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Box Model for Hysteresis Loops of Arrays of Ni Nanowires
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In the present work, by means of a phenomenological model, we simulate the hysteresis loop of an hexagonal
array of Ni nanowires. Our model is based on the assumption that the hysteresis loop of a single wire is a
rectangular box with a particular value of the coercive field, and the effect of the array is to generate a distribution
of the coercive fields. Our results are in good agreement with experimental data.
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I. INTRODUCTION

During the last decade, arrays of nanowires have been ex-
tensively studied. Particular properties arising from the in-
trinsic nature of the nanowires together with the magnetic or-
dering of the array give rise to outstanding properties of fun-
damental and technological interest in areas such as semicon-
ductors, magneto-optics, biomedical and magnetic storage [1—
2]. Different procedures can be used to fabricate nanowires ar-
rays [3—4]. In general, the first step is a careful production of
nanoporous alumina membranes, with the highest quality and
well controlled geometrical characteristics. Nanoporous alu-
mina membranes with hexagonal ordering have been prepared
by a two-step anodisation process; after that the nanoporous
are filled with Ni by electro deposition. Fig. 1 illustrates a
nonporous and Ni nanowires array pattern.

FIG. 1: a) Surface image obtained by means of FMF (Magnetic Force
Microscope) of an array of nanopores. b)The same nanoporus array
filled with Ni.

From the theoretical point of view, many different studies
of the hysteresis loop of nanowires arrays have been presented
in the literature. We can mention some works based on meth-
ods using the Anhysteretic curve [5], statistical approaches via
Monte Carlo simulations [6] or micro-magnetic calculations
[7]. However, analytical calculations have not been developed
yet.

The aim of this paper is to simulate the hysteresis loop us-
ing a simple phenomenological model basede on the assump-
tion that the hysteresis loop of each wire has the form of a
rectangular box with a particular coercive field. The effect

of the array can be described by the inclusion of a distribu-
tion of the coercive fields. This method has three important
strenghtens; first the two assumptions are based on experi-
mental evidence; second, it takes into account the intrinsic
non-irreversible character of the hysteresis, and finally it gives
an analytical description of the loop. The paper is organized as
follows. In Sec. II, the model is presented and the hysteresis
loop of a Ni nanowire array is obtained. Finally, conclusions
are presented in Sec. III.

II. MODEL AND RESULTS

Not much about the magnetization processes occurring in
an array of closely packed magnetic nanowires are known.
This happens because even single nanowires may have inter-
nal complex magnetic structures, closure domain structures
at the edges, etc [8]. The problem becomes even more com-
plicated when the long-range magnetostatic coupling between
nanowires is considered. Therefore the modelling of these
systems is often subject to strong simplifications. For ex-
ample, magnetostatic interactions between wires are some-
times investigated by assuming that each nanowire can be re-
garded as a single monodomain which is described as a big
dipole [6,9]. Though many of the models based on simpli-
fying assumptions yield often good agreement with experi-
mental observation, their validity is sometimes discussed. For
nanowires with diameters of less than 60 nm it is reasonable to
expect that a single nanowire can behave like a monodomain.
In this work we investigate the properties of such an array.
Therefore, for modelling the hysteresis loop we do not con-
sider the internal domain structure [7] of the magnetization
along the wire. Then, a single wire has only two possible mag-
netic states with its magnetic moment pointing up or down.
Within this model we assume that the loop of each single
nanowire has a rectangular form with a particular value of the
anisotropy field. We consider the following simple mathemat-
ical function to describe each part of the loop of a single wire

Mope (x) =m(20(x)—1) ()

where O (o) is the Heaviside Step distribution and m is the
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magnetic moment of a single wire, so the total loop is given
by

Mone (H +Hu) UM()ne (H - Hu) ) (2)
with H, the coercive field. Equation (2) represents a square

hysteresis loop, which is typical of bi-stable systems and hard
magnetic materials.
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FIG. 2: Solid line: Hysteresis cycle obtained using the rectangular
box model for a single nanowire with a distribution of coercive fields.
Triangles: experimental data. The inset shows the distribution of
anisotropy field obtained by fitting the model with the experimental
result.

Our model also considers that the anisotropy field varies
from one wire to other so the array shows a distribution
of anisotropy fields, giving rise to a distribution of coercive
fields. We assume that the coercive field of the array follows
a normal distribution, defined by

g(x) = exp (~(x—u)? /20?), 3)

1
V2o
where G and u are constants. Then the collective effect at each
part of the loop can be express in the form

z

M7, (H)=N"" My, (H£E)g(&)dE, )
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where the super index + or - depicts the upper or lower branch
of the cycle and N corresponds to a normalization constant. In
addition, equation (4) can be express in a close form

aM3,, (H,8,0) = VamoErf (vt [ (Vo)) (5)

where Erf (o) is the error function. Fig. 2 illustrates the hys-
teresis loop generate by equation (5). The best fit of the ex-
perimental data illustrated also in Figure 2 is obtained with
6 =0.6886 and u = —0.37382.

We observe that our results are in good agreement with the
experimental data. In addition we remark that the best distri-
bution function of the coercive field has a negative shift. The
reason for the appearance of this component is the in-plane
anisotropy originated in the dipolar interaction between the
wires. Then our model also considers the effect of magneto-
static interactions between the array.

III. CONCLUSION

We have presented an analytical and simple model to de-
scribe the hysteresis loop of magnetic nanowire arrays. Our
model considers each wire as a big magnetic moment with
two possible states which changes under the influence of an
external magnetic field parallel to it. The effect of the array
arises in the distribution of the coercive field considered. This
simple model describes quantitatively well the shape of the
magnetization curve for nanowire arrays of less than 60 nm.
diameter.
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