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The comprehended knowledge of the metabolic profile of the fecal matter has been recognized 
as an important point for understanding metabolic changes in the human systemic metabolism 
and it can provide precious information about host-gut microbiota interactions. However, few 
analytical strategies have been addressed for a broad analysis of metabolites with different 
chemical properties to better understand the chemical space of fecal samples. Here we report a 
systematic pipeline to achieve comprehensive coverage of the fecal metabolome, from high polar 
to nonpolar metabolites, using dog fecal samples as a proof-of-concept. This pipeline comprises a 
monophasic (ACN/H2O) and a biphasic extraction (methyl tert-butyl ether (MTBE)/MeOH/H2O) 
of the sample, followed by three liquid chromatography-high resolution tandem mass spectrometry  
(LC-HRMS/MS) methods using HILIC-amide, RP-C18 and CSH-C18 columns, and a switch 
polarity acquisition mode in the electrospray ion source. This approach allowed the annotation 
of 376 metabolites from 70 different chemical classes. The chemical space analysis by molecular 
networking and the pathway analysis revealed the complexity of the fecal sample and the importance 
of combined methods to better understand biochemical pathways. This pipeline can be used as 
a valuable tool to comprehend the relationship between host-gut microbiota metabolites and the 
influence of diet, medication, or environmental changes.
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Introduction

During the last years, the fecal analysis by mass 
spectrometry has emerged as an important field to provide 
insights into the relationship between the host and the 
gut microbiome activity and how it can affect the host 
homeostasis.1-3 This symbiotic relationship has been 
shown to play a vital function in human metabolism, 
immunity, and reaction to diseases, such as diabetes,4,5 
coronary artery disease,6 inflammatory disorders,7 but 
also for the organism health state.

The metabolites produced by the gut microbiome, and 
other compounds that comprise the fecal matter, greatly 
varies and can be modified according to changes in host 
metabolism, such as age,8 species,9 diet,10 disease,3 or 
therapeutic intervention.11 In this way, the fecal matter 
that has been classically used for microbiological analyses 
has gained other applications with the advance of the 
knowledge of endogenous and microbial metabolites using 
omics approaches.

Mass spectrometry (MS)-based metabolomics and 
lipidomics have been revealed as important tools to study 
fecal samples. This is mostly due to the high sensitivity, 
specificity, and broad coverage of different classes of 
compounds by the mass spectrometer, especially when 
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coupled to separation techniques, such as liquid or gas 
chromatography.1,2,12-16

The use of animal fecal samples as a model for method 
development has been reported by several authors.17-21 
For instance, pig fecal samples were analyzed by gas 
chromatography-mass spectrometry (GC-MS) and liquid 
chromatography-mass spectrometry (LC-MS), and around 
300 compounds were identified.18 Another study described 
the use of bovine feces to develop an liquid chromatography-
high resolution mass spectrometry (LC-HRMS) based 
metabolomic approach to generate an informative fingerprint 
of this sample.17 To evaluate the pig fecal metabolome change 
after grape seeds consumption by the animals, LC-HRMS 
metabolomics and lipidomics were applied and revealed that 
cholesterol, bile acids, and purine metabolites were some 
of the compounds altered due to the seed consumption.22 
However, a methodology that combines both polar and 
nonpolar metabolite analyses, covering the fecal metabolome 
and lipidome via LC-MS can be a prospective strategy and has 
not been thoroughly evaluated.3,23,24 Thus, this study aimed to 
implement a pipeline for a comprehensive metabolite profile 
of fecal samples. Therefore, a combination of extraction 
methods using a monophasic and a biphasic system and 
LC separation using three columns with distinct separation 
mechanism were tested to extract and analyze from high 
polar compounds (e.g., sugars, organic acids and amino 
acids) to weakly polar and nonpolar compounds (e.g., lipids) 
in dog fecal samples. Moreover, a molecular networking 
analysis was used to evaluate the results from the LC-HRMS/
MS data to reveal the complexity of the chemical space of 
the fecal samples and the pathway analysis was shown to 
benefit from that broader coverage of the fecal samples.

Experimental

Chemicals

The methyl tert-butyl ether (MTBE), acetonitrile (ACN), 
and methanol (MeOH) were high performance liquid 
chromatography (HPLC) gradient grade and obtained from 
Tedia (Fairfield, OH, USA). Ammonium formate and formic 
acid were purchased from Merck (São Paulo, Brazil). High-
purity water (18.2 MΩ cm) was prepared using a Millipore 
Milli-Q (Billerica, MA, USA) purification system.

Fecal material 

A triplicate of fecal samples deposited in the environment 
from three domestic dogs (Canis lupus familiaris) were 
collected by their owners in 50 mL Falcon tubes during 
three different days (9 samples in total) and sent to the 

laboratory for processing. This step included drying the 
fecal samples for 4 h in an oven at 60 ºC followed by a 
1 h rest in a fume hood. Then, samples were weighted to 
the nearest 0.1 mg. This process was repeated until the 
samples reached a constant mass (4-5 cycles).25 Afterward, 
the samples were ground with a mortar and pestle and 
standardized to a sieve size of 180 mm. In contrast to fresh, 
fresh-frozen, or freeze-dried fecal samples generally used in 
metabolomic studies,1 the oven-dry method was employed 
for this dog fecal samples since this study is part of a larger 
project about analyses of dried animal feces deposited in 
the environment. Animal handling and fecal analysis were 
in accordance with the ethical standards and registered at 
Federal University of Rio Grande do Sul (Research and 
Ethics Committee License 28645).

Sample extraction

A pool of dried fecal samples (n = 9) was used to 
perform two extraction protocols: (i) protocol A, for the 
extraction and separation of lipids from polar metabolites, 
and (ii)  protocol  B, for the non-selective extraction of 
metabolites. 

(i) Protocol A: the lipid and polar compounds extraction 
were performed according to the Matyash et al.26 protocol. 
Methanol (300 µL) was added to 100 mg of the powder dog 
feces pool (n = 3) in a microtube of 2.0 mL and vortexed 
at 3000 × g for 30 s. Then, 1.0 mL of MTBE was added, 
and the mixture was submitted to an ultrasonic bath for 
15 min, followed by the addition of 250 µL of water. After 
10 min at 4 ºC, the sample was centrifuged at 9000 × g 
for 15 min. The organic (upper) phase was transferred to 
a new microtube, and the aqueous phase was re-extracted 
with 400 µL of 10:3:2.5 (v/v/v) MTBE/MeOH/H2O. Both 
phases were dried under nitrogen flow at 40 ºC and stored 
at −20 °C until analysis. 

(ii) Protocol B: the non-selective extraction, adapted 
from Zeng et al.16 and Zalloua et al.27 was performed 
extracting the fecal sample pool (n = 3) at a ratio of 1:10 
(m/v) with 1.0 mL of ACN:H2O (1:1, v:v), vortexed at 
3000 × g for 30 s, sonicated for 15 min at room temperature, 
and vortexed again. After centrifugation at 9000 × g for 
15 min, 400 µL of the supernatant was transferred to a 
microtube and stored at −20 °C until analysis. 

LC-HRMS/MS analyses

Samples were analyzed by a DionexUltiMate 3000 
liquid chromatography coupled to a hybrid Quadrupole-
Orbitrap high-resolution mass spectrometer (Thermo 
Scientific, Frenton, CA, USA) equipped with an electrospray 
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ionization (ESI) source and externally calibrated using the 
ready‑to‑use Thermo Pierce (Waltham, MA, United States) 
ESI positive or negative ion calibration solutions. 

For the LC-HRMS/MS analysis of lipids from 
protocol A, samples from the dried organic phase 
were reconstituted in 50 µL of isopropanol:ACN:H2O 
(2:1:1; v/v). Chromatographic separation was performed in 
a Waters XSelect CSH C18 column (150 × 2.1 mm; 2.5 µm 
particle size) in gradient elution mode using ACN:H2O 
(60:40, v/v) as mobile phase A and isopropanol:ACN 
(90:10, v/v) as mobile phase B, both with 0.1% formic 
acid and 10 mM ammonium formate. The gradient elution 
was as follows: 0-2.0 min 40% B; 2.0-2.1 min 43% B; 
2.1‑12.0 min 50% B; 12.0-12.1 min 54% B; 12.1-18.0 min 
70% B; 18.0-18.1 min 99% B; 18.1-25.0 min 40% B.27 
The column temperature was set to 45 °C and the solvent 
flow rate was 0.4 mL min-1. The injection volume was 6 µL 
and samples were analyzed by polarity switching between 
the positive and negative ESI modes. Mass spectrometry 
conditions were: spray voltage 3.9 kV for ESI+ or -3.6 kV 
for ESI-, ion transfer capillary temperature 320 °C, sheath 
and auxiliary gases 45 and 20 arbitrary units, respectively, 
normalized collision energy (NCE) of 20 for ESI+ and 25 
for ESI-. Data were acquired in full scan over m/z range 
of 120-1000 Da at a resolution of 35.000 (full width at half 
maximum (FWHM)) followed by ddMS2 Top 3 experiment 
at a resolution of 17,500.27,28 

For the LC-HRMS/MS analysis of polar metabolites 
from protocol A, samples from the dried aqueous phase 
were reconstituted in 50 µL of ACN:H2O (1:1; v/v). For the 
chromatographic separation, a Waters Xbridge Amide column 
(150 × 4.6 mm; 3.5 µm particle size) was used and maintained 
at 40 °C. The separation was performed in gradient elution 
mode at a flow rate of 0.5 mL min-1 using H2O containing 
10 mM ammonium acetate and 0.04% ammonium hydroxide 
as mobile phase A, and ACN:H2O (95:05, v/v) containing 
10 mM ammonium acetate and 0.04% ammonium hydroxide 
as mobile phase B. The injection volume was 4 µL. The 
gradient used was as follows: 0-2 min 95% B; 2-18 min 50% B;  
18-21 min 50% B; 21‑22 min 95% B; 22-28 min 95% B.29,30 
Samples were analyzed by polarity switching between 
the positive and negative ESI modes. Mass spectrometry 
conditions were: spray voltage of 3.9 kV for ESI+ and 
3.6 kV for ESI-, ion transfer capillary temperature 300 °C, 
sheath gas flow and auxiliary gas 50 and 10 arbitrary units, 
respectively, 15‑40 eV NCE. Data were acquired in full scan 
experiments over a m/z range of 100-1000 Da at a resolution 
of 35,000 (FWHM) followed by ddMS2 Top 3 experiment at 
a resolution of 17,500 resolution. 

For the LC-HRMS/MS analysis of metabolites from 
protocol B, the chromatographic separation was performed 

in a Thermo Syncronis RP C18 column (50 × 2.1 mm; 1.7 μm 
particle size) maintained at 40 °C in gradient elution mode 
at 350 μL min−1 using 0.1% formic acid in H2O:ACN (95:5, 
v/v) as mobile phase A and 0.1% formic acid in H2O:ACN 
(5:95, v/v) as mobile phase B. Gradient elution was 
performed as follows: 0-0.5 min 5% B; 0.5‑4 min 60% B; 
4-9 min, 100% B; 9-12 min 100% B; 12-12.1 min 5% B; 
12.-16 min 5% B. Sample injection volume was 4  μL. 
Samples were analyzed by polarity switching between 
the positive and negative ESI modes. Mass spectrometry 
conditions were: spray voltage 3.6  kV for ESI+ and 
3.1 kV for ESI–; capillary temperature 320 °C; sheath and 
auxiliary gases 45 and 15 (arbitrary units), respectively, 
15‑35 NCE. Samples were analyzed in the scan range of 
m/z 120 to 1000 Da at a resolution of 35,000 (FWHM) 
followed by ddMS2 Top3 experiments using a resolution 
of 17,500.31

Data processing, compound annotation, and classification

LC-HRMS/MS data were analyzed by the Thermo 
Xcalibur software v3.0 and processed by a lipidomics 
and metabolomics workflow using the MS-Dial software 
(RIKEN, version 4.24).32 This workflow included 
peak detection, deconvolution, alignment, background 
subtraction, and compound annotation using a default 
MS/MS library for lipid analysis and a customized  
MS/MS database that included the MassBank of North 
America and NIST 2014 MS/MS libraries for polar 
and weakly polar metabolites (parameters described in 
Tables S1‑S3, Supplementary Information (SI) section). 
An error between the experimental vs. theoretical formula 
≤ 5 ppm (but ≤ 8 ppm for m/z values below 250 in ESI-) 
and a similarity score of MS/MS spectra higher than 80% 
were considered. This higher mass accuracy error used 
for m/z values below 250 in ESI- was due to the mass 
range (265‑1680 Da) of the external calibration solution 
employed in this study. Aiming to prevent false positive/
negative peak identification, data were manually inspected 
to verify spectral matches with the database. 

The resulting annotated compound list was classified 
according to the Chemical Classification Dictionary using 
the chemical hierarchy classification system ClassyFire.33 
This web platform allowed subclass chemical levels 
from known chemical compounds. ClassyFire requires 
Simplified Molecular-Input Line-Entry System (SMILES) 
as input, which was obtained using the web-based Chemical 
Translation Service.34 Venn diagrams were created using the 
Bioinformatics and Evolutionary Genomics website tool.35

The pathway analysis was performed using the 
HMDB (Human Metabolome Database) IDs of the 
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annotated metabolites from the multiple LC-HRMS 
analytical conditions by Pathway Analysis module of the 
MetaboAnalyst 4.0 web application.36 After uploading 
the data, these annotated compounds were subsequently 
compared with those compounds contained in the pathway 
library. There are three outcomes from the step: exact 
match, approximate match (for common names only), and 
no match. Compounds without a match were excluded 
from the subsequent pathway analysis. The pathway 
step was performed by selecting the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) database and HMDB 
libraries. The pathway topology analysis used betweenness 
centrality measure to estimate node importance. Therefore, 
the total/maximum importance of each pathway is 1. The 
impact pathway score and statistical p values were used 
as a measure to identify the altered metabolic pathways. 
The pathway impact score was calculated based on 
the number of matched metabolites from datasets to a 
particular metabolic pathway (threshold was set to > 0.1) 
and p‑value ≤ 0.05 was considered as significant. 

Molecular networking

The LC-HRMS/MS datasets collected from the three 
different columns were pre-processed separately using the 
MS-Dial software32 to generate three MGF files containing 
the MS/MS information from each aligned dataset. These 
MGF files were submitted to Molecular Networking using 
the Classical workflow37 as separate groups, but with the 
MS-Cluster option disabled so that each cluster represents 
a feature across the different datasets.38 This is the basis 
of what became a role separate workflow, the Feature-
Based Molecular Networking.39,40 The precursor ion mass 
tolerance was set to 0.02 Da and the MS/MS fragment 
ion tolerance 0.02 Da. The networks were created where 
edges were filtered to have a cosine score above 0.8 and 
more than 4 matched peaks. In this setup, data from the 
RP-C18, the CSH-C18 and the HILIC-amide columns were 
analyzed as independent samples. Following a routine 
pipeline for chemical family classification, the workflows 
MS2LDA (including the MotifDB created from GNPS, 
MassBank and Urine available from the GNPS platform) 
and MolNetEnhancer were applied.41,42 The resulting 
networks were plotted using the Cytoscape software.43

Results and Discussion

Set up of the extraction method 

This study aimed to implement a comprehensive 
pipeline for the analysis of nonpolar and weakly polar 

metabolites (e.g., lipids, bile acids, etc.) to high polar 
metabolites (e.g., sugars, organic acids, amino acids, etc.) 
in fecal samples by untargeted metabolomic and lipidomic 
approaches. Thus, to expand the metabolite coverage, we 
recognized the limitation involved in the use of a single 
extraction procedure, due to the limited selectivity of the 
extractor solvent. As well as the use of a single LC column 
due to the preferential types of chemical interactions 
between the stationary/mobile phases and the metabolites, 
such as the hydrophobic interactions for C18 columns and 
the hydrophilic interactions for HILIC columns since it may 
hamper the proper analysis different classes of compounds. 

To investigate the sample extraction scale that 
could provide efficient recovery of different classes of 
metabolites, a preliminary test was performed using 20 and 
100 mg of dried fecal samples extracted by 200 and 1000 µL 
of ACN:H2O (1:10 m/v ratio, protocol B), respectively. 
Figure 1 shows the LC-HRMS base peak chromatograms 
for a fecal sample extracted by 100  mg  per  1000 µL 
(Figure 1A) vs. 20 mg per 200 µL (Figure 1B). Despite 
having the same sample-to-solvent ratio, a clear difference 
was observed between the two chromatograms, with the 
100  mg  per  1000  µL scale showing a higher number 
of LC peaks and signal intensity. Besides, this scale 
allowed more MS acquisition points per peak, as well 
as a higher number of MS/MS spectra acquired because 
of the higher abundance of the peaks. To exemplify, 
an extracted ion chromatogram for the m/z 300.29007 
[M + H]+ (a, Figure 1C) is shown in b (Figure 1C), where 
it is possible to observe more than 10 data points acquired 
and its MS/MS spectrum (c, Figure 1C) of high intensity 
and low background signals. This difference in LC-HRMS 
chromatogram quality by methods of different scale could 
be due to a difficulty in sample homogenization in the 
microtube by the 20 mg per 200 µL proportion, especially 
because the solution obtained presented a high number of 
particulates before centrifugation, reducing the contact area 
between the sample and the solvent, leading to an inefficient 
extraction compared to the larger scale procedure. 

LC-HRMS/MS analysis and metabolite annotation 

The information from the preliminary test was used to 
establish the pilot project (Figure 2) for a comprehensive 
fecal analysis. In protocol A (Figure 2) MTBE/MeOH/H2O  
was used as extraction solvent aiming to retain more 
hydrophobic species in the upper organic phase, beneficial 
for the lipid extraction.26 Simultaneously, the polar 
metabolites were extracted in the lower aqueous fraction. 
The LC-HRMS/MS analyses of the extracts from 
protocol A were performed using the HILIC-amide column 
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for the polar aqueous fraction, while the CSH-C18 column 
was used for the lipid fraction. In parallel, the protocol B 
was performed using the same amount of fecal sample 
(100 mg) but using ACN/H2O as the extraction solvent 
and injection in a RP-C18 column to cover a broad range 
of metabolites. Thereby, three chromatographic conditions 
were employed to delineate a full view of metabolites in 
the fecal sample.

Typical LC-HRMS base peak chromatograms of a dog 
fecal sample and the elution order of some representative 
classes of compounds according to the ClassyFire 
subclass classification are shown in Figure 3. To analyze 
the metabolites detected exclusively and not exclusively 
in each ESI mode and chromatographic column, the raw 
data generated from all samples were submitted to the 
metabolomic and lipidomic workflows of MSDial 4.24 
software.32 Compounds were putatively identified according 
to the Metabolomics Standards Initiative as level 2.44,45 

A total of 77 metabolites were annotated from the 
HILIC-amide analysis. Among these, 49 compounds 
were detected in the positive ion mode (ESI+) and 
30  compounds were detected in the negative (ESI-) 
(2 compounds, hypoxanthine and N-acetylmuramic acid, 
were detected in both polarities) (Table S4, SI section). 
The RP-C18 chromatographic method contributed with 
96 annotated compounds in the ESI+ and 64 in ESI- (160 

in total) (Table S5, SI section,), while the analysis using 
the CSH-C18 column resulted in 152 annotated compounds 
(90 and 70 metabolites for ESI+ and ESI-, respectively, 
and 17 in common for both polarities) (Table S6, SI 
section). The diverse number of annotated compounds 
in both polarities demonstrated the importance of the 
fast polarity switching for complementary metabolite 
annotation and construction of the metabolic space under 
study. Furthermore, it allowed the collection of a vast 
amount of data in just one sample injection, reducing the 
number of injected samples since the pipeline proposed 
here relies on the analysis of the same fecal sample in 
three LC columns. Recently, Villaret‑Cazadamont et al.46 
also proposed an optimized approach with a biphasic 
acidified extraction method (ACN/MeOH/H2O)  
to perform LC-MS metabolomics and lipidomics analyses. 
Schwaiger et al.47 analyzed plasma samples combining 
metabolites and lipids extracts using a HILIC and RP-C18 
performed in parallel. However, there are still few examples 
of this integrated strategy to cover an extensive vision of 
metabolites using fecal matter.

We conducted a study to measure the chemical 
relevance of the annotated compounds. For this purpose, 
the distribution of identified compounds belonging to 
chemical classification families was performed according 
to the web-based application ClassyFire.33 This platform 

Figure 1. LC-ESI(+)-HRMS base peak chromatograms in a RP-C18 column demonstrating a preliminary scale study using in (A) 20 mg and (B) 100 mg 
of dried fecal samples extracted by ACN:H2O (1:1 v/v). The insert (C) shows the precursor ion of m/z 300.29007 [M + H]+ (a), which generated a 
chromatographic peak at 8.8 min with high acquisition points (b) and the MS/MS spectrum in (c).
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Figure 2. Schematic pipeline applied for the comprehensive analysis of fecal samples by LC-HRMS.

Figure 3. LC-HRMS base peak chromatograms of fecal samples from the three chromatographic conditions in positive and negative-ESI modes. 
Representative classes of compounds according to the ClassyFire subclass classification are shown in the figures. (a), (b) and (c) show the separation 
performed in positive mode using the HILIC-amide, RP-C18 and CSH-C18, respectively; (d), (e) and (f) show the separation performed in negative mode 
using the HILIC-amide, RP-C18 and CSH-C18, respectively.
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allows chemical classification and description from 
known chemical compounds up to 11 different levels 
(Kingdom, SuperClass, Class, SubClass, etc.). Based on 
the common characteristic and structural properties of the 
compounds, the annotated metabolites from the different 
chromatographic columns were classified within categories 
and levels. The ClassyFire subclass was chosen to classify 
the compounds annotated in this study. The HILIC-amide 
classification in ESI+ and ESI- are exemplified in Figure 4. 
As it can be seen (Figure 4a), of a total of 23 ontologies 
classes, amino acids, peptides, and analogs; bile acids, 
alcohols and derivatives; purines and purine derivatives; 
and fatty acids and conjugates; were the classes with a 
higher number of identified compounds, presenting 21, 
3, 3 and 2 metabolites, respectively, in the ESI+. In the 
ESI- (Figure 4b) a total of 16 classes were found, including 
amino acids, peptides, and analogues; benzoic acids and 
derivatives; carbohydrates and carbohydrate conjugates; 
and bile acids, alcohols and derivatives; as wide subclasses 
of annotated metabolites: 4, 4, 4, 3 compounds, respectively. 
Thereby, the amino acids, peptides, and analogs family 
exhibited the highest distribution in both ESI modes. In 
contrast, the chemical profile of the metabolic families had 
different classifications between ESI+ and ESI-. 

Compounds annotated by the RP-C18 column were 
classified into 28 subclasses in the ESI+ and 21 in the 
ESI-. The subclasses fatty acids and conjugates; amino 
acids, peptides, and analogs; and flavonoids were among 
the subclasses with the highest number of annotated 
metabolites in both ionization modes (Figures 4c and 4d). 

A total of 14 subclasses were categorized by the 
lipid analysis in ESI+ (Figure 4c) including ceramides; 
fatty amides; diradylglycerols; and triradylglycerols as 
the most significant: 25, 23, 13, 9, respectively. In the 
ESI- (Figure 4d), of a total of 13 subclasses, ceramides; 
neutral glycosphingolipids; bile acids; and fatty acids and 
conjugates were the major subclasses: 28, 10, 9 and 7, 
respectively. With exception of the ceramides subclass, the 
most abundant classes presented different classifications 
between ESI+ and ESI-. The same pattern is shown in the 
analysis of the polar compounds. This fact demonstrates 
the importance of the integrative analysis using both ESI 
modes for a comprehensive mapping of metabolites from 
fecal samples. The complete list of fecal metabolites 
putatively identified and its distribution can be found in SI 
section (Tables S4-S6), indicating the compounds classified 
into chemical families and the parameters supporting the 
identification.

The presence of a variety of endogenous compounds, 
such as bile acids, amino acids, fatty acids, vitamins, and 
carbohydrates in fecal samples has already been described 

by several authors48,49 and are in agreement with our 
findings. Furthermore, according to Trošt et al.,50 amino 
acids, fatty acids, carboxylic acids, benzene compounds 
and ceramides, triacylglycerides and diacylglycerides 
are classes of compounds found in human fecal samples. 
Choy et al.51 have described hydroxylated phenolic acid 
metabolites in feces, while Schoeler et al.52 have described 
lithocholic acid and deoxycholic acid as secondary bile 
acids produced by the gut microbiome via primary bile 
acids modification. 

Molecular networking 

A visual representation of the degree of chemical 
similarity among all MS/MS spectra datasets from 
HILIC-amide, RP-C18 and CSH-C18 were evaluated using 
molecular networking (MN) approach aiming to assess 
the chemical space of the metabolites.53,54 The clusters 
from the ESI+ network is shown in Figure 5 (the complete 
networking is presented in Figure S1, SI section). Each 
node represents molecules that were colored according 
to the chromatographic column used (red: HILIC-amide, 
blue: RP-C18, and green: CSH-C18). Increasing the distance 
between the nodes correlates with the chemical dissimilarity 
between them (e.g., a and b vs. c, Figure 5). Compounds 
annotated through the input library were shaped like 
arrowheads, while circles indicate unknowns. This 
networking analysis can be used to extend the possibility 
of propagation of the structural annotation of unknown 
features connected to database matched features. However, 
the purpose of the MN analysis described here was to show 
the complexity of fecal samples in terms of metabolites and 
the importance of using complementary extractions and 
separation mechanisms rather than to deeply explore each 
detected feature in the full networks view. 

The chemical features of each analytical strategy 
analyzed as ensembles determined the characteristic of 
the chemical space. Analyzing the chemical family’s 
networks, not unexpectedly, it was shown that several 
nodes for common features from the different datasets 
present a high degree of similarity. This is noted by the 
different connections between the nodes and the number 
of edges involving a node and its immediate neighbors, 
such as for cholic acid (area 1, d, Figure 5). High network 
assortativity is an attribute given to the features with a 
high degree of similarity, emerging multiples correlations 
between the connected nodes.54 These features can be seen 
in areas 1, 3 and 4, (Figure 5) and among the annotated 
bile acids, deoxycholic acid, 3-ketopetromyzonol and 
12-ketodeoxycholic acid (e, f, and g, Figure 5) emerged 
from three different chromatographic columns. This finding 
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shows the relevance of the analytical integration strategies 
for better recognition of the chemical space. Other sterol 
lipids (ST) annotated exclusively by the data acquired from 
the CSH-C18 column can be observed in area 4 of Figure 5. 
The multiple correlations and high network assortativity 
between the ST metabolite nodes (24:1; O4/16:0), ST 
(24:1; O4/18:1) and ST (24:1; O4/24:1) demonstrate 
the high degree of similarity between these compounds. 
Nevertheless, it is possible to observe in areas 2 and 5 of 
Figure 5 that many features were not connected across 
the different datasets, as a hub with low assortativity. This 

also highlights the importance of such a pipeline proposed 
here to cover a broad range of metabolites with distinct 
chemical properties.

Combined methods to enhance the metabolome coverage 

To further understand how the proposed pipeline 
expanded the metabolites coverage connecting the three 
chromatographic methods (HILIC-amide, RP-C18 and 
CSH-C18) and different ESI polarities compared to a 
single chromatographic method, it was performed a 

Figure 4. Chemical classification (a-f) and Venn diagram (g and h) of metabolites annotated in dog fecal samples by LC-HRMS/MS.
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hybrid analysis using a Venn diagram (Figures 4g and 
4h). A total of 360 unique metabolites were annotated by  
LC‑HRMS/MS, 220 for ESI+ and 140 for ESI- analyses. 
High complementarity was found in the combination of 
the three methods and polarity modes. The HILIC method 
provided 60 unique polar metabolites and the RP-C18 and 
CSH-C18 methods contributed with 136 and 164 metabolites, 
respectively, adding compounds of medium polarity and 
lipids to the chemical space. Only 24 metabolites were in 
common from one or two of the methods, corresponding 
mostly to classes of amino acids, peptides, and bile acids, 
which presented amphipathic properties. 

A large number of metabolites were preferentially 
ionized in the ESI+, such as compounds from the 
classes of carbonyl compounds, fatty acid esters, and 
glycosyldiradylglycerols. Compounds classes, such as sugar 
acids, pyrimidine nucleosides, and phosphosphingolipids 
preferentially ionized in ESI-. Additionally, 32 compounds, 
that is, 8.5% of the total annotated metabolites were 
detected in both polarities, such as cholic acid (RP‑C18), 
hypoxanthine (HILIC-amide) and ceramide (Cer) 
18:0;3O/20:0;(2OH) (CSH-C18). Overall, this strategy of 
combining methods demonstrated an impressive increase 
in metabolites assignment, underlining the importance 
to develop a pipeline analyzing the samples using both 
ionization polarities and different chromatographic 
separations to guarantee the expansion of metabolites 
coverage in an untargeted methodology.

Some approaches can be used to translate the assigned 
metabolites into a biochemically relevant context 
using pathway analysis. This facilitates metabolite data 
visualization and interpretation through the knowledge of 

the metabolic pathways via biochemical differences within 
investigated conditions (e.g., control vs. disease).55 The 
application of these approaches in the context of this project 
aims to comprehend the scope of the multiple analytical 
conditions and total annotated metabolites within common 
biochemical pathways. 

Metabolites from six annotated datasets (HILIC-amide, 
RP-C18 and CSH-C18 in both ESI+ and ESI-) were subjected 
to pathway analysis using MetaboAnalyst 4.036 and the 
results are shown in Figure 6 and Table 1. Considering the 
pathway impact score, calculated based on the number of 
matched metabolites from datasets to a particular metabolic 
pathway (threshold > 0.1), the top pathways (p  <  0.05) 
were seen as linoleic acid metabolism; sphingolipid 
metabolism; histidine metabolism; phenylalanine, tyrosine 
and tryptophan biosynthesis and phenylalanine metabolism. 
The metabolites identified in each pathway are highlighted 
in Figure 6. 

Several metabolite disorders can be related to metabolic 
diseases.56,57 Deregulation in the linoleic acid metabolism, 
the pathway with the greatest impact value (1), have been 
reported from various inborn errors of metabolism.58,59 This 
metabolic pathway act as precursors for the endogenous 
synthesis of longer-chain fatty acids such as eicosapentaenoic 
acid and docosahexaenoic acid after the metabolization of 
food-derived linoleic acid by the gut microorganism.59 This 
process is essential for the maintenance of immune functions, 
brain activity and visual stimuli.60 

Key metabolites from linoleic acid metabolism from 
different chromatographic columns and ESI modes were 

Figure 5. Representative chemical space network from the LC-HRMS/
MS molecular networking analysis using a HILIC-amide, RP-C18 and 
CSH-C18 columns. Nodes were colored according to the chromatographic 
columns and shaped as arrowheads for annotated and circles for unknown 
compounds. The letters a to g represents the comparison of the numbers 
of connections between the nodes. The numbers 1 to 5 represent areas 
with different degrees of similarity between the nodes.

Figure 6. Differentially regulated metabolic pathway analysis from the 
annotated metabolites of the LC-HRMS analysis in both ESI+ and ESI- 
using a HILIC-amide, RP-C18 and CSH-C18 columns. 
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annotated: linoleic acid from RP-C18 (ESI+ and ESI-), 
phosphatidylcholine (16:0/16:0) from CSH-C18 (ESI+) 
analyses, 9(10)-EpOME (9,10-epoxyoctadecenoic acid) 
from HILIC-amide (ESI+), and 12(13)-EpOME from 
RP‑C18 (ESI+). Evaluation on changes in these metabolites 
are often correlated with the production of fatty acids and 
the maintenance of homeostasis.61

These observations can be considered as a proof-
of-concept of a successful application of combined 
analytical strategies, described here as a pipeline for fecal 
metabolome coverage by LC-HRMS, to comprehensively 
annotate the metabolome of fecal samples in untargeted 
metabolomics within the context of systems biology studies 
of metabolism. 

Conclusions

We have established a pipeline for a comprehensive 
analysis of the fecal metabolome using LC-HRMS/MS. 
For this, a combined strategy using a monophasic and a 
biphasic extraction and the chromatographic separation 
of compounds in columns with different selectivity 
(HILIC‑amide, CSH-C18 and RP-C18) were applied, 
allowing the analysis of high polar to weakly and nonpolar 
metabolites by LC-HRMS. This approach resulted in the 
annotation of 376 compounds from 70 different chemical 
classes. 

The molecular networking analysis highlighted the 
complexity of the fecal sample chemical space and the 
chemical similarity of annotated compounds from the 
different LC-HRMS analyses. Whereas the results from the 
pathway analysis demonstrated the importance of a high 
number of annotated compounds to increase the pathway 
impact score.

This proof-of-concept study using a pool of dog 
feces can be used to expand our understanding of the 
fecal metabolome, its role in the host-gut microbiome 
relationship, and the impact of the environment, diet, and 
disease in this metabolome. This can ultimately lead to 
better diagnostic assays using the fecal matter. 

Supplementary Information

The supplementary information (parameters used for 
processing the MS data using the MS-Dial software, the 
complete molecular network constructed with datasets from 
HILIC-amide, RP-C18 and CSH-C18) are available free of 
charge at http://jbcs.sbq.org.br as PDF file.

The complete list of fecal metabolites putatively 
identified and its distribution in subclasses are available 
free of charge at http://jbcs.sbq.org.br as PDF file.
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Table 1. Correlation between the significant pathway analysis results with the matched metabolites

Identification Pathway Matched metabolites Impact

1 linoleic acid metabolism linoleate; phosphatidylcholine; 9(10)-EpOME; 12(13)-EpOME 1

2 sphingolipid metabolism
sphinganine; sphingomyelin; sphingosine; N-acylsphingosine; 

glucosylceramide; phytosphingosine
0.51

3 histidine metabolism
L-glutamate, urocanate; L-histidine;  

N(pros)-methyl-L-histidine
0.34

4 phenylalanine, tyrosine and tryptophan biosynthesis L-phenylalanine; L-tyrosine 1

5 phenylalanine metabolism phenylacetaldehyde; L-phenylalanine; L-tyrosine 0.5

9(10)-EpOME: 9,10-epoxyoctadecenoic acid.

http://jbcs.sbq.org.br/
http://jbcs.sbq.org.br/
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