
Gest. Prod., São Carlos, v. 26, n. 2, e2557, 2019
https://doi.org/10.1590/0104-530X-2557-19

ISSN 0104-530X (Print)
ISSN 1806-9649 (Online)

Original Article

1/11

Resumo: O custo operacional para distribuir locomotivas ao longo dos pátios ferroviários com o objetivo de atender 
às demandas de formação de trens é muito alto. Assim, este artigo propõe um modelo matemático para planejamento 
da distribuição de locomotivas que visa atender às requisições dos pátios, Locomotive Scheduling Problem (LSP), 
com o intuito de minimizar os custos de distribuição. O modelo proposto apresenta uma nova formulação para 
o LSP with Multiple Locomotives e considera o desbalanceamento entre oferta e demanda de locomotivas para 
atender às requisições de um pátio, o que ainda não havia sido tratado na literatura. Testes em instâncias com base 
em dados reais da Estrada de Ferro Vitória a Minas (EFVM) foram resolvidos de forma ótima utilizando o solver 
CPLEX 12.6. O modelo se mostrou bastante aderente ao planejamento da distribuição, e diversos parâmetros que 
afetam os custos da distribuição foram analisados. Os resultados mostraram ganhos em relação ao planejamento 
manual atualmente realizado.
Palavras-chave: Planejamento da distribuição de locomotivas; Locomotive scheduling proble; Locomotive 
assignment problem; Transporte ferroviário.

Abstract: The cost for locomotive distribution over the rail yards to meet the locomotive demand for train formation 
is very high. Thus, this paper proposes a mathematical model based on the Locomotive Scheduling Problem for 
locomotive distribution planning to meet the demand of the rail yards seeking to minimize the distribution costs. 
The  proposed model presents a new formulation for the LSP with Multiple Locomotives and considers the imbalance 
between offer and demand of locomotives, this situation was not addressed in the literature yet. Tests on instances 
based on real data from the Vitória a Minas Railroad (EFVM) were solved optimally using CPLEX 12.6. The model 
proved to be a good tool to analyze the locomotive distribution planning. When compared with the manual planning 
currently held by the railroad, the results showed several gains.
Keywords: Locomotive distribution planning; Locomotive scheduling problem; Locomotive assignment problem; 
Railroad transport.
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1 Introduction
In Brazil, rail cargo transport grew between 

2006 and 2014 around 30% in the transport of one 
ton-kilometre (TKU), reaching 307,304 million TKU 
in 2014. The rail network in 2013 had a length of 
about 30,000 kilometers (ANTT, 2015; CNT, 2013).

Due to the high investments to buy locomotives 
associated with their high operational costs, like 

maintenance and diesel oil, it is necessary to plan the 
use of the fleet of locomotives in order to minimize 
the overall costs. Thus, it is important the use of 
mathematical models to improve the distribution of 
the locomotive fleet over the rail yards to meet the 
demand for traction to pull the trains (Vaidyanathan et 
al., 2008a).
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Planning the distribution of locomotives seeks to 
distribute available locomotives in some rail yards to 
other rail yards that demands locomotives in order 
to pull the trains that are being making up to start a 
new trip. The goal is to minimize the total distribution 
costs. Finding a solution to the problem is complex 
and at the same time very important because the major 
railroad companies in the word expend a lot of resources 
distributing their locomotives. Another important 
point is that an optimized distribution planning can 
lead to a reduction  in  the number of locomotives 
to be bought, reducing the total investment of the 
railroad (Ahuja et al., 2006).

This distribution can be performed in two ways: 
1) attaching locomotives in a train that is already 
circulating on the rail and therefore the locomotives 
to be distributed are towed by the train’s locomotives 
and 2) traveling alone, or at most coupled to other 
locomotives, without any wagon pulled by them. 
In the first case, the locomotive is called Deadheading 
and the train has its own locomotives pulling the 
wagons and uses the idle traction capacity to pull the 
locomotives to be distributed. In the second case the 
locomotives are called Light Traveling and. Therefore, 
deadheading distribution is a lot cheaper than the 
Light Traveling distribution, where the railroad has 
to pay the engine driver and has to spend more diesel 
to make the distribution (Maposa & Swene, 2012).

Planning the distribution of locomotives in the 
literature is known as Locomotive Assignment 
Problem (LAP) (Piu & Speranza, 2014). When the 
LAP has a strategic or tactic vision, then it is called 
Locomotive Scheduling Problem (LSP) and considers 
the time and place that the locomotives shall be to 
attend all the demand, without specifically defining 
each locomotive, but a type of locomotive to be 
distributed. When the LAP has an operational view, 
it is called Locomotive Routing Problem (LRP) and 
in this case, specifically defines the route of each 
locomotive, considering the moment that it will 
be at a rail yard and the moment that it will arrive 
and depart the rail yard. Two published papers did 
a review about the LAP: Cordeau et al. (1998) and 
Piu & Speranza (2014).

This paper proposes a mathematical model for 
the LSP which is based on the train circulating plan 
aims to minimize the locomotives distribution cost to 
meet the traction demand in HP for train formation. 
This paper has three contributions to the study of 
the LSP: 1) a new mathematical formulation using 
a space-time vector defined in this paper as the 
transformation of the space-time matrix into a vector, 
which leads to a more simple and small model; 
2) an analysis of the imbalance between offer and 
demand of locomotives, foreseeing the possibility of 
unmet demands, introducing the concept of virtual 
locomotives and 3) an application to a real case of 

a Brazilian railroad comparing the CPLEX results 
with the results achieved by the manual process done 
by the railroad.

It was proposed the use of virtual locomotives by 
the proposed mathematical model to address possible 
imbalances between offer and demand of locomotives, 
making more realistic the analysis and the decisions 
regarding the distribution of locomotives. If CPLEXs 
solution uses these virtual locomotives at one rail 
yard at a certain time, thus it indicates that the rail 
yard’s traction demand at this time will not be met 
by the railroad locomotives fleet. Therefore, the use 
of virtual locomotives becomes an important tool for 
the locomotives’ dispatcher because he can easily see 
which rail yard will not have their demand met. Thus, 
he can make new plans, creating new scenarios to 
test which is the best situation for the railroad. It is 
important to say that these virtual locomotives have 
a very high cost and so the mathematical model will 
only use them in the case where there are no available 
locomotives of the fleet to meet the demand. After 
the literature review, it was not found any paper that 
dealt with the imbalance between offer and demand 
of locomotives to making up trains.

The model was tested with data from Vitória a 
Minas Railroad (EFVM), which is one of the major 
railroads of Brazil. EFVM carries 140 million TKU, 
including iron ore and general cargo. It has a fleet of 
322 locomotives serving 13 iron ore mines, 34 train 
making up rail yards and 26 general cargo terminals 
(ANTT, 2013). This paper focus on the general cargo’s 
demand for traction and so it studied the distribution 
of locomotives for general cargo trains over the 
13 major general cargo rail yards of EFVM. It was 
used CPLEX 12.6 to solve the proposed mathematical 
model. The solution reached by CPLEX was compared 
with the solution achieved by the manual planning 
carried out by the railroad. Gains were achieved by the 
mathematical model reducing the distribution costs.

This paper is divided into five sections, including 
this introduction. Section 2 describes the LSP problem 
and makes a survey of the published papers about the 
LSP. Section 3 presents the proposed mathematical 
model. In Section 4 the results and analysis are 
presented. In Section 5 the conclusions and futures 
works are presented.

2 Locomotive Scheduling Problem 
(LSP)
To solve the LSP, most of the published papers uses 

a space-time network, Figure 1. A space-time network 
can be viewed as a matrix with two dimensions: the 
horizontal dimension represents the discretized time 
and the vertical dimension represents the rail yards. 
The arcs from one rail yard to another one represent 
the trains with their idle capacity of traction and 
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having achieved the optimality of the model, they 
report significant financial gains up to US $ 4 million 
annual savings to CN. Ziarati et al. (1999) introduced 
in the model proposed by Ziarati et al. (1997) new 
cutting planes and bounds to seek the optimality of 
the problem, but still, they could not have found the 
optimal solution for the problem.

Scholz (2000) proposed a study about the 
locomotives distribution planning to reduce the number 
of locomotives used in the Swedish railroad system. 
He structured the planning as a Two-Dimensional 
Bin-Packing Problem where the vertical axis represents 
the locomotives and the horizontal axis represents the 
time, each train is represented by a rectangle where 
the length is the travel time and the width is equal to 
1. Noble et al. (2001) analyzed the Australian State 
of Victoria Public Transport Corporation (PTC) 
where trains are cyclical, and they have to decide 
which locomotives should be assigned to a set of 
long-distance travel. They proposed an Integer Linear 
Programming model.

Ziarati et al. (2005) proposed a Genetic Algorithm 
for the LSP based on the concept of Multi-Commodity 
Flow Network. They addressed the problem of the 
Canadian National Railroads (CN) for a set of cyclic 
trains aiming to reduce the number of used locomotives.

Ahuja et al. (2005) proposed an Integer Linear 
Programming formulation for a space-time network 
applied to CSX railroad seeking to reduce the total 
cost defined as the sum of investments, Deadheading 
distribution costs and Light-traveling distribution costs. 
The model considers various practical constraints and 
it was solved by CPLEX 7.0 to find an initial solution 
and then they used a metaheuristic Very Large-Scale 
Neighborhood Search (VLSN) to solve the proposed 
model. The solution obtained was much better than 
the solution found by CSX.

Bacelar & Garcia (2006) studied the Vitória a 
Minas Railroad (EFVM) applied to the iron ore 
transportation and developed a mathematical model 
based on Ahuja’s model (Ahuja et al., 2005) doing 
some simplifications adapting the model to the reality 
of EFVM, i.e., they did not consider Light Traveling 
trains. Their results showed to be better than the 
results of the plan done manually by the railroad team.

Vaidyanathan  et  al. (2008a) aimed to reduce 
the locomotive distribution costs of CSX railroad. 
They used the same model and the same metaheuristics 
as Ahuja et al. (2005), i.e., they used CPLEX to find 
an initial solution and VNS to solve the problem. 
The difference between the two papers is that 
Vaidyanathan  et  al. (2008a) addressed the issue 
of a set of locomotives being divided when they 
reached a rail yard to meet the traction demand of 
more than one train. They were able to reduce up to 
400 locomotives for CSX.

flows associated with them represent the number 
of locomotives pulled by the train to be distributed. 
The arcs between the same rail yard at different 
times represent the number of locomotives parked 
at the rail yard through the time. The distribution 
of locomotives between rail yards occurs due to 
the imbalance between offer and demand in the rail 
yards (Vaidyanathan et al., 2008b). Figure 1 shows a 
space-time network with five rail yards and a planning 
horizon of five days. So, each rail yard appears five 
times in the space-time network of Figure 1.

The LSP can be classified in two ways: Single 
and Multiple Locomotives. The Single Locomotive 
problem considers only one locomotive pulling the 
train. The Multiple Locomotives problem considers 
more than one locomotive pulling the train, and they 
can be from different models. The LSP with Multiple 
Locomotives is a more complex problem and difficult 
to develop models to it (Piu & Speranza, 2014). 
The mathematical model proposed in this paper is 
classified as a LSP with Multiple Locomotives and 
thus this paper presents next a survey of the published 
papers about the LSP with Multiple Locomotives.

Holt (1973) addressed for the first time the locomotive 
distribution problem presenting a computer system 
to solve the LSP. Gohring et al. (1973) proposed a 
space-time network and an Out-of-kilter algorithm to 
find an optimal flow of locomotives in a space-time 
network. Florian et al. (1976) presented a mathematical 
model to solve the LSP applied to Canadian National 
Railroads (CN) aiming to find an optimal fleet of 
locomotives to meet all the traction demand that led 
to a reduction of the total investment and operation 
costs. They proposed a solution based on Benders 
decomposition.

Ziarati et al. (1997) extended the mathematical 
model proposed by Florian et al. (1976) including 
other operational restrictions including the withdrawal 
of locomotives for maintenance. They proposed a 
space-time network to solve the model and used a 
method consisting of a Branch and Bound procedure 
and Dantzig-Wolfe decomposition. Despite not 

Figure 1. Space-time network.
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the time equal to t 1=  and using the formula it defines 
the position 1 in the space-time vector of Figure 2, 
i.e., ( )( ) ( )( )     t p ht 1 0 5 1+ = + × = . Using the same formula 
and considering the rail yard p 2=  and the time equal 
to t 3= , comes to position 13 in the space-time vector 
of Figure 2, i.e., ( )( ) ( )( )   t p ht 3 2 5 13+ = + × = .

Based on the space-time vector previously explained, 
the proposed mathematical model is presented in five 
parts: sets, parameters, decision variables, objective 
function and constraints.

Sets:
K - Set of locomotives types, { }K KV KR= ∪ ;
KV  - Set of locomotives of virtual type, KV K⊂ ;
KR – Set of locomotives of real type, KR K⊂ ;
G - Set of all trains circulating on the railroad in 

the analyzed time period, { }G GL GD= ∪ ;
GL - Set of all trains circulating on the railroad 

with Light Traveling locomotives, GL G⊆ ;
GD - Set of all trains circulating on the railroad 

with Deadheading locomotives, GD G⊆ ;
HT - Set of times of the planning horizon, defined 

in days, ranging from 1 to ht;
NP - Set of railroad yards, ranging from 0 to the 

number of railroad yards less 1, thus, np 1− ; and
N  - Set of nodes of space-time vector, i N∈  

representing the (yard, time), where the number of 
nodes of the set N is calculated as ( )  np ht .

Parameters:
gcd  - Cost of a Deadheading train, g GD∈ ;

gcl  - Cost of a Light Traveling train, g GL∈ ;
gijµ  - Maximum quantity of locomotives pulled by 

the train g G∈  when it circulates in the arc between 
node i N∈  and node j N∈ ;

kiθ  - Offer of locomotives type k K∈   at node i N∈ ;
iα  - Demand in HP to make up the trains at node i N∈ ;
kβ  - Power in HP of the locomotive type k K∈ ;

λ - Parameter to prioritize the use of higher 
horsepower locomotives; and

 η  - Parameter of penalization of the use of virtual 
locomotives.

The paper of Vaidyanathan  et  al. (2008b) is a 
continuation of Vaidyanathan et al. (2008a) proposing 
a method called consist flow formulation that proved 
to be much faster than the method proposed by 
Ahuja et al. (2005) and Vaidyanathan et al. (2008a). 
This method also incorporates some restrictions 
of the real world, such as minimizing the split of 
locomotives of a train to meet other trains demand.

Piu (2011) proposed a Mixed Integer Linear 
Programming mathematical model that considers 
various operational aspects that had not been considered 
before, such as: refueling of diesel oil, locomotive 
maintenance and uncertainties regarding the planning 
of the trains. Noori & Ghannadpour (2012) modeled 
the problem as the Vehicle Routing Problem with 
Multi-depots where trains are represented as customers 
that must be met in a time window. They treated 
the time windows by fuzzy method. They proposed 
a hybrid Genetic Algorithm to solve the problem.

Maposa & Swene (2012) presented a Mixed 
Integer Linear Programming mathematical model 
based on Ahuja  et  al. (2005) and solved it using 
the solver Lingo 10. They applied the model to the 
National Railroads of Zimbabwe (NRZ). The solution 
showed a reduction of 38 locomotives compared to 
the real scenario. Bouzaiene-Ayari et al. (2016) used 
the Approximate Dynamic Programming (ADP) 
framework and applied to the Norfolk Southern 
Railroad and Burlington Northern Santa Fe Railroad.

After this review, it can be noticed that few articles 
concerning the LSP were published. This  paper 
presents a new formulation for the LSP with Multiple 
Locomotives that considers the imbalance between 
offer and demand of locomotives on a rail yard at a 
certain point in time.

3 Proposed mathematical model
The proposed mathematical model was developed 

to minimize the locomotive distribution cost meeting 
all the traction demand to make up train. The proposed 
model is classified as Locomotive Scheduling Problem 
(LSP) with Multiple Locomotives.

In this paper, it is proposed the space-time vector, 
Figure 2, generated from a space-time network to 
simplify the representation of the problem. First, it 
is necessary to define that np is the number of rail 
yards and p represents each rail yard and p ranges 
from 0 a np-1. The parameter ht represents the time 
horizon and t represents the discretized time ranging 
from 1 to ht. After these definitions, there are two 
situations that may happen: 1) t 1= , that represents 
the time equal to 1 in each rail yard p; and 2) t 1> , 
that represents any time greater than 1 in each rail 
yard p. Thus, taking Figure 1 and the two situations 
presented, the space-time network of Figure 1 can be 
transformed in to the space-time vector of Figure 2 by 
the formula ( )( ) t p ht+ . Considering the rail yard p 0= , 

Figure 2. Space-time vector.
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is proposed to avoid the use of virtual locomotives, 
which were proposed in this paper to generate the 
balance between supply and demand for locomotives. 
What is sought with this fourth part, which has a 
high penalty factor, ,1 000η = , is to avoid the use the 
virtual locomotive. It is noteworthy that the use of 
virtual locomotives k KV∈  to meet the demand on 
the node  i  represents that the node  i will not have 
its locomotive demand met.

Decision variables:
gkijx  - Quantity of locomotive type k K∈  coupled to 

train g G∈  when it is circulating in the arc between 
node i N∈  and node j N∈ ;

kiy  - Quantity of type locomotives k K∈  parked and 
ready for use at node i N∈ ;

kiw  - Quantity of locomotive type k K∈  allocated 
to meet the demand at node i N∈ .

The objective function and the constraints of the 
proposed mathematical model are presented next.

Objective Function
Minimize:

  g gkij g gkij ki ki
g GD k K i N j N g GL k K i N j N k KR i N k K i N

cd x cl x w wλ η
∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

+ + +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
V

             (1)

Constraints

ki kij gkij ki
g G j N

y x   w  θ
∈ ∈

= − −∑ ∑

(2)
( )( ), , : , k K  p P  t HT  t 1  i t p ht  ∀ ∈ ∈ ∈ = = +

( )ki gkij gkji ki kik i 1
g G j N g G j N

y y x   x w  θ−
∈ ∈ ∈ ∈

= − + − +∑ ∑ ∑ ∑

(3)
( )( ), , : , k K  p P  t HT t 1  i t p ht  ∀ ∈ ∈ ∈ > = +

i ki k
k K

w   α β
∈

≤ ∑  i N∀ ∈ (4)

kiy 0≥ , i N  k K  ∀ ∈ ∈ (5)

  gkij gij0 x µ≤ ≤ , , , g G  k K  i N  j N∀ ∈ ∈ ∈ ∈ (6)

kiw 0≥ , k K  i N∀ ∈ ∈ (7)

The objective function, Equation (1), represents 
the locomotives distribution costs, first and second 
part, the quantity of locomotives used, part 3, and 
the quantity of used virtual locomotives, part 4. 
The objective function must be minimized. The first part 
calculates the cost of all Deadheading trains, g GD∈ , it 
is calculated by the cost of transporting a locomotive 
in a Deadheading train multiplied by the quantity of 
the type of locomotives k K∈  is transported by the 
train g GD∈  traveling the arc i N∈  to  j N∈ . The second 
part calculates the cost of all Light Traveling trains, 
g GL∈ , it is calculated by the cost of transporting a 
locomotive in a Light Traveling train multiplied by 
the quantity of the type locomotives k K∈  on the train 
g GL∈  traveling the arc i N∈  to  j N∈ .

The third part calculates the quantity of real 
locomotives k KR∈  used to meet the demand on 
the node  i and, since the objective function is a 
minimization function, the model will tend to use 
larger locomotives, as there will be a reduction in 
the number of locomotives used to meet the demand. 
It was adopted ,0 01λ =  as a weight of importance of 
this part in the objective function. The fourth part 

Constraints (2) calculate the number of locomotives 
in the corresponding node, considering the balance 
between supply and demand, as well as locomotives 
that were sent to other nodes. Constraints (2) are 
activated only when the condition t 1=  is true, which 
is the time 1 at a certain yard. Constraints (2) represent 
the initial moment of planning each yard, or does 
not exist locomotives that can be transported to such 
nodes. Constraints (3) differ from Constraints (2), 
because represent the other times in the space-time 
vector, t 1> , at a certain rail yard. It also considers 
the locomotives arriving from other yards in earlier 
times for the calculation of flow conservation, which 
does not occur in Constraints (2). Constraints (3) are 
activated only when the condition t 1>  is true, which 
represents the time bigger than 1 of a certain yard in 
the space-time vector.

Constraints (4) ensure that the demand in HP at 
node i N∈  is met. That is, the number of locomotives 
of type k K∈  to meet the demand on the node  i 
multiplied by the quantity of HP per locomotive of 
type  k K∈  must be greater or equal to the requested 
demand, iα . Constraints (5) ensure that the quantity 



6/11

Nascimento, F. C. G. et al. Gest. Prod., São Carlos, v. 26, n. 2, e2557, 2019

i.e., an increasing in the transit time between the 
origin and destination that generates a reduction 
in the number of trains in the same period of time. 
Instance 5 is similar to Instance 1, but considers an 
increase of 10% in the interval between trains and 
set as 8 the maximum number of locomotives per 
train. Instance 6 is similar to Instance 1, but considers 
a reduction of 10% in the interval between trains, 
i.e., reducing the transit time between the origin and 
destination that generates an increase in the number 
of trains in the same time period. Instance 7 is similar 
to Instance 1, but considers a 10% reduction in the 
interval between trains and set as 8 the maximum 
number of locomotives per train.

Instances 8 to 10, Group B, represent real instances 
and so they are compared with the results obtained by 
the railroad that currently uses a manual locomotive 
distribution planning. The three instances use data 
from the first week of July of 2015, the fourth week of 
July of 2015 and the fourth week of August of 2015, 
respectively. It was set as 6 the maximum number of 
locomotives per train, the same limit used actually 
by the railroad.

The cost to make up a Light Traveling train was 
obtained with the operation team of the railroad. 
The same was done for the Deadheading trains. 
For confidentiality reasons, these values cannot be 
disclosed. However, the collected data shows that the 
cost of a Light Traveling train are much higher than the 
cost of a Deadheading train. This happens because the 
costs of the diesel used, and the locomotive engineer 
are very high. It is important to mention that a Light 
Traveling train does not bring any revenue for the 
railroad. The power of the locomotives is defined in 
amount of HP and it was considered for all instances 
the same locomotive types used by EFVM to pull the 
general cargo trains: B-36 with 3,600 HP, DDM-45 
with 3,600 HP and DASH-8/9 with 4,000 HP.

Table 2 presents the results obtained by CPLEX 
for each instance and CPLEX was able to solve 

of locomotives parked on the rail yard in a certain 
node i N∈  is greater or equal to zero. Constraints 
(6) ensure that the quantity of locomotives of type
 k K∈  on the train  g G∈  traveling from node i N∈  to 
node j N∈  is greater or equal to zero and less than 
the maximum quantity of locomotives pulled by the 
train g G∈  traveling in the arc between node i N∈  to 
node j N∈ . Constraints (7) ensure the quantity of the 
locomotives of type k K∈  to meet the demand at node 
i is greater than or equal to zero.

4 Results and analysis
This section presents the results achieved by the 

solver CPLEX 12.6. Ten instances were tested and 
data from June to August of 2015 for the general cargo 
trains were obtained from the computerized system of 
EFVM. It was established to CPLEX a time limit of 
14,400 seconds (4 hours) to run each instance. It was 
used an Intel i5 computer with 8 GB of memory.

Table 1 shows the 10 tested instances. Instance 1 is 
the instance used as a default instance. It is based on 
the demand coming from the train plans, considering 
13 rail yards and a planning horizon of 7 days. It is 
considered a maximum of six locomotives per train, 
which is the technical limit of the railroad. All other 
instances were compared with it. The amount of 
virtual locomotives was set to 100 for all rail yard 
in the time equal to 1 to meet all imbalance between 
offer and demand.

Instances 1 to 7 use data from the first week of 
June of 2015. Instance 1 considers the offer of virtual 
locomotives and sets as 6 the maximum number 
of locomotives per train. Instance 2 is similar to 
Instance 1, but sets as 4 the maximum number of 
locomotives allowed per train. Instance 3 is similar 
with Instance 1, but sets as 8 the maximum number 
of locomotives per train.

Instance 4 is similar to Instance 1, but considers 
an increase of 10% in the interval between trains, 

Table 1. Instances.
Group Instance Variation of the Instances Number of trains / week

A 1 Standard 156
2 Maximum 4 locomotives per train 156
3 Maximum 8 locomotives per train 156
4 +10% interval between trains 148
5 +10% interval between trains and at maximum 8 

locomotives per train
148

6 -10% interval between trains 174
7 -10% interval between trains and at maximum 8 

locomotives per train
174

B 8 1st week of July/2015 162
9 4th week of July/2015 157
10 4th week of August/2015 132
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Instances 2 to 7 where there were changes in various 
parameters as previously seen.

The analysis is done comparing the distribution 
cost and the number of locomotives used to meet 
the demand. For the distribution cost, it was first 
analyzed the impact of the reduction in maximum 
number of locomotives allowed per train. When this 
number decreases from 6 to 4 locomotives, no impact 
occurs in the total distribution cost, the dashed line 
in Figure 3. It can also be seen that the quantity of 
locomotives distributed as Deadheading and as Light 
Traveling remained the same. This comparison was 
made ​​between Instance 1 and 2. When the number 
of locomotives per train goes from 6 to 8, there is 
also no impact on the total distribution cost, dashed 
line in Figure 3. It can also be seen that the quantity 
of locomotives distributed as Deadheading and as 
Light Traveling remained the same. This comparison 
was done ​​between Instance 1 and 3.

optimally all instances at a relative small amount of 
time, 23,65 seconds. The first and second columns, 
respectively, represent the group analysis and 
the instance. Column 3, 4 and 5 show CPLEX’s 
performance indicators: OF (Objective Function), 
GAP and Execution time. Column 6 shows the total 
cost of the sum of Deadheading trains and Light 
Traveling trains. Columns 7, 8 and 9, respectively, 
show the number of distributed locomotives that 
travels between the rail yards as Deadheading, Light 
Traveling and Virtual, respectively.

Table  2 and Figure  3 show the number of 
locomotives in Deadheading trains, Light Traveling 
trains and the total cost found by CPLEX for the 
instances of Group A. The total cost is represented 
by the two first parts of the mathematical model’s 
objective function presented in Section 3. Instance 
1, which is the default instance, was compared with 

Table 2. CPLEX results.

Group Instance OF GAP 
(%)

Execution 
Time (s)

Total Cost Light + 
Dead (US$)

Number of distributed 
locomotives

Dead Light Virtual
A 1 74,792.60 0.0 14.01 1,790.00 19 16 73

2 74,792.60 0.0 18.17 1,790.00 19 16 73
3 74,792.60 0.0 13.81 1,790.00 19 16 73
4 75,492.40 0.0 16.33 1,490.00 9 14 74
5 75,492.40 0.0 15.73 1,490.00 9 14 74
6 82,812.85 0.0 23.65 1,810.00 21 16 81
7 82,812.85 0.0 15.60 1,810.00 21 16 81

B 8 79,827.32 0.0 17.99 1,723.94 22 15 78
9 80,034.81 0.0 17.13 1,997.69 29 17 72
10 67,834.53 0.0 18.41 1,256.78 35 11 67

Figure 3. Number of locomotives distributed as Deadheading and Light Traveling and the Total Cost (Group A).
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Light Traveling trains and unmet demand achieved 
by railroad, Real Case. Columns 6, 7 and 8 show, 
respectively, the number of distributed locomotives 
in Deadheading trains, Light Traveling trains and 
unmet demand achieved by CPLEX. The unmet 
demand is represented by the virtual locomotives as 
explained before. Columns 9, 10 and 11 represent the 
difference between CPLEX’s results and Real Case’s 
results, respectively, for the number of locomotives 
distributed in Deadheading trains, Light Traveling 
trains and the unmet demand.

Comparing the results from CPLEX with the Real 
Case, Table 3, it can be seen that in the Real Case 
there were no locomotives being distributed by Light 
Traveling trains. This happened due to a railroad 
policy that forbidden the making up of this type of 
train. For  this reason, in the Real Case, in Instances 
8, 9 and 10 there were, respectively, an unmet demand 
of 101, 98 and 87 locomotives. By contrast, since 
CPLEX allows Light Traveling trains, therefore, 
there was the use of this type of train. This led to a 
reduction, when comparing CPLEX with the Real 
Case, of 23, 26 and 20 in the unmet demand of 
locomotives in Instances 8, 9 and 10, respectively.

These results show that the allowance, eventually, 
of the use of Light Traveling trains by the railroad 
could bring interesting gains in meeting the demand 
for locomotives to make up trains, reducing the 
unmet demand and consequently leading to a better 
service for the clients. The gain of CPLEX against 
the Real Case, Figure 4, was not only from distributed 
locomotives in Light Traveling trains but there was also 
an increase of distributed locomotives in Deadheading 
trains, 4, 2 and 4 locomotives, respectively, in 
Instances 8, 9 and 10. This shows that CPLEX was 
able to use more and better Deadheading trains in the 
same period to meet the demand of the Real Case.

To make a more effective comparison between 
CPLEX and the Real Case, CPLEX was run without 
allowing making up Light Traveling trains. These 
results can be seen in Table  4 that has the same 
columns structure as Table 3.

Even when it was set to zero the number of Light 
Traveling trains in CPLEX and in the Real Case, Table 4, 
CPLEX was able to distribute the locomotives using 
more Deadheading trains, 4, 2 and 4, respectively, 

Another analysis was done about the reduction of 
circulating trains in the railroad caused by an increase 
of 10% in the transit time. As expected, with the 
reduction of circulating trains, there was a decrease 
in the demand for locomotives and therefore the 
distribution cost was reduced, dashed line in Figure 3. 
This comparison was done between Instances 1 and 4.

When there was a reduction of circulating trains in 
the railroad caused by an increase of 10% in the transit 
time, but there was also an increase of the maximum 
number of locomotives allowed per train from 6 to 8, 
there was a decrease in the demand for locomotives 
and, therefore, the distribution cost was reduced, dashed 
line in Figure 3, and there was also a reduction in the 
quantity of locomotives distributed as Deadheading 
and as Light Traveling. This comparison was done 
between Instances 1 and 5. When the comparison is 
done between Instance 4 and 5, the increase of the 
maximum number of locomotives allowed per train 
did not cause any variation of the distribution cost.

It was analyzed the situation where there was an 
increase of circulating trains in the railroad caused 
by a decrease of 10% in the transit time. In this 
situation, there was an increase of circulating trains 
leading to an increase in the demand for locomotives 
and, therefore, an increase of the distribution cost, 
dashed line in Figure 3. This comparison was done 
between Instances 1 and 6.

Another situation analyzed was the increase of 
circulating trains caused by a decrease of 10% in 
transit time, but considering an increase from 6 to 8 
in the maximum number of locomotives allowed per 
train. In this situation, there has been an increased 
in the demand for locomotives and, therefore, the 
increase in the distribution cost, dashed line in Figure 3. 
However, comparing Instance 6 and 7, the increase 
in the maximum number of locomotives allowed 
per train did not cause changes in distribution cost.

To evaluate the real case of EFVM, it was compared 
CPLEX results for Group B, Instances 8 to 10, with 
the EFVM results achieved by the manual planning, 
which will be called as Real Case.

In Table  3, Column 1 and 2 represent, 
respectively, the group and the instance number. 
Columns 3, 4 and 5 show, respectively, the number 
of distributed locomotives in Deadheading trains, 

Table 3. Comparison between CPLEX × Real Case results.

Group Instance

Number of distributed locomotives Difference between CPLEX 
× Real Case Number of 
distributed locomotiveReal Case CPLEX

Dead Light Unmet Dead Light Unmet Dead Light Unmet
B 8 18 0 101 22 15 78 4 15 -23

9 27 0 98 29 17 72 2 17 -26
10 31 0 87 35 11 67 4 11 -20
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locomotive demand with a lower distribution cost. 
More than that, the mathematical model becomes a 
standard for locomotive distribution to the railroad 
that today does the locomotive distribution planning 
manually, based on the experience of few employees 
without a standard to be followed.

This paper also proposed the introduction of virtual 
locomotives as a method to do the analysis of the 
imbalance between offer and demand for locomotives 
when the offer is smaller than the demand in a rail 

in Instances 8, 9 and 10 than the Real Case. Thus, 
the CPLEX was able to reduce the unmet demand 
in all three instances, and even without using Light 
Traveling trains it distributed better the locomotives 
avoiding the unmet demand for locomotives to make 
up trains. It was reduced the unmet demand in 7, 6 and 
4 locomotives for Instances 8, 9 and 10, respectively. 
These reductions can be seen in Figure 5.

Thus, CPLEX, running the mathematical model, 
can make a better locomotive distribution to meet the 

Figure 4. Number of distributed locomotives in Deadheading trains.

Figure 5. Unmet demand for locomotives.

Table 4. Comparison between CPLEX × Real Case results, excluding Light Traveling trains.

Group Instance

Number of distributed locomotives Difference between CPLEX 
× Real Case Number of 
distributed locomotiveReal Case CPLEX

Dead Light Unmet Dead Light Unmet Dead Light Unmet
B 8 18 0 98 22 0 91 4 0 -7

9 27 0 96 29 0 90 2 0 -6
10 31 0 85 35 0 81 4 0 -4
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