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Nowadays, wavelet analysis of turbulent flows have become increasingly popular. However, the study of
geometric characteristics from wavelet functions is still poorly explored. In this work we compare the perfor-
mance of two wavelet functions in extracting the coherent structures from solar wind velocity time series. The
data series are from years 1996 to 2002 (except 1998 and 1999). The wavelet algorithm decomposes the annual
time-series in two components: the coherent part and non-coherent one, using the daubechies-4 and haar wavelet
function. The threshold assumed is based on a percentage of maximum variance found in each dyadic scale.
After the extracting procedure, we applied the power spectral density on the original time series and coherent
time series to obtain spectral indices. The results from spectral indices show higher values for the coherent
part obtained by daubechies-4 than those obtained by the haar wavelet function. Using the kurtosis statistical
parameter, on coherent and non-coherent time series, it was possible to conjecture that the differences found
between two wavelet functions may be associated with their geometric forms.
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1. INTRODUCTION

The turbulence is still an open problem in Physics and it
constitutes a multiscale phenomena. An approach to turbu-
lence like Direct Numerical Simulation (DNS) is impracticable
due the computational obstacle. So, Larg-Eddy Simulations
(LES) become a good approach for computational calculations
of complex turbulent flows [7]. Recently, Farge et al. [8] de-
veloped the Coherent Vortex Simulation (CVS) which use the
wavelet approach to deterministically simulate the time evo-
lution of the coherent vortex. They used the assumption that
coherent vortices are responsible for the non-Gaussianity of
the Probability Density Function (PDF) of vorticity. Thus, the
study of the statistical characteristics of the turbulence is an
important tool to understand the physical mechanisms acting
in the energy transfer between scales. In particular, the statis-
tical study of Magnetohydrodynamical (MHD) turbulence is
important to understand the energy transfers within the Solar-
Terrestrial system. The consequences of solar disturbances on
the magnetosphere-ionosphere system from Earth, have been
analyzed in several studies, showing the importance of the in-
termittence and Coherent Structures (CS) present in the MHD
flow [2, 16, 18]. According to Hussain [13], CS are turbulent
variables (velocity, temperature, density and others) that have
high self-correlation or with another variables in the deter-
mined time scale. Furthermore, Burlaga and Mish [4] have ar-
gued that the —2 spectral index found in the solar wind velocity
may arise if coherent power is present in large-amplitude, low-
frequency fluctuations. These large-amplitude low-frequency
fluctuations are related to shocks evolving in the solar wind.
The structures are strongly associated with energy dissipation
of the turbulent flows and also a source of instability, at least
in some scales.

Due to the problem related to the presence of CS in time
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series, several works have been developing methodologies to
detect and extract the CS from time series [9, 12, 21] using
the Wavelet Transform (WT). However, there is still the prob-
lem related to the choice of the wavelet function to perform
the CS extraction. In fact, only a few studies have focused
the geometric properties of the wavelet and coherent structures
[3, 19]. Thus, in the present work, a comparison between re-
sults from extraction of CS performed by two wavelet func-
tions from solar wind velocity time series is presented. The
power spectral index and statistical analysis are used to quan-
tify the possible differences. The WT was used to separate
the solar wind velocity in two components: one that contains
only the coherent (CS) part removed from original time se-
ries, and the other component containing information about
the non-coherent (NC) part.

2. DATA

Solar wind data from SOHO satellite obtained in the public
internet address CELIAS/MTOF http://umtof.umd.edu/pm was
employed in this study. Data were obtained between years
1996 to 2002, except 1998 and 1999, with 1-hour time resolu-
tion (approximately 2.78X10~* Hz). Figure 1 show the solar
wind velocity plots for the five years analyzed.

Based in the approach of Kovics et al. [16], we can conjec-
ture that the fluctuating nature of solar wind variables can be
interpreted, in the present context as the manifestation of tur-
bulent phenomena that takes place within the MHD flows. It
has long been accepted that turbulence evolves through cas-
cade processes that involve a hierarchy of coherent vortex
structures belonging to a wide range of spatial scales. Kol-
mogorov [15] proposed the inhomogeneous flow-down (cas-
cade) of the energy from system-size scales to dissipative
scales (Kolmogorov). The inhomogeneity involves the singu-
lar behavior of the energy distribution in physical space result-
ing in strong gradients, or intermittence, in the time-series of
the energy related to physical quantities of the system, e.g. ve-
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FIG. 1: Solar wind velocity time series for the five years shown in
legend, measured by SOHO satellite.

locity [20], temperature [1] or magnetic fields [16, 18]. Thus,
we used the approach of this Kolmogorovian scenario to study
this data set.

3. THEORETICAL BACKGROUNDS
3.1. Wavelet Transform

The WT is a mathematical tool able to analyze any non-
stationary time-series, showing the temporal variability of the
power spectral density. The “wavelet” word indicates a set
of functions with the form of small waves created by dila-
tions, W(r) = ¥(2¢), and translations, ¥(z) = W(r+ 1), applied
on a simple generator function, ¥(¢), which is called mother-
wavelet. Mathematically, the wavelet function, with a scale a
and at position b, is given by

W, (1) = a‘l/zw(%} )

where a and b are real and a > 0. The wavelet transform is
defined by

Wiy (a,b) = % [rewa0a. @)

where the temporal function f(¢) is any time series.

There are two types of wavelet functions: orthogonal
and non-orthogonal wavelets [6]. The most used orthogonal
wavelet families are: haar, meyer, and daubechies, that are
used for filtering/decomposition of the time series. The most
famous non-orthogonal wavelet families are: morlet and the
mexican-hat. For this study, we used two orthogonal wavelet
functions: daubechies-4 and haar [5, 20]. The haar func-
tion is orthogonal, with dilation being dyadics in the form
a =27 and its translations occur in discrete steps, in the form
b =2k, where j and k are integers. This wavelet function is
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given by:

212 27k <t < (k+1/2)
202 27 i (k+1/2) <t < (k+1)
0, all other values of t

Wik(t) =

The daubechies wavelet filters are the ones commonly used
in image retrieval [17]. In general, db, represents the family
of daubechies wavelets, and n is the order. It is important to
note that the family includes haar wavelet since it represents
the same wavelet as db;. The wavelets are built based in an
small function ¢(z), given by [17]:

0(t) = V2 Y Lo(2t — k), 3)
k

where ¢ is called scale function or scaling wavelet. The mother
wavelet Y is obtained by:

w(r) =v2Y (2t — k), 4)
k

where [} and hy are called coefficients of low-pass and high-
pass filters, and are related by:

he = (—1)*1 . (5)

For the db4 used in this work, the coefficients for low-pass
and high-pass filter are, respectively:

{ V341 VA(WV3+D) V3-1 V3(V3-1) }

427 W2 A2 W2 :

{_ﬂ(ﬁ—w Vi-1 VB(3HD B+ }
W2 42 42 42 ’

We chose the dbs wavelet because this function is more
regular than db,, where the regularity increases with the order
n. Figure 2 shows the mother and scaling wavelets of db4 and
haar for j =0 and k= 0.
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FIG. 2: Scaling (¢) and mother (y) functions for dbs and haar
wavelets.
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3.2. Procedure for Coherent Structures Extraction

In order to study the performance of the two wavelet func-
tions in extracting the CS, the time series was decomposed in
all dyadic scales, i.e., if the time series is n data points long,
it is possible to decompose it in j dyadic scales of n =2/. In
the following step, we performed the variance in each dyadic
scale to find the scale where the variance has maximum value.
After this, we used a fixed threshold of 95% maximum vari-
ance found in a given scale and to separate the coherent (CS)
and non-coherent (NC) wavelet coefficients. In this way, the
wavelet coefficients with values higher than 95% maximum
variance are considered due to CS, and wavelet coefficients be-
low this threshold are considered the NC part. Finally, the CS
and NC parts are then reconstructed by the WT inverse. Note
that we use the same assumption used by Ruppert-Felsot et al.
[21], i.e., the original time series can be represented by a few
large amplitude wavelet coefficients, while the noise is con-
tained by several remaining coefficients of small amplitude.

3.3. Statistical Analysis

The intermittent nature of the any physical quantity, can
be investigated through the called Probability Density Func-
tion (PDF) of a set of two-point difference in time-series,
8H,(t) = (8H(t) — (8H(t))) /o, of the original field, H, where
¢ means the standard deviation of the differenced time-series.
The parameter r represents a temporal increment. For ordi-
nary HD or MHD fluids, intermittency appears in the heavy
tails of the distribution functions at moderate scales implying
non-Gaussian statistical behavior of the systems [10]. Frisch
[10], proposed a way to quantify the degree of deviation from
Gaussian distributions, i.e. the level of intermittency at differ-
ent scales. We computed the kurtosis values of the two-points
difference time-series defined as:

_ <B8H(1)* >
F=2 8H, (1)? >2 ©)

where, again, the parameter r represents an increment scale.
The kurtosis of a normally distributed process is equal to 3
[10]. Adding intermittent fluctuations to an originally Gaus-
sian signal implies the spreading of its PDF and, consequently,
the increase of its kurtosis value. We will calculate the kur-
tosis in 18 logarithmically spaced scales for Original, CS and
NC parts obtained by haar and dby.

4. RESULTS AND DISCUSSION

The process above mentioned was applied in five annual
time series. Figure 3 shows the results of this filter process
using the db4, where the upper panel shows the original time
series, the middle panel shows the CS information, and the
bottom panel contains the NC part time series. We note that
the CS signal (middle panel in Fig. 3) presents the same large
structures observed in the original signal. This fact is an impor-
tant point from db4 wavelet function because it is necessary to
extract the real information from original signal without intro-
duce unreal information. Figure 4 shows the same time series
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FIG. 3: Daubechies-4 filter process applied to solar wind velocity data
for year 2002. Top panel shows the original time series, middle panel
shows 95% of CS, and bottom panel shows the NC time series.
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FIG. 4: Haar filter process applied on solar wind velocity data for year
2002. Top panel shows the original time series, middle panel shows
95% of CS, and bottom panel shows the NC time series.

but obtained by haar filtering process where, in this case, we
note that the haar function creates false features such as rectan-
gular forms on the CS time series shown in middle panel (Fig.
4). However, it is important point out that the NC part from
both extractions shows evidence of coherent structures as well.
In fact, we conjecture that this behavior may be due the non
optimal choice of the threshold that do not permit to extract
efficiently the all coherent structure presents in the time series.
Even so, our objective here is to do a preliminary study about
the two wavelet functions and to use a methodology based in
statistical approach to compare these two wavelet functions.
We applied the Power Spectral Density (PSD) on all orig-
inal time series and for the CS time series obtained from
the filtering process to find out the power spectral index.
These power spectral indexes were obtained through Minimum
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FIG. 5: Power spectral density (PSD) applied for the solar wind time
series shown in Fig. 2. The continuous line represents the PSD for the
original time series; dotted line represents the PSD for the coherent
signal filtered by db.; dashed line represents the PSD for the coherent
signal filtered by haar function. The three PSD were vertically shifted
for better visualization.
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FIG. 6: Absolute values of spectral index for original time series and
CS time series from db4 and from haar wavelets.

Square Fitting applied on loglog plots of the PSD. Figure 5
shows an example of PSD applied on the same time series
shown in Fig. 2.

The power spectral indices for all time series are shown in
Fig. 6. We observe superior values of spectral indices for CS
time series obtained by dby filtering process when compared
with those CS for the time series obtained by haar filtering
process. Note that we use the fact that the statistical theory
of homogeneous turbulence suggests that the noise may have
some correlation, which corresponds to a scaling law steeper
than for a white noise, i.e. k=5/3 in 3D. Thus, the presence
of the CS on the signal promotes the elevation of the spectral
indices. These preliminary results indicate that the dbs wavelet
was better in extracting the CS from original time series. The
mean values of spectral indices from CS time series from db4
was —(2.16 +0.20), in agreement with results from Ishizawa
and Hattori [14], who also used the WT procedure.

In order to define the best wavelet function between db4
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FIG. 7: Kurtosis parameter mean values for original time series (con-
tinuous line), coherent structure (square symbol) and non-coherent
structure (square symbol and dotted line) time series from dby4, and
coherent structure (star symbol) and non-coherent structure (star sym-
bol and dotted line) time series from haar process filtering.

and haar, we calculated the kurtosis parameter. The kurtosis
is a statistical parameter useful to detect the intermittent phe-
nomena present in the time series [10] and was performed in
18 logarithmically spaced scales. Figure 7 shows the results
of the kurtosis for the original time series, CS, and NC time
series obtained from db; filtering process and also for CS and
NC time series obtained from haar. Note that the kurtosis mean
values from NC time series for both wavelet functions are very
close to a Gaussian distribution, i.e., kurtosis near to 3.

A rate between kurtosis mean values from CS and NC time
series for both wavelet results showed above was evaluated.
Figure 8 shows the mean values of this rate for kurtosis ob-
tained from db4 and haar filtering process. We observe that
the results from dby is closer to the results from original time
series than the results obtained with the haar wavelet. This fact
shows that the db4 filtering process is the best method to ex-
tract more coherent structures from original time series when
compared with haar results.

The results above mentioned are probably associated with
the geometric form of each wavelet. In this sense, we observe
that the dbs wavelet function have a geometric form much
closer to the geometric characteristics of the time series. This
fact of the matching between wavelet functions and time se-
ries explain also the difference of the spectral indices found
in Fig. 6. We observed higher values of the spectral indices
of CS time series from dbs when compared with CS time se-
ries from haar, showing that the dbs wavelet function is able
to extract more physical information from original time series
than haar wavelet function. The fact that dbs wavelet function
presents better results than haar wavelet may be explained by
the dby anti-symmetric form. This idea was already pointed
out by Hagelberg and Gamage [11], who said the following:
”We illustrate the dependence of the coherent structure detec-
tion mechanism on the choice of analyzing wavelet, demon-
strating that anti-symmetric wavelets are better suited to de-
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FIG. 8: Kurtosis values for original time series (continuous line), kur-
tosis of the rate between CS and NC time series obtained for db4
(square symbol) and for haar filtering process (star symbol).

tecting zones of concentrated shear, while symmetric wavelets
result in detection of zones of concentrated curvature.”

This is only a preliminary study since it is necessary to
compare results obtained in different percentage values of co-
herent structure extraction. Further studies may focus on the
comparison of these results for different solar cycle phases
(such as a minimum, during year 1996, and a maximum around
year 2001), and also estimate the CS detection/extraction algo-
rithm efficiency. Anyway, the results here presented can give
an orientation for the choice of an appropriated wavelet to be
employed in the extraction of coherent structures from turbu-
lent time series measured in hydrodynamic and magnetohy-
drodynamic environment.
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5. CONCLUDING REMARKS

In this work, we performed a comparison from CS extrac-
tion results between two wavelet functions: db4 and haar. For
this, we used the annual time series of the solar wind veloc-
ity measured by the SOHO satellite since 1996 to 2002 years
(except 1998 and 1999).

Results from power spectral shown that, the coherent part
obtained from dbs wavelet function present higher values of
the spectral indices than the values obtained by haar wavelet.
We applied the statistical parameter kurtosis, in CS and NC
time series obtained by both wavelet functions and also for
original time series. The non-coherent time series obtained
by both wavelet functions showed Gaussianity characteristics
(kurtosis near to 3). The results indicate that the both wavelet
functions are able to extract coherent structures, however, the
coherent time series showed that the dbs wavelet function was
able to extract more coherent structures than the haar wavelet.
We conjecture that the good matching between the geometric
form of the db, and the characteristics from original time se-
ries, lead to the best results. However, we noted that the NC
part presented some evidence of coherent structures. We think
that this fact is due to a non optimal choice of the threshold in
the extraction process. Thus, in future works will study the be-
havior of these results as a function of changes in the threshold
value.
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