a
conseguence, only Tl mediafor which theseinequalities
are satisfied can be "modeled” by layer sequences.

Observed anisotropy can be used to determineits
causes, though additional information is required to
restrict the type of causes. If the anisotropy is due to
layering, if the elastic tensor iscompletely determined,
and if all inequalities between the parameters are
satisfied, layer sequences to produce the transverse
isotropy can befound. Under certain conditions, aunique
decomposition into two constituentsis possible, but a
decomposition into three constituentsisalwayspossible.
Since three constituents are determined by eight
parameters and the T compound medium by five, the

set of all possible solution isathree-parametric manifold,
i.e., three parameters can be chosen or must be
determined independently.

The complete determination of the elastic
parameters from surface observation alone is not
generaly possible. Thisisillustrated by the K-medium,
that is long-wave equivalent to a sequence of
constituentswith acommon ratio of S- to P-velocities,
which is a redlistic assumption. Such media can be
strongly anisotropic, but P-wave observation over an
aperture of about 30° would show no deviation from
isotropy (Part 1, Fig. 4).

Theinversion of Tl elastic constants to those of
the constituentsfor lithological purposes—e.g., to get
information on theinner structure of areservoir —thus
can be useful only in conjunction with other methods.
Asastand-alone method it is bound to disappoint.
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