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Electron cyclotron emission due to electrons described by a particular distribution function has been studied.
The latter presents an extended tail generated by the interaction of the Lower Hybrid wave with the plasma as
compared to the Maxwellian distribution function. For this purpose a new code has been developed which cal-
culates for an arbitrary distribution function the intensity of radiation arriving at the plasma edge, the emission
profile (as a function of position) and the optical depth (as a function of frequency) using the full dielectric
tensor for a magnetized plasma. The electron distribution function is obtained by solving the Fokker-Planck
equation in the frame of the quasilinear theory using a slab model. Results obtained for TCABR-like parame-
ters show changes in the emission localized at positions where electron distribution function has been modified
by the waves. Main parameter governing the changes in the electron cyclotron emission is the wave power.
Changes in the plasma temperature and density profiles do not alter the emission profiles substantially. Recons-
tructed electron temperature profile has been obtained from the code radiation emission simulation, showing
good agreement with the imposed temperature profile. The present results also showed that the changes in the
emission profile in the region where the Lower Hybrid wave deposes its energy as compared with the emission
profile of the plasma with Maxwellian distribution function are not so strong.

1 Introduction

Radiation emitted by electrons gyrating around the magnetic
field lines (ECE) at the electron cyclotron frequency and its
harmonics is an important diagnostic tool in plasmas confi-
ned magnetically, mainly to determine the plasma tempera-
ture profile. This method takes advantage of spatial depen-
dence of the cyclotron frequency in a tokamak plasma which
is determined mainly by the dependence of the toroidal mag-
netic field on position. For tokamaks the toroidal magnetic
field decays inversely with the major radius

(
B0 ∝ 1

R

)
. For

such devices the frequency of the emitted radiation can be
related directly to spacial position [2]. This hypothesis is
actually true only for Maxwellian plasmas. When there is a
non-Maxwellian distribution function we have to investigate
if we can still relate the emission observed at plasma edge in
a given frequency with only one position inside the plasma.

This paper is dedicated to the study of the intensity of
ECE at the plasma edge as changed by the presence of the
Lower Hybrid waves (LH) in comparison with the case in
which the electron distribution function is the Maxwellian
one. In contrast to a previous work on this subject [3], where
cold expressions for both the dielectric tensor and disper-
sion relation were used for the evaluation of the emission
coefficient, we make use of the hot expressions for these
quantities. LH waves are purely electrostatic modes and can
propagate into the plasma to interact with electrons through
Landau damp mechanism, transferring parallel momentum
to the electrons belonging to the electron distribution tail.
Throughout this paper the expressionsparallel andperpen-
dicular refer, respectively, to theB0 direction (B0 = B0ez)
and the direction perpendicular to it.

The paper is organized as follows. Section 2 discusses
the equations which are employed and the approximations
made. Section 3 shows the results for ECE found by nu-
merical solution of the Fokker-Planck and energy transport
equations, as a function of several parameters: LH injected
power, plasma temperature and plasma density. Section 4
presents our main conclusions.

2 Numerical scheme and plasma mo-
del

For the calculation of the emission coefficient of EC waves
we need to know the dielectric tensor←→ε and the microsco-
pic current correlation tensor

←→
G . For the case of wave emis-

sion perpendicular to the toroidal magnetic field considered
in this paper, the emission coefficient takes a very simple
form, since tensor componentsε13, ε23, G13 andG23 are
negligible. Thus, the emission coefficient for the extraordi-
nary mode is given by [3, 5]

βx =
4π2ω2

c3n

∣∣∣∣1−
iε12

ε11

∣∣∣∣
2

G11

whereω is the wave frequency;n is the refraction index for
the extraordinary mode (here taken as being the real part of
the complex refractive index, evaluated by solving the ap-
propriate dispersion relation);εij are the components of the
hot dielectric tensor andG11is given by
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G11 =
1

νl−2
e0

ωTe

(2π)4
πX

22l [(l − 1)!]2
×

[
n

y1

]2(l−1)

u2l+1
∗

∫ 1

−1

dµ(1− µ2)f∗. (1)

The quantities appearing in the equation 1 are
f(u, µ, x, τ), the electron distribution function (τ is the time
normalized to the collision time at the center of the slab);u
is the electron momentum normalized to the central ther-
mal momentum atτ = 0; µ = cos θ is the cosine of the

pitch angleθ; γ ≡
[
1 + u2

νe0

]1/2

is the relativistic factor

(νe0 = mc2/Te0); ωc the electron cyclotron frequency,l is
the harmonic number,X ≡ ω2

p/ω2 (whereωp is the elec-
tron plasma frequency);Te0 is the central plasma tempe-

rature (in keV);u∗ =
[
νe0(y2

l − 1)
]1/2

is the resonating
speed of electrons that can emit EC waves at frequencyω
andyl = lωc/ω.

The dielectric tensor can be written as

←→ε = ←→ε ′ + i←→ε ′′

where the first and second terms in the right hand side de-
note, respectively, the Hermitian and anti-Hermitian parts of
the hot dielectric tensor. For the evaluation of the Hermitian
part we make use of a relativistic Maxwellian distribution
function while for the evaluation of the anti-Hermitian part,
considering a harmonic numberl, we make use of the fol-
lowing expression (valid forn‖ = 0)

ε”
ij,l = −2π2l2

Xνe0γ∗
u∗

∫ 1

−1

dµ
(
1− µ2

)

×
[
u2

ρ2
Π∗ilΠjl(µ∂u − µ∂µ)f

]

u=u∗

. (2)

Hereρ = n⊥u⊥
y1ν

1/2
e0

, wheren⊥ is the real part of the perpen-

dicular component of the complex refractive indexn. Other
quantities appearing in the equation 2 are

Π1,l = Jl (ρ) =
(

1
2

)l
ρl

l!
,

Π2,l = −i
ρJl (ρ)

l
= −iΠ1,l

Π3,l =
n⊥
yl

µu∗
ν

1/2
e0

Jl (ρ) =
n⊥
yl

µu∗
ν

1/2
e0

Π1,l

These expressions are valid in the small Larmor radius ap-
proximation. By making use of these expressions the emis-
sion coefficient for perpendicular propagation to the toroidal
magnetic field for the extraordinary mode can be written in
the following way

βx =
1

22l+2

(ω

c

)3 XTe

πnνl−2
e0

u2l+1
∗

[(l − 1)!]2

[
n

y1

]2(l−1)

×
∣∣∣∣1−

iε12

ε11
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2 ∫ 1

−1

dµ(1− µ2)lf∗ (3)

In order to simulate the tokamak plasma we make use of
a semi-infinite slab model as shown in Fig. 1.

D xX

Y I ( )0 w I( )w

Btoroidal

Figure 1. Slab model.

We consider the slab having width4x in the x direc-
tion and infinite inz direction (magnetic field direction). To
calculate the spectral intensity at the plasma edge the slab
is divided into small pieces each one having width4xj in
thex direction ([1]). Within such small pieces all parame-
ters are assumed to be constant. For a given frequency the
transport equation gives the spectral intensity emitted by the
plasma at each small slab border. Using the values of the
emitted spectral intensity(βx) and the absorption coeffici-
ent for each small slab(α), the cumulative spectral intensity
of the radiation transmitted through the plasma(I(ω)) can
be calculated by (nr being the real part of the refractive in-
dex)

I(ω) = I0(ω)e−α∆x +
βx

αn2
r

[
1− e−α∆x

]
(4)

We start with a Maxwellian distribution function and, as
the LH waves interact with the plasma, a tail in the electron
distribution function is generated. The tail appears as a re-
sult of the competition between the diffusion process in the
momentum space due to the LH waves and the collisions,
until the steady state is reached. All results shown involve
numerical simulations for the TCABR Tokamak [4] whose
main parameters are: major radius (R0) 61.5 cm; minor ra-
dius (a) 18.0 cm; central toroidal magnetic induction (B0

) 12000 Gauss, central electron density (ne0) 1.5 up to2.0
×1013cm−3 and central electron temperature (Te0) 0.5 up to
1.5 keV. Density and temperature profiles are given by

ne = (ne0 − nea)
(

1− x2

a2

)
+ nea

Te = (Te0 − Tea)
[
1− x2

a2

]2

+ Tea. (5)

In these expressionsnea is the edge electron density (1.5 up
to the2.0 ×1011cm−3) andTea is the edge electron tempe-
rature (0.5×10−2 up to1.5×10−2 keV). Fig. 2 shows both
profiles for a particular value of the central temperature and
central density.
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Figure 2.a Plasma Density profile;b Plasma temperature profile.

The LH wave power runs from0.1 up to 0.3 MW. For
the parameters chosen the LH waves will resonate with elec-
trons belonging to the tail of the electron distribution in the
region2.5 < u‖ < 5.5.

To evaluate the spectral intensity arriving at the plasma
edge we need to calculate the absorption coefficient (α), the
real part of the complex refraction index (nr) and the emis-
sion coefficient (βx). For this purpose a new code called
Emissaohas been developed that will supply us with these
quantities. The algorithm we use is the following: we start
with a Maxwellian distribution function which is altered by
the LH waves until a steady state is reached. The distribution
function is the output of the code calledkinesis[6], for seve-
ral values of the LH power (Plh), central temperature (Te0)
and central density (ne0). The previously calculated distri-
bution function is then used as the input of the codeEmissao.
This code calculates the Hermitian and anti-Hermitian com-
ponents of the dielectric tensor, which will be used in the
dispersion relation that provides the refraction index. The
refraction index is then used for the calculation of the ab-
sorption coefficient.

In order to solve this problem we discretize the three-
dimensional(u, µ, x) space by making use of a grid of
151 × 71 × 501 points and use the ADI method to solve
the resultant system of equations. With these parameters the
code runs comfortably in a PC with a Pentium 1.5 GHz pro-
cessor and 512 Mbytes of the RAMBUS PC-800 memory
kind.

3 Numerical results

We start by investigating the dynamical behavior of the LH
power deposition profile. In order to understand this beha-

vior we show in Fig. 3 the LH power deposition profilePlh,
the total LH power absorbed between two neighboring sur-
faces located atr andr + dr, given by

Plh(r, r + dr) = 4π2R0

∫ dr

r

dr′r′ρlh(r′, τ)

and

ρlh = 1.5x10−16Te0νe0

∫
d3u

u2

2
(∂τf)LH

Figure 3. Power absorbed profile: (a) Te0 = 1.5 keV, Plh = 0.2
MW andne0 = 1.5 × 1013 cm−3 (solid line),1.75 × 1013 cm−3

(dashed line) and2.0 × 1013 cm−3 (dotted line); (b) Plh = 0.2
MW, ne0 = 2.0 × 1013 cm−3 andTe0 = 0.5 (solid line), 1.0
(dashed line) and 1.5 (dotted line); (c) Te0 = 1.5 keV, ne0 =
2.0× 1013 cm−3 andPlh = 0.1 (solid line),0.2 (dashed line) and
0.3 (dotted line).

Figure 3 shows the dependence of the LH power depo-
sition profile on the electron density (panela), electron tem-
perature (panelb) and LH power at the plasma edge (panel
c). From the first panel we can see that, in the range of
density values analyzed, the plasma density does not play
any important role in the process of LH power absorption.
The plasma temperature, however, shows influence on the
behavior of the LH power absorption. With the increase of
the central temperature the peak of the LH power deposition
gradually begins to enlarge and moves toward the center of
the plasma. In the panel (c) we can see that the deposition re-
gion of LH power remains essentially the same as LH power
at plasma edge is increased.



Eduardo H. Lyvio and P. R. da S. Rosa 1605

Since LH waves transfer momentum in the parallel di-
rection it is interesting to investigate the behavior of the pa-
rallel distribution function (f‖), defined by

f‖ = 2π

∫ ∞

0

du⊥u⊥f
(
u‖, u⊥

)
(6)

where the components of the normalized momentum are
u‖ = uµ andu⊥ = u(1−µ2)1/2. Fig. 4 shows the behavior
of f‖ for several values of LH power, central temperature
and density, at steady state, in the slab position where the
maximum LH power deposition is located (between 10 and
12 cm).

Figure 4. Parallel distribution function. (a) Plh=0.2 MW, Te0=1.5
keV and ne0=1.5 ×1013 cm−3 (full line), 1.75 ×1013 cm−3

(dashed line) and 2.0×1013 cm−3 (dotted line); (b) Plh=0.2 MW,
ne0=2.0×1013 cm−3 and Te0=0.5 keV (full line), 1.0 keV (dashed
line) and 1.5 keV (dotted line); (c) Te0=1.5 keV, ne0=2.0×1013

cm−3 and Plh=0.1 MW (full line), 0.2 MW (dashed line) and 0.3
MW (dotted line).

In the description off‖ we make usage of− ln(f‖) ins-
tead off‖ as a function ofu‖ × |u‖|. All panels of Fig. 4
show the same behavior. Starting with the Maxwellian dis-
tribution function, that in the figure has the form ofV, as the
time goes by and the waves interact with the plasma, a tail in
the distribution function is observed. Panelc of Fig. 4 shows
remarkable changes in the distribution function as LH power
is raised with the formation of an extended and flat tail. It
is to be noted that the LH power is the principal parameter
responsible for the changes in the electron distribution func-
tion. The flat tail is formed as a result of the competition
between the diffusion processes in momentum space due to
LH waves and collisions. The evolution of the perturbation
due to the LH wave is compensated by the collisions, until
the steady state is reached.

Besides the formation of the tail in the electron distribu-
tion function, due to the diffusion of particles to high paral-
lel momentum region in the momentum space, we have also
the diffusion of particles to high perpendicular momentum
region due to collisions. This diffusion is given in Fig. 5
which exhibitsT⊥/Te versusu‖, whereT⊥ is the perpendi-
cular temperature given by

T⊥(u||) =
2πTe

f||

∫ ∞

0

du⊥u⊥
u2
⊥
2

f(u||, u⊥)

This figure clearly shows that, in the range of values of
the central electron temperature studied, the perpendicular
temperature is practically not sensible to changes in the tem-
perature and density values at the plasma center. On the
other hand we notice the growth of the perpendicular tem-
perature in the position where LH wave is more pronounced
as the LH power at plasma edge is increased, as shown in
panelc of the same Figure.

Figure 5. Perpendicular temperature. (a) Plh=2.0 MW, Te0=1.5
keV and ne0=1.5×1013 cm−3 (full line), 1.75×1013 cm−3 (dashed
line) and 2.0×1013 cm−3 (dotted line); (b) Plh=0.2 MW,
ne0=2.0×1013 cm−3 ; Te0=0.5 keV (full line), 1.0 keV (dashed
line) and 1.5 keV (dotted line); (c) Te0=1.5 keV, ne0=1.5×1013

cm−3 and Plh=0.1 MW (full line), 0.2 MW (dashed line) and 0.3
MW (dotted line).

Figure 6 shows the time evolution of the current driven
by the LH waves for several values of the central tempera-
ture and density, until the steady state is reached. We can ob-
serve that the small difference observed in the flat tail shown
in Fig. 4 when integrated results in strong enhancement in
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the current driven except for the dependence of plasma cur-
rent on density. In this case higher densities mean more col-
lisions and lower efficiency of the current drive process.

Figure 6. Current driven. (a) Plh = 0.2 MW, Te0 = 1.5 keV and
ne0 = 1.5× 1013cm−3(full line), 1.75× 1013 cm−3(dashed line)
and2.0 × 1013 cm−3(dotted line); (b) Plh = 0.2 MW, ne0 =
2.0 × 1013 cm−3 andTe0 = 0.5 keV (full line), 1.0 keV (dashed
line) and1.5 keV(dotted line); (c)Te0 = 1.5 keV,ne0 = 2.0×1013

cm−3 andPlh = 0.1 MW (full line), 0.2 MW(dashed line),0.3
MW (dotted line).

Figure 7. Spectral intensity. (a) Plh=0.2 MW and Te0=1.5
keV. ne0=1.5×1013 cm−3 (full line), 1.75×1013 cm−3 (dashed
line) and 2.0×1013 cm−3 (dotted line). (b) Plh=2.0 MW and
ne0=2.0×1013 cm−3; Te0=0.5 keV (full line), 1.0 keV (dashed
line) and 1.5 keV (dotted line). (c) Te0=1.5 keV and ne0=2.0×1013

cm−3. Plh = 0.1 MW (dashed line), 0.2 MW (dotted line), 0.3
MW (dashed-dotted line); (d) Amplification of the curves shown
in panelc. The corresponding values for Maxwellian distribution
function overcome those of perturbed distribution function in all
graphs.

We now proceed to analyze the intensity of ECE, the op-
tical depth and the emission coefficient which were found
taken into account the plasma dielectric properties. Fig. 7
shows the spectral intensity as a function of plasma density
(panela), plasma temperature (panelb) and LH power at
the plasma edge (panelc). In all panels, the Maxwellian va-
lues are hardly visible being superimposed by the values of
spectral intensity after LH waves and collision reached the
steady state. From panel (c) we observe that LH power le-
vel plays a minor role in the ECE at plasma edge. There
is only a weak dependence on LH power, shown in paneld
of the figure. In this panel we amplify the region where the
LH waves depose their power. All cases studied show the
same behavior: the spectral intensity values obtained from
the Maxwellian distribution function are not quite different
from the ones found making use of the perturbed electron
distribution function.

Figure 8 shows the dependence of the ECE coefficient
on plasma density (panelsa andb), plasma temperature (pa-
nelsc andd) and LH power at the plasma edge (panelse and
f ). In this Figure the profiles obtained from the Maxwellian
distribution function (on the left side) and for the perturbed
distribution function (on the right side) are shown for a parti-
cular frequency (55 GHz). In all cases is observed the influ-
ence of the LH waves on the ECE coefficient. Although the
peak values of the ECE coefficient are the same for Maxwel-
lian and perturbed distribution function cases, the curves are
wider in the perturbed distribution function cases as com-
pared with the Maxwellian ones. The values of the ECE
coefficient are increased in all cases studied with the values
obtained for the perturbed distribution function being higher
than the Maxwellian ones closer to the plasma center.

Figure 8. Dependence of ECE coefficient on: electron den-
sity [panel (a) Maxwellian function, panel (b) perturbed function:
Plh = 0.2 MW, Te0 = 1.5 keV, ne0 = 1.5x1013cm−3 (full
line), ne0 = 1.75x1013 cm−3 (dashed line),ne0 = 2.0x1013

cm−3 (dotted line)]; electron temperature [panel (c) Maxwellian
function, panel (d) perturbed function:Plh = 0.2 MW, ne0 =
2.0x1013 cm−3, Te0 = 0.5 keV (full line), Te0 = 1.0 keV (dashed
line), Te0 = 1.5 keV (dotted line)]; and LH power [ panel (e)
Maxwellian function, panel (f) perturbed function:Te0 = 1.5
keV, ne0 = 2.0x1013cm−3, Plh = 0.1 MW (full line), Plh = 0.2
MW(dashed line),Plh = 0.3 MW(dotted line)].
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The optical depth(τx) dependence on plasma density
(panela), plasma temperature (panelb) and LH power at
the plasma edge (panelc) are shown in Fig. 9. As before we
can not observe any difference between the Maxwellian case
and the perturbed one in panelsa andb. As the power is in-
creased (panelc) little modifications can be observed in the
optical depth profile in the region where the LH waves de-
posit their power. These changes may be better appreciated
in paneld, where an amplification of this region is shown.

Figure 9. Optical Depth. (a) Plh = 0.2 MW, Te0 = 1.5 keV and
ne0 = 1.5× 1013cm−3(full line), 1.75× 1013cm−3(dashed line)
and2.0×1013cm−3(dotted line). (b)Plh = 0.2 MW, ne0 = 2.0×
1013cm−3 andTe0 = 0.5 keV (full line), 1.0 keV(dashed line) and
1.5 keV (dotted line). (c) Te0 = 1.5 keV, ne0 = 2.0× 1013 cm−3

andPlh = 0.1 MW(dashed line), 0.2 MW (dotted line),0.3 MW
(dashed dotted line) and Mawellian (full line). (d) Amplification
of the region on panelc where LH waves deposit their power.

Although the LH power is deposited on the low field side
of the tokamak, we can also notice changes in the optical
depth localized on the high field side. These changes arise
because the electrons receiving energy on the low field side
follow the helicoidal lines of the magnetic field modifying
the distribution function on the high field side.

Figure 10. Plasma temperature profile. Te0=0.5 keV [Imposed(full
line), reconstructed(dashed line)], 1.0 keV [Imposed(dotted line),
reconstructed(dashed-dotted line)] and 1.5 keV [Imposed(dashed
dotted dotted line) and reconstructed(short dashed line)].

Figure 10 shows a comparison among the imposed and
reconstructed temperature profiles for Maxwellian plasmas.
These curves were obtained from the calculated emission
values for the following values ofTe0: 0.5, 1.0 and1.5 keV.
The expression for the radiation temperature is given by

Te =
8π3

ω2

n2
rc

2

(1− e−τX )
I (ω)

whereτ
X

is the optical depth for the extraordinary mode.
We observe a good agreement between the temperature

profile imposed by equation 5 at positions near the plasma
center. This agreement is not so good for positions at mid-
dle way between the plasma center and the plasma edge. At
these positions the calculated values are always lower than
the imposed ones.

4 Conclusion

In this work we have analyzed how the presence of a su-
perthermal tail in the electron distribution function, genera-
ted by the interaction of LH waves with electrons, influences
the ECE at second harmonic of the extraordinary mode.

The results obtained from the numerical solution of the
Fokker-Planck and energy transport equations applied to the
TCABR parameters show that there are only small differen-
ces in the ECE between a plasma with a Maxwellian dis-
tribution function and plasmas with a distribution function
with the superthermal tail. The importance of these results
comes from the assumption that we can use the ECE as a di-
agnostic tool to measure plasma temperature. This assump-
tion is actually true only for Maxwellian plasmas, which
present a very localized region where the emission at a gi-
ven frequency may occur. Our results show that for TCABR
plasmas with a tail in the electron distribution function the
method still gives the plasma temperature profile with rea-
sonable accuracy.
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