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We study structural and spectral properties of finite classical systems of N two-dimensional charged particles,
confined by a parabolic potential ∝ rn, and interacting via inverse power-law potentials ∝ 1/rn′

. Molecular
dynamics simulations are performed for different cluster sizes (N = 30 to 230) and n, n′ values 1, 2, 3 and 10.
We also analyze the phase transition from a ring-like configuration to a Wigner structure as a function of param-
eter n′ and anisotropy. We compare our results with Monte Carlo simulations of Bedanov and Peeters, obtaining
good agreement. In addition, we determine the Voronoi structure of the cluster. Our work complements that of
Cândido, Rino and Studart, who analyzed confinement in a screened parabolic potential.

1 Introduction

The two-dimensional classical atom is a model system in
which N equally charged classical particles move in a plane,
and are kept together by a parabolic potential. For each
value of N we have at least one stable configuration. Exam-
ples of 2D Coulomb clusters are electrons on the surface of
liquid helium [1] and electrons in quantum dots [2]. After
the discovery of Wigner crystallization [3] of electrons on
the surface of liquid helium [4] (a two-dimensional system),
there has been considerable theoretical and experimental
progress in the study of the mesoscopic system consisting of
a finite number of charged particles, which are laterally con-
fined by a parabolic potential and interact each other through
a potential. This system is the classical analog of the well
known quantum dot problem, if the interaction potential is
the Coulomb one. In a finite system there is a competition
between the bulk triangular lattice and the circular confine-
ment potential that tries to force the particles into a ringlike
configuration. These quantum dots are atomlike structures
that have interesting optical properties and may be of inter-
est for single-electron devices [5]. These systems and their
configurations have been observed experimentally [6], and
are important in solid-state physics [10], plasma physics [7]
as well as in atomic physics [8]. Bolton and Rössler [9]
implemented Monte Carlo simulation of isotropic parabolic
confinement, to investigate the minimum energies and spa-
tial distributions for small numbers (1-40) of particles.

Ringlike configurations in two-dimensional clusters
were systematically investigated by Bedanov and Peeters
[11] using Monte Carlo method and a Mendeleev-type of ta-
ble for these classical atomlike structures was constructed,
for up to 230 particles. The spectral properties of the
ground-state configurations were studied by Schweigert and
Peeters [12] and generalized to screened Coulomb interac-

tions by Cândido et al. [13] and to logarithmic interac-
tions [14, 15, 16]. In particular, Partoens and Peeters [15]
compared the values obtained using Monte Carlo simula-
tion with the Thomson model for a two-dimensional system
constituted for N classical particles confined by potentials
∝ rn.

Recently, Kong et al. [5] pointed out the importance
and treatment of metastable states in numerical simulations.
They also investigated the stability of the ground-state con-
figurations against the functional form of the confinement
potential and the exact form of the interparticle interaction
potential.

In this work, we study structural and spectral properties
of finite classical systems of N charged two-dimensional
particles, confined by a parabolic potential interacting by
inverse power potentials. The molecular dynamics simu-
lation was performed to simulate clusters containing about
230 particles.

This paper is organized as follows. In Section 2, we de-
scribed the model and introduced the dimensionless formu-
lation. In Section 3, we presented our results, calculating the
energy and the space arrangement of particles. Finally, our
conclusions were performed out in last section.

2 Model and Method

We study a 2D system consisting of a finite number N iden-
tical classical particles, with dielectric constant ε, confined
by means of a potential of the form

Vc =
1
2
mω2

N∑
i=1

(
x2

i + αy2
i

)n/2
, (1)

where m is the particle mass, (xi, yi) are the coordinates
of the particles, whose vectorial position is ri, ω is the fre-
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quency of the confinement potential, α is the anisotropic pa-
rameter in the direction of the axis y. The particles interact
through the potential

Vint =
q2

ε

N∑
i>j

1
|ri − rj|n′

(2)

or

V ′
int = −q2

ε

N∑
i>j

ln |ri − rj| , (3)

where q is the charge of each particle and ε is dielectric
constant of the medium.

The total potential energy is

V =
1
2
mω2

N∑
i=1

(
x2

i + αy2
i

)n/2
+

q2

ε

N∑
i>j

1
|ri − rj|n′

. (4)

Eq. (4) can be written in a dimensionless form [15], ex-
pressing the coordinates, the energy, a temperature and the
force in terms of the units r0, E0, T0 e F0, respectively,
given by

r0 =
[

q2

γε

]1/(n+n′)

(5)

E0 =
[
q2

ε

]n/(n+n′)

γn′/(n+n′) (6)

F0 =
[
q2

ε

](n+1)/(n+n′)

γ(n′+1)/(n+n′) (7)

T0 =
[
q2

ε

]n/(n+n′)

γn′/(n+n′)k−1
B , (8)

where γ = 1
2mω2. In terms of these dimensionless units,

the Hamiltonian of Eq. (4) becomes

V =
N∑

i=1

(
x2

i + αy2
i

)n/2
+

N∑
i>j

1
|ri − rj|n′

(9)

or

V =
N∑

i=1

r2
i −

N∑
i>j

ln |ri − rj| . (10)

This potential has also been studied for Partoens and Peeters
[15], using Monte Carlo methods, as previously mentioned.

Thus, the energy involves the following parameters: the
power n of the confinement potential, the power n′ of the
interaction potential, number N of particles and α. The
Hamiltonian of Eq. (9) was studied by Partoens and Peeters
[15], who generalized the Thomson model to investigate the
effect of different interaction potential between particles on
the ground-state configurations. They compared their results
with numerical Monte Carlo simulations. For n = 2 and
n′ = 1, the N particles system is under a Coulomb poten-
tial and are confined by a parabolic potential. This case was
studied by Bedanov and Peeters [11] using the Monte Carlo
method, with α = 1. In agreement with Ref. [11], the typi-
cal values given by the Eqs. (5) - (8) are

1. For electrons above liquid helium (q = −e, ε = 1,
m = me) with confinament potential such that �ω =
0.1 meV: r0 = 2800 Å, E0 = 5.1 meV, T0 = 60 K e
F0 = 29.4 × 10−16 N.

2. For electrons in a GaAs heterostructure, with a typ-
ical energy of quantum dot confinement �ω = 1
meV: r0 = 630 Å, E0 = 1.7 meV, T0 = 20 K e
F0 = 6.32 × 10−16 N.

The Molecular Dynamics Simulation (MD) is a method
to solve classical Newton’s equations of movement of a par-
ticle system. Early on, Alder and Wainwright [17] applied it
to study the hard sphere fluid. Afterwards, many authors an-
alyzed Lennard-Jones fluids using this method [18, 19]. In
this work, we use the predictor corrector algorithm to solve
the equations of motion for the Hamiltonian of Eq. (9). For
references on basic MD implementation see [20].

3 Results

In Table I and II, we presented the minimum state config-
uration and energy E/N for parabolic confinement and
a logarithmic interaction between particles, as well as an
interaction proportional to |ri − rj|−1

, |ri − rj|−2 and
|ri − rj|−3. The last represents an original contribution
of this work. For simplicity, we adopt the notation r =
|ri − rj| . For the logarithmic potential, for N of 2 to 6 the
particle arrangement is a ring; for N = 7 to N = 16 the
particles form two concentric rings; for N = 17 to N = 33,
three concentric rings. For N between 34 and 51 we ob-
tain four rings. Our results are in a good agreement with
those obtained by Partoens and Peeters [15]. Despite this,
for more than one ring, our results for the maximum number
of particles that are distributed in a certain number of rings
in general differ from those of [15]. Perhaps this discrep-
ancy is a consequence of the approach used in the Thomson
model. For N > 6, the system is unstable if we impose only
one ring, because the excess charges are placed in the cen-
ter of the ring. Considering the confinement potential with
n = 2 and α = 1, and the interaction potential with n

′
=

1, 2 and 3, in Eq. (9), we found for a repulsive Coulomb
interaction (n′ = 1) a single ring for N varying from 2 to 5;
two rings for N varying from 6 to 15; three rings for N =
16 to N = 31; and four rings for N = 32 to N = 51.

We compared our results with those obtained with the
Thomson model [15] shown in Table III, observing a good
agreement. We also compared our results with obtained with
the Monte Carlo method (MC) for Bedanov e Peerters [11].
The same number of rings are found with DM and MC, be-
cause both methods have a good precision. The number of
charges per ring is also generally in agreement. Only for
N = 21, 29 and 51 the rings do not have the same number
of charges. For an interaction proportional to the square of
the distance and N varying of 2 to 5 we obtained only one
ring; for N varying of 6 to 15 two rings; for N = 16 the
N = 29 three rings; for N = 30 to 48 four
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TABLE I. Ground-state configurations and energies for parabolic confinement and logarithmic or power-law potentials, proportional to r,
r2 and r3 interaction between the particles.

ln r 1/r r−2 r−3

N N1, N2, ... E/N N1, N2, ... E/N N1, N2, ... E/N N1, N2, ... E/N

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

2 0.250000
3 0.297267
4 0.272614
5 0.195281
6 0.075191
1, 6 -0.107321
1, 7 -0.314343
1, 8 -0.546056
2, 8 -0.810041
3, 8 -1.099393
3, 9 -1.414881
4, 9 -1.747393
4, 10 -2.101995
4, 11 -2.470745
5, 11 -2.858568
1, 5, 11 -3.259592
1, 6, 11 -3.678162
1, 6, 12 -4.111396
1, 6, 13 -4.555099
1, 7, 13 -5.012836
1, 7, 14 -5.480377
1, 8, 14 -5.959334
2, 8, 14 -6.450845
3, 8, 14 -6.951869
3, 9, 14 -7.463725

2 0.750000
3 1.310371
4 1.835445
5 2.338445
1, 5 2.804556
1, 6 3.238974
1, 7 3.668904
2, 7 4.088112
2, 8 4.484942
3, 8 4.864668
3, 9 5.238936
4, 9 5.601138
4, 10 5.958983
5, 10 6.307582
1, 5, 10 6.649903
1, 6, 10 6.982902
1, 6, 11 7.308140
1, 6, 12 7.631929
1, 7, 12 7.949613
2, 7, 12 8.266450
2, 8, 12 8.574177
2, 8, 13 8.877580
3, 8, 13 9.175904
3, 9, 13 9.470792
3, 9, 14 9.762724

2 0.707106
3 1.154701
4 1.581138
5 2.000000
1, 5 2.357023
1, 6 2.687841
1, 7 3.031089
2, 7 3.359067
3, 7 3.664240
3, 8 3.939216
3, 9 4.222073
4, 9 4.486358
5, 9 4.756484
5, 10 5.011766
1, 5, 10 5.256733
1, 6, 10 5.495558
1, 6, 11 5.728049
1, 6, 12 5.964583
1, 7, 12 6.193368
2, 7, 12 6.422147
2, 8, 12 6.639369
3, 8, 12 6.853577
3, 9, 12 7.062121
3, 9, 13 7.265918
4, 9, 13 7.471314

2 0.646023
3 1.033940
4 1.380219
5 1.757129
1, 5 2.048295
1, 6 2.325912
1, 7 2.635424
2, 7 2.923727
3, 7 3.190119
3, 8 3.419723
3, 9 3.666648
4, 9 3.894935
5, 9 4.135425
5, 10 4.359993
1, 5, 10 4.565577
1, 6, 10 4.772718
1, 6, 11 4.972574
1, 6, 12 5.180093
1, 7, 12 5.388325
2, 7, 12 5.590479
2, 8, 12 5.779691
3, 8, 12 5.968660
3, 9, 12 6.149618
3, 9, 13 6.325612
3, 9, 14 6.508921

TABLE II. Ground-state configurations and energies for parabolic confinement and logarithmic and power-law interactions, proportional to
r, r2 and r3.
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TABLE III. Comparison between results obtained from molecular dynamics and from the Thomson model.

ri r2
i r3

i r10
i

N MD TM MD TM MD TM MD TM
3 3 3 3 3 3 3 3 3
4 1, 3 1, 3 4 4 4 4 4 4
5 1, 4 1, 4 5 5 5 5 5 5
6 1, 5 1, 5 1, 5 1, 5 6 6 6 6
7 1, 6 1, 6 1, 6 1, 6 1, 6 7 7 7
8 1, 7 2, 6 1, 7 1, 7 1, 7 1, 7 8 8
9 1, 8 2, 7 2, 7 2, 7 1, 8 1, 8 9 9
10 1, 4, 5 2, 9 2, 8 2, 8 2, 8 1, 9 1, 9 10
11 1, 3, 7 3, 8 3, 8 2, 9 2, 9 2, 9 1, 10 11
12 1, 4, 7 3, 9 3, 9 3, 9 3, 9 2, 10 1, 11 12
13 1, 4, 8 1, 3, 9 4, 9 4, 9 3, 10 3, 10 1, 12 13
14 1, 5, 8 1, 4, 9 4, 10 4, 10 4, 10 4, 10 2, 12 14
15 1, 5, 9 1, 4, 10 5, 10 5, 10 4, 11 4, 11 3, 12 15
16 1, 5, 10 1, 5, 10 1, 5, 10 5, 11 5, 11 5, 11 3, 13 16
17 1, 6, 10 1, 5, 11 1, 6, 10 1, 5, 11 5, 12 5, 12 3, 14 17
18 1, 7, 10 1, 6, 11 1, 6, 11 1, 6, 11 6, 12 6, 12 4, 14 1, 17
19 1, 8, 10 2, 6, 11 1, 6, 12 1, 6, 12 1, 6, 12 7, 12 4, 15 2, 17
20 1, 8, 11 2, 7, 11 1, 7, 12 1, 7, 12 1, 6, 13 7, 13 4, 16 3, 17
21 1, 4, 8, 8 2, 7, 12 2, 7, 12 2, 7, 12 1, 7, 13 1, 7, 13 5, 16 4, 17
22 1, 4, 8, 9 2, 8, 12 2, 8, 12 2, 7, 13 1, 7, 14 1, 8, 13 5, 17 4, 18
23 1, 4, 8, 10 3, 8, 12 2, 8, 13 2, 8, 13 1, 8, 14 1, 9, 13 1, 5, 17 5, 18
24 1, 4, 8, 11 3, 8, 13 3, 8, 13 2, 9, 13 2, 8, 14 1, 9, 14 1, 6, 17 6, 18

rings and for N = 49 to 51 five rings. We also observed
good agreement with the results of Partoens and Peeters [15]
for systems with less than 18 particles. The discrepancies
for larger numbers of particles occur because to stabilize the
system in Thomson model, the internal particles are con-
sidered located in the external orbit center. Koulakov and
Shklovskii [21] showed for N large, considering Coulomb
interaction, the energy is proportional to the particle num-
ber as E ∼ N5/3. This behavior is plotted in Fig. 1 for all
potentials previously mentioned.

Figure 1. Energy E as a function of particle number N , for
isotropic parabolic confinement potential and interaction potentials

proportional to: -ln r and r−n
′
, with n

′
= 1, 2 and 3.

Fixing the kind of interaction (Coulomb), we present in
Table IV the distribution of charges and respective energy of
the ground-state to several confinement potential. In Fig. 2
we show the configurations, with N = 13 and n assuming

the values of n = 1, 2, 3, 7, 10 and 11 in confinement po-
tential. As n increases the particles shift to external rings,
but the diameter decreases.
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Figure 2. Evolution of the ground-state configurations for a clus-
ter of N = 13 particles for different values of the confinement
potential parameter n = 1, 2, 3, 7, 10 and 11.
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TABLE IV. Comparison between ground-state configurations and energies.

N ri E/N

3 3 0.519611
4 1, 3 1.883897
5 1, 4 2.238348
6 1, 5 2.569255
7 1, 6 5.882525
8 1, 7 1.175864
9 1, 8 3.439630
10 1, 4, 5 3.688346
11 1, 3, 7 3.919288
12 1, 4, 7 4.138402
13 1, 4, 8 4.348932
14 1, 5, 8 4.553242
15 1, 5, 9 4.750637
16 1, 5, 10 4.943978
17 1, 6, 10 5.130189
18 1, 7, 10 5.312896
19 1, 8, 10 5.489154
20 1, 8, 11 5.658290
21 1, 4, 8, 8 5.823420
22 1, 4, 8, 9 5.985276
23 1, 4, 8, 10 6.142535
24 1, 4, 8, 11 6.295999

r2
i E/N

3 1.310371
4 1.835445
5 2.338445
1, 5 2.804556
1, 6 3.238974
1, 7 3.668904
2, 7 4.088112
2, 8 4.484942
3, 8 4.864668
3, 9 5.238936
4, 9 5.601138
4, 10 5.958983
5, 10 6.307582
1, 5, 10 6.649903
1, 6, 10 6.982902
1, 6, 11 7.308140
1, 6, 12 7.631929
1, 7, 12 7.949613
2, 7, 12 8.266450
2, 8, 12 8.574177
2, 8, 13 8.877580
3, 8, 13 9.175904

r3
i E/N

3 1.162247
4 1.698006
5 2.229837
6 2.757943
1, 6 3.279494
1, 7 3.763418
1, 8 4.249335
2, 8 4.733908
2, 9 5.197296
3, 9 5.650131
3, 10 6.097881
4, 10 6.536894
4, 11 6.972192
5, 11 7.401072
5, 12 7.826542
6, 12 8.247335
1, 6, 12 8.660476
1, 6, 13 9.069334
1, 7, 13 9.471366
1, 7, 14 9.873136
1, 8, 13 10.271599
2, 8, 14 10.668143

r10
i E/N

3 0.823054
4 1.303145
5 1.813126
6 2.345965
7 2.897092
8 3.463335
9 4.042382
1, 9 4.620593
1, 10 5.191859
1, 11 5.774198
1, 12 6.366374
2, 12 6.964201
3, 12 7.568404
3, 13 8.143586
3, 14 8.727266
4, 14 9.323835
4, 15 9.906046
4, 16 10.495631
5, 16 11.087036
5, 17 11.675386
1, 5, 17 12.273630
1, 6, 17 12.860516

Figure 3. Ground-state configurations and Voronoi structures for
230 particles, confinement potential proportional (a) r2 and (b) r5,
and Coulomb interaction.
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Figure 4. Configuration of N = 50 particles for several values of
the anisotropy parameter α: (a) 1.0, (b) 2.3, (c) 3.7, (d) 7.0, (e)
16.0 and (f) 80.0.
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In Fig. 3, we presented the Voronoi structure of the
particles for the parabolic confinement potential and the
Coulomb interaction among the particles with n = 2 (a)
and n = 5 (b). We observed that the internal rings form a
Wigner structure with hexagonal symmetry for n = 2. How-
ever, for n = 5, the particles tend to migrate to the external
layers, breaking the hexagonal symmetry in the central area
of the distribution. We also analyzed the anisotropy in the
y direction, as presented in Fig. 4. As α increases, the ring
configurations tend to elliptical ones.

4 Final Remarks

We present results of numerical simulation (MD) of con-
fined interacting particles, in clusters of 30 to 230 particles.
The energies and configurations obtained are in agreement
with literature values. The importance of these studies lies
in their reduced complexity in two-dimensional systems, in
relation to three-dimensional ones.

We find that the particle arrangement is ring-like in the
ground state. These configuration vary with anisotropy, be-
coming increasingly elliptical. The energy could be fitted
as N5/3. This study highlights the possibility to analyze
the energy variation with particle number, extensivity, phase
transitions and critical points, taking to account metastable
states and field interactions.
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