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Aspectos geométricos associados com o empacotamento hierárquico e heterogêneo de arames 
amassados são revistos. O fenômeno recentemente descoberto de condensação de energia elástica 
de curvatura nessas estruturas é discutido e novos resultados são apresentados, com ênfase em leis 
de escala robustas. Examina-se a possível relevância destas leis nas propriedades conformacionais 
de cadeias moleculares longas e densamente empacotadas em estado não-sólido como observado, 
por exemplo, para o DNA nos cromossomas ou nas cápsulas virais. Em particular, argumentos de 
campo médio são usados para estimar a dependência entre o número de laços e o comprimento 
dessas cadeias.

Geometric aspects associated with the hierarchical and heterogeneous packing of crumpled 
wires are reviewed. The recently discovered phenomenon of condensation of elastic energy of 
curvature in these structures is discussed, and new results are presented with emphasis on robust 
scaling laws. It is examined the possible relevance of these laws in the conformational properties of 
long molecular chains densely packaged in a non-solid state, as e.g. in the packing of DNA strands 
in chromosomes, or in virus capsids. In particular, mean field arguments are used to estimate the 
dependence of the number of loops in the dense non-solid packed three-dimensional configurations 
of a very long polymer strand as a function of the number of monomers or the chain length. 
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Introduction

The last two decades have witnessed a growing 
interest in crumpling from the point of view of theory and 
experiments in physics, as well as from the point of view 
of applications in related sciences and technology.1- 8

Recent experiments using very large ensembles of a single 
piece of wire irreversibly or semi-irreversibly crumpled by 
diverse means have revealed the existence of a new state of 
packing of matter which is characterized by the formation 
of rigid, hierarchical and heterogeneous structures of loops, 
obeying robust scaling laws, and presenting anomalous 
physical properties, with slowly decreasing average density 
as the size grows.9 In all these packing experiments, the wire 
is injected into a rigid cavity simultaneously from each one 
of two opposite channels, as can be observed from Figure 1. 

The cavities are carved in compact blocks of Plexiglas, glass 
or gypsum. All the internal measurements of the cavities 
have a typical uncertainty of 0.1 mm. The injection of wire 
is manual at a typical constant rate of v  1 cm s-1. However, 
the experiments have shown that the statistical scaling 
functions describing the basic geometric aspects of these 
packing dynamics are essentially independent of v, as well 
as of the angle of injection defined by the two channels, of 
the materials, of the fluctuations in the injection from each 
one of the channels, and of the state of lubrication of the 
cavities.9 Some examples of such structures of crumpled 
wires are clearly observed in Figure 1-3: in the first Figures 
we show the pattern obtained from the forced injection of 
a copper wire with 1 mm of diameter into a quasi-two-
dimensional cavity of Plexiglas of 100 mm of radius and 
1.1 mm of height. Figure 2 presents a somewhat different 
cascade of loops obtained with the same method as in 
Figure 1, but for a more plastic wire of the alloy Sn

0.60
Pb

0.40
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(1.5 mm of diameter) in a quasi-two-dimensional cavity of 
75 mm of radius and 1.6 mm of height. Figure 3 exhibits 
the entangled state obtained with the same type of wire 
as in Figure 2, but in a three-dimensional cavity of 75 
mm of radius (the upper hemisphere of the cavity was 
removed to expose the structure). Interestingly, in all these 
examples the injection of wire is arrested when a critical 
volume fraction is reached.9 This critical value is largely 
independent of the forces and materials employed in the 
process, and it is less than the typical volume fraction 
of the usual condensed matter occurring in the granular, 
liquid or solid states.

The mass-size relation is one of the most basic geometric 
measures that we can assign to complex physical structures. 
In particular, for folded structures with the topology of the 
line, it measures the mass (or e.g. the number of monomer 

units in a polymer), M(R
0
), within a sphere of radius R

0

with center at the center of mass of the system. If scale 
invariance is satisfied, it can be said that,

M(R
0
) ~ R

0
D (1)

with D being, in principle, a fractionary exponent 
interpreted as the fractal mass dimension of the system.10

Equation 1 satisfies the dilation (scaling) symmetry: 
M( R

0
) = DM(R

0
) for all positive value of the scale 

factor . Scale invariance with an anomalous non-integer 
exponent D is frequently found in complex-structured 
systems, as e.g. in self-avoiding random walks (SARW) 
and polymers in general, as well as in percolation clusters, 
and crumpled cream layers.11-13 Thus, if D is smaller than 
the dimensionality of the space, d, the average density 
of mass  ~ M/Rd ~ RD-d decreases anomalously as a 
power law in R. In Figure 4 we exhibit a typical mass-
size plot for an ensemble of 10 replicas of the crumpled 
structures exemplified in Figure 2, for 2D cavities of 
radii R

0
 (cm) = 1.00; 1.50; 2.50; 5.00; 7.50; and 11.0. 

The mass in this case is measured in units of length: 
M ~ L, where L is the total length of wire injected in the 
cavity. From this log-log plot we obtain L ~ R

0
D, with 

D = 1.8 ± 0.1. Figure 5 shows the corresponding mass-size 
plot for crumpled structures of wire in three-dimensional 
cavities of radii R

0
 (cm) = 0.90; 1.25; 1.7; 2.0; 2.50; 

5.00; and 7.50. In this case, we get M ~ L ~ R
0

D, with 
D = 2.7 ± 0.1. In the three-dimensional physical space, 
crumpled balls of paper or metal foils, and crumpled wires 
squeezed manually and irreversibly into approximately 
globular compact units (i.e. using the hands as a cavity) 
obey scaling (1) with the mass fractal dimension assuming, 
respectively, the values D = 2.50 ± 0.20, and D = 2.7 ± 0.2, 

Figure 2. The same as in Figure 1, but for a wire of the alloy Sn
0.60

Pb
0.40

with 1.5 mm of diameter in a quasi-two-dimensional cavity of 75 mm of 
radius, and 1.6 mm of height.

Figure 1. Example of heterogeneous hierarchical structures of loops 
obtained from the forced injection of a wire of copper with 1 mm 
diameter in a quasi-two-dimensional cavity of 100 mm of radius, and 
1.1 mm of height.

Figure 3. Example of a three-dimensional packing of wire obtained with 
the same method as in Figures 1 and 2, for the alloy wire of Figure 2, 
but in a spherical cavity of 75 mm of radius (the upper hemisphere of the 
cavity was removed to expose the structure).
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regardless the details of the process and of the materials, 
and along several orders of magnitude in mass.14,15

Experiments show that the crumpled structures of wire 
present a pronounced invariance of the mass-size dimension 
not only for globular shapes, but also for highly compressed 
axial (oblate) deformations at least up to 65%, i.e. if the 
size of the system along the compression axis is typically 
reduced to 1/3 of its original magnitude.15

Discussion

Estimating the mass-size exponent for crumpled wires

The mass-size exponent for a d-dimensional ball of 
crumpled wire can be easily estimated from the following 

mean field argument. Let us assign a total energy U to a ball 
of crumpled wire of length L and radius R, with mass M ~ L.
This total energy is divided in the most coarse-grained way 
possible in two contributions: (i) A term coming from a 
simple parabolic confining energy, U

c
 = kR2/2, where k > 0

is an effective constant. This term corresponds to an inward 
linear force F

c
 = – U

c
 / R = – kR. (ii) The second term is 

a self-avoidance energy U
sa

, which is assumed to be a two-
body interaction, and consequently is proportional to the 
square of the average density of mass,  ~ (M/Rd), where the 
d-dimensional volume scales as V ~ Rd. This self-avoidance 
energy term thus reads after integration in the volume: U

sa
 ~ 

2×V ~ M2×R-d. This energy corresponds in turn to an outward 
nonlinear force F

sa
 = – U

sa
/ R ~ M2R-(d+1). The confining 

term, which can be associated with entropic, packaging and 
segregation forces, tends to privilege a packed configuration 
of the structure, while the self-avoidance term, which has 
its microscopic origin in Pauli’s exclusion principle, tends 
to privilege extended configurations of the system. In our 
model, F

sa
 simulates the important steric repulsion forces, 

which is one of the dominant forces in molecular physics 
at the microscopic level. By minimizing the total energy 
U = U

c
+ U

sa
 with respect to the globular radius R, we obtain 

immediately the mass-size (R
0
) dependence at the equilibrium 

as the power law M ~ R
0
D, with D = (d+2)/2, independently of 

the values of the coupling constants associated with U
c
and 

U
sa

. Thus, D =2 (2.5) for d = 2 (3), in reasonable agreement 
with the data reported in the Introduction for crumpled wires 
in two- and three-dimensional space, within typical statistical 
fluctuations of 10%. Contrarily to the model prediction for 
d = 3, if this crude mean field model is applied to the two-
dimensional packing of wire, no diminution of the average 
density with R

0
 is expected:  ~ R0. As it is known, mean 

field results are, in general, expected to ameliorate with the 
increase of d, and a breakdown of mean field tends to occur 
at low dimensionality. However, the result D(d = 2) = 2, 
obtained with the simple model discussed here is almost 
spectacularly good as compared with the experimental value 
D = 1.8 ± 0.1. Furthermore, the minimum configurational 
energy of the structure is given by U

min
 ~ M4/(d+2) ~ L4/(d+2), a 

result which can be tested experimentally. If it is conjectured 
that the last result is valid at the level of a chromosome, with 
the DNA strand developing the role of wire, it could be tested 
in experiments of manipulation of a single DNA packed 
structure as the work done to stretch the long molecular 
chain from that condensed state.16

Condensation of elastic energy in crumpled wires

It was shown recently that the elastic energy in two-
dimensional packing of crumpled wires is condensed in 

Figure 4. Mass-size plot for an ensemble of 10 replicas of the crumpled 
structures exemplified in Figure 2. The mass in this case is measured in 
units of length: M ~ L, where L is the total length of wire injected in the 
cavity (Two-dimensional cavities of radii R

0
 (cm) = 1.00; 1.50; 2.50; 

5.00; 7.50 and 11.0.). The continuous line represents the best fit L ~ R
0
D,

with D = 1.8 ± 0.1. In this case the average density decays slowly as
R

0
-(0.2 ± 0.1) (see text). 

Figure 5. Same as in Figure 4, for three-dimensional cavities of radii 
R

0
 (cm) = 0.90; 1.25; 1.7; 2.0; 2.50; 5.00 and 7.50. In this case, the best 

fit (continuous line) is M ~ L ~ R
0
D, with D = 2.7 ± 0.1, and the average 

density decays slowly as R
0
-(0.3 ± 0.1) (see text). 
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a low-dimensional support.17 That is, in these systems, 
the elastic energy of curvature is concentrated on a set 
whose experimental value of the dimension is close to 
the unit (D = 1.0 ± 0.1), whereas the mass, as explained 
in the previous section, is distributed on a set with larger 
dimension, D = 1.8 ± 0.1. The elastic energy due to the 
stretching in this problem is negligible as compared with 
the elastic energy of curvature. Thus, the stored elastic 
energy of curvature, E, for a crumpled wire packaged in a 
cavity of radius R

0
 scales as E ~ R

0
, with  = 1, in the limit 

of maximum packing density. It has been conjectured that 
this numerical value of  remains valid as well in three-
dimensional packing of crumpled wires.17 The reason of 
this decoupling between mass and energy of curvature lies 
in two facts. First, energy is effectively stored only in the 
bulge-extremity of the loops (see e.g. Figure 1): the elastic 
energy of curvature is inversely proportional to the square of 
the radius of curvature, and this radius is smaller just in the 
bulge of each loop. Secondly, there is a hierarchy of loops 
distributed heterogeneously within the cavity, and smaller 
loops, presenting bulges with small radius of curvature, 
tend to give a larger contribution to the stored elastic 
energy of curvature. As a consequence, the elastic energy 
is heterogeneously distributed in the space. Contrarily, in a 
more familiar system as a usual spring, the elastic energy is 
homogeneously distributed in the space, and it accompanies 
the distribution of mass. It is interesting to observe that if we 
try to fill regularly and completely a circular cavity with an 
elastic wire in order to obtain a maximum volume fraction 
close to the unit (in a configuration where segments of the 
wire are parallel, and touch their neighbors), the regions 
of the wire displaying the smaller radii of curvature stay 
in the perimeter of the cavity (on the circumference), that 
is, on a one-dimension subset of the plane. The difference 
between this last particular situation and that considered in 
the first paragraph (Figures 1 and 2) is that in those figures 
the structures are heterogeneous, hierarchical, and have 
less volume fraction, whereas the other is homogeneous, 
regular and non-hierarchical, and has volume fraction 
very close to the unit. In the next section, using a mean 
field approximation, it is made a theoretical estimate of 
the implications of the condensation of elastic energy of 
curvature on the packing properties of crumpled wires, and 
on the packing of DNA-like molecular chains.

Crumpled wires and packing of DNA-like molecular chains 

As it is well known, details are important in biology and 
ultimately the structure of biological macromolecules can 
be determined to atomic resolution and can be related to the 
way that the molecules function. On the other hand, statistical 

aspects and mathematical modeling of DNA packing are 
presently topics of great interest for molecular biology as 
well.18 Very recently it has been introduced the use of paper 
models of crumpled surfaces as simple analogical tools 
for the biologist to develop insight into the statistics of the 
geometric intricacies of the packing of complex biological 
structures as membranes and proteins.7

Although historically there has been a strong focus 
on the conformation of “open” DNA backbones, many 
aspects of DNA highly packed structures are presently 
been studied.19Here, crumpled wires with globular or oblate 
shape, obtained with a piece of wire irreversibly folded by 
manual means, are used to model the packing of DNA-like 
molecular chains in confined geometries, as those observed 
for DNA chains in chromosomes or virus capsids. 

Let us consider a very long linear molecule of unfolded 
length L as a non-ramified polymer-like chain with mass 
M ~ L ~ R

0
D, i.e. obeying the mass-size scaling (1), with 

R
0
 being the length scale in the three-dimensional packed 

configuration. As an illustration, from data reported in the 
literature we find that the genome length L within a real 
bacteriophage viral capsid of size R

0
 scales as L ~ R

0
D, with 

D = 1.9, with a correlation of 90% (similar results are valid 
for other types of viruses).20 This mass fractal dimension 
has within the fluctuation bars the same value found for 
crumpled structures obtained in forced packing of a long 
metallic wire injected into a two-dimensional cavity. To 
maximize the packing density within small volumes, a 
very long molecule must present conformations with a 
certain number N of loops or folds associated with small 
radii of curvature. A loop, in the context of the present 
work, is any segment with a round or oval shape, formed 
by a curve that is closed or approximately closed and does 
not intersect itself. Thus, the loops contain the regions 
associated with the smallest curvature radii in the packed 
molecular structure. Using the scaling hypothesis

N ~ L (2)

and considering that there is an energy cost  ~ (1/r)2 to 
create a single loop with radius of curvature r, we can 
estimate the total elastic energy of curvature stored in the 
packing as E = N  ~ N3/L2, where in the last scaling relation 
we adopted for the curvature radius the mean-field value 
r ~ L/N. Using the previous relations we express E as a 
function of the chain length L, or R

0
:

E ~ L3  - 2 ~ R
0

,  = D(3 –2), D (3)

If (3) is valid, we get for the exponent  introduced in 
(2) the value  = ( +2D)/3D, and the expected number 
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of loops, N, as a function of L or R could be obtained and 
verified experimentally:

N ~ L(  + 2D)/3D ~ R
0
(  + 2D)/3 (4)

This is in fact verified for crumpled wires, as shown in 
Figure 6 which gives the number of loops N as a function 
of the radius of the cavity R

0
 for two-dimensional packing 

of wires of the type illustrated in Figures 1 and 2. In this 
particular case, the best fit (continuous line) represents 
the scaling N ~ R

0
1.30, a result in agreement with (4), and 

with the numerical values  = 1, and D = 1.8, within 
error bars of 10% or less. In principle, 0 < D  3, and 
consequently 2/3 <  < 1. A compact system (D = 3), with 
elastic energy of curvature homogeneously distributed 
throughout the volume (  = 3), has N ~ L1 ~ R

0
3 (it can not 

be forgotten that the topology in the present article is always 
one-dimensional). In the opposite limit of a very tenuous 
system, with both D and  small, a smaller value for  is 
obtained. If the packing of mass is optimized, and D 3,
but the elastic energy is condensed, with  1, as discussed 
in the previous section and observed for crumpled wires, 
we get N ~ L7/9 L0.77. This last result, which represents 
a deviation from the homogeneous limit N ~ L, could 
be experimentally tested with the present techniques.16,20

Progressive condensation of elastic energy of curvature on 
sets of low dimensionality means that the total number of 
loops in the structure grows slowly as a nonlinear power 
law of the chain length L.

Using the value D = 1.9 reported in the beginning 
of the previous paragraph in equation (4), together with 

 = 1, we get  = 0.84; i.e. the number of loops in the 
model bacteriophage viral capsids discussed here will 
scale as N ~ L0.84 ~ R

0
1.6. Equally, the average loop size 

= L/N ~ L1- L0.16 will increase slowly as a power law 
of the genome length, whereas for homogeneous systems 
(  = D = 3) this quantity is independent of the genome 
length (or varies as log L).

Conclusions

It is conjectured that experiments with crumpled wires 
can provide new insights into the issue of DNA packing. 
In both classes of systems two aspects are of fundamental 
importance: firstly, the self-avoiding interaction, simulating 
steric constraints of nonlocal origin, is always present, 
and secondly, the quasi-isometry and the one-dimensional 
topology is maintained fixed. These few ingredients seem to 
restrict considerably the allowed geometric configurations 
of a stringlike structure in equilibrium as well as in its 
dynamic behavior, irrespective the peculiarities associated 

Figure 6. Number of loops as a function of the radius of the cavity for 
two-dimensional packing of wires of the type illustrated in Figures 1 and 
2. The best fit (continuous line) represents the scaling N ~ R

0
1.30, a result 

in agreement with equation 4, and with the numerical values  = 1, and 
D = 1.8, within error bars of 10% or less. 

with boundary conditions and material constitution. 
Although it can be verified experimentally that many 
DNA condensates are in toroidal, spiral, helical, and other 
regular conformations, we believe that other geometric 
types of structures of DNA condensates are possible, as 
those discussed in the present work in connection with the 
anomalous hierarchical structures of crumpled wires. 

Acknowledgments

Financial support from CNPq and PRONEX (Brazilian 
Agencies) is acknowledged. We are grateful to Dr. C. C. 
Donato for Figure 1. 

References

1. Gomes, M. A. F.; Am. J. Phys. 1987, 55, 649.

2. Kantor, Y.; Kardar, M.; Nelson, D. R.; Phys. Rev. Lett. 1986,

57, 791. 

3. Wen, X.; Garland, C. W.; Hwa, T.; Kardar, M.; Kokufuta, E.; 

Li, Y.; Orkisz, M.; Tanaka, T.; Nature 1992, 355, 426.

4. Lobkovsky, A.; Gentges, S.; Li, H.; Morse, D.; Witten, T. A.; 

Science 1995, 270, 1482.

5. Chaieb, S.; Natrajan, V. K.; Abd El-rahman, A.; Phys. Rev. Lett.

2006, 96, 078101.

6. Vliegenthart, G. A.; Gompper, G.; Nat. Mater. 2006, 5, 216.

7. Cassia-Moura, R.; Gomes, M. A. F.; J. Theor. Biol. 2006, 238,

331.

8. Witten, T. A.; Rev. Mod. Phys. 2007, 79, 643.

9. Donato, C. C.; Gomes, M. A. F.; de Souza, R. E.; Phys. Rev. E

2003, 67, 026110.

10. Feder, J.; Fractals, Plenum: New York, 1988.

11. Havlin, S.; Ben-Avraham, D.; Phys. Rev. A 1982, 26, 1728.



Geometric Properties of Crumpled Wires and the Condensed Non-Solid Packing J. Braz. Chem. Soc.298

12. Stauffer, D.; Aharony, A.; Introduction to Percolation Theory,

Taylor and Francis: London, 1994.

13. Gomes, M. A. F.; Donato, C. C.; Campello, S. L.; de Souza, R. 

E.; Cassia-Moura, R; J. Phys. D: Appl. Phys. 2007, 40, 3665.

14. Gomes, M. A. F.; J. Phys. A: Math. Gen. 1987, 20, L283. 

15. Gomes, M. A. F.; Lima, F. F.; Oliveira, V. M.; Philos. Mag. Lett.

1991, 64, 361.

16. Strick, T.; Allemand, J.-F.; Croquette, V.; Bensimon, D.; Phys.

Today 2001, 54, 46. 

17. Donato, C. C.; Gomes, M. A. F.; Phys. Rev. E 2007, 75,

066113.

18. Katzav, E.; Adda-Bedia, M.; Boudaoud, A.; Proc. Natl. Acad. 

Sci. USA 2006, 103, 18900.

19. Johnson, J. E.; Chiu, W; Curr. Opin. Struct. Biol. 2007, 17,

237.

20. Purohit, P. K.; Inamdar, M. M.; Grayson, P. D.; Squires, T. M.; 

Kondev, J.; Phillips, R.; Biophys. J. 2005, 88, 851.

Received: August 21, 2007

Web Release Date: November 30, 2007


