
55

Software Components Retrieval Through
Mediators and Web Search*

Robson P. de Souza1, Marcelo N. Costa1, Regina M.M. Braga1,2

Marta Mattoso1 and Cláudia M. L. Werner1

Abstract
Component Based Development (CBD) aims at con-

structing software through the integration, using inter-
faces and contracts, between pre-existing components.

 The main goal of this work is to provide access to
component that can be published at the Web, retrieved,
and reused in all phases of an application development
within a given domain. We present an architecture for soft-
ware components reuse by using a mediation layer that
integrates the semantics of Web components with previ-
ously registered components from a virtual library of com-
ponents. In our architecture, components are described
through XML documents and published by local reposito-
ries or remote servers. The innovative aspect of our pro-
posal is the combination of mediators and software agents
for reusable component retrieval within a Domain Engi-
neering context. Mediators can represent application do-
main as well as integrate the description of domain re-
lated components. Queries can be issued to the mediation
layer and processed by the GOA Object Server, which pre-
sents the query results as a list of suggested components
along with its repository link in XML. Software agents are
responsible for web component discovery and filtering.
Techniques such as user models (profiles), and recommen-
dations are used for presenting a ranked list of links. Fi-
nally, resulting links from mediators and web post-pro-
cessed results are combined and presented to the user.

Keywords: Component Retrieval, Component Based
Development, Domain Engineering.

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

{pinheiro, mcosta, regina, marta, werner}@cos.ufrj.br
1Department of Computer Science - COPPE/UFRJ

 PO Box: 68511, Rio de Janeiro, RJ, Brazil, Zip Code: 21945-970
 Telephone: +55+21+25628694, Fax: +55+21+2290-6626

2Department of Computer Science – CTU/UFJF
 Benjamin Constant, 790, Juiz de Fora, MG, Brazil, Zip Code: 36015-400

 Telephone: +55+32+3229-3800, Fax: +55+32+3229-3900

* This work was partially financed by Faperj, CNPq and CAPES.

1 Introduction
Component Based Development (CBD) [1] aims at con-

structing software through the inter-relationship between
preexisting components. CBD reduces the complexity, as
well as costs of software development, through the reuse
of exhaustively tested components. The main goal of a soft-
ware reuse environment is to provide access to compo-
nents that can be reused in all phases of an application
development within a given domain. Thus we are concerned
with software components in general, not only with code,
but also diagrams, use cases, models and other documents
involved in the software development life cycle.

The Internet is the natural source of potentially reus-
able components. However, finding an adequate compo-
nent involves searching among heterogeneous descriptions
of components within a broad search space. Basically there
are two approaches for component search: (i) Web search
based on components interface; and (ii) search over a li-
brary of components that provides a semantic description
of the components and their storage. Most works concerned
with finding adequate preexisting components adopt either
the Web approach [2, 3, 4] or the library approach [5, 6, 7].

The problem with the Web approach is that components
can be published and described in many heterogeneous
ways and a keyword-based search can be very generic.
Also, the semantics represented by the components inter-
face is very poor for reaching a useful component within a
certain domain application. The library approach does not
present these disadvantages but is restricted to previously
and locally stored components. In this paper, we describe
an architecture that combines the Web with the library ap-
proach. By using domain engineering with mediators we
integrate the semantics of Web components with previ-
ously registered components from a virtual library of com-
ponents. The definition of the semantics is encapsulated in

56

mediators based on information from a specific application
domain. This architecture comprises three main layers: (i)
published components; (ii) mediation layer with compo-
nent semantics and ontology services for published com-
ponents, named ComPublish; (iii) agent layer that searches
and filters retrieved components from the Web as well as
from previously registered/published components, named
CompAgent.

These services are part of a software reuse environ-
ment, named Odyssey [8], which aims at providing support
for the development and reuse of components in all phases
of software construction. The solutions we present here
are implemented within CompAgent and ComPublish as an
extension of the Odyssey search engine [9] to address the
search and publication of components on the Internet. Our
work was motivated by the Municipal Legislative project
that was conducted at the Municipal Legislative House of
Representatives from Rio de Janeiro (CMRJ). There are sev-
eral applications that can benefit from reusable information
within the legislative and related domains, such as judiciary
and criminal domains. Our users are not specialists in these
latter domains, only in the legislative. Therefore, reuse
should be fostered on the legislative domain, but related
domains should also be suggested to the non-specialist
user through a specific relationship.

This work is organized as follows. In Section 2 we dis-
cuss our approach in comparision to related works from the
technical literature. The publication of components with
mediation services, the modules and services of the inte-
gration layer, is presented in Section 3. The several agents
that filter and present potential components for software
reuse are discussed in Section 4. Section 5 illustrates the
application of our services in the CMRJ project. Section 6
presents our final remarks.

2 Related Works
The work presented by Seacord, Hissan and Wallnau

[2] describes a search engine for the retrieval of reusable
code components in the Agora system, such as JavaBeans
and CORBA components. The Agora system uses an intro-
spection mechanism for registering code components,
through its interface. Agora search is Web based and
searches only on component interfaces, covering solely
the component connectiveness problem. The Agora sys-
tem only deals with code components whereas our approach
is concerned with domain information in all abstraction lev-
els, including code components. Moreover, new informa-
tion is always associated to domain terms within a given
domain ontology [10], improving its accessibility and reuse
in our architecture.

Another interesting work is found in [3].
ComponentSource is a web repository that provides ser-

vices to buy, sell and develop components. The problem
when searching components with ComponentSource is that
components are described in a generic way, i.e., you cannot
search for components based on domain functionalities.
Thus, if a user wants to buy components related to the
financial domain, there is not a search mechanism to restrict
the search range. Moreover, ComponentSource only deals
with code components like JavaBeans and CORBA compo-
nents.

Regarding reuse library interoperability an important
work to mention is the RIG initiative [5]. The idea of
interoperability of asset libraries is based on the storage of
domain information in several databases. These databases
are static and based on one global model. RIG lacks a more
effective search engine that provides searches based on
domain concepts and filtering of relevant information, and
with Internet access. Our approach uses the mediation tech-
nology with specific domain ontologies to integrate differ-
ent software components data sources.

Ye and Fischer [7] present an approach that provides an
active repository for components. Their work focuses on
active delivery of reuse information, helping the reuse of
components that developers were not aware. In this latter
aspect, it is similar to our approach. Our component re-
trieval system provides this functionality too, since it ac-
cesses components from other domains based on semantic
similarity. The active repository functionality, although not
described in this paper, is also present in our previous work
[11]. One aspect that is different in our proposal is the re-
trieval of distributed information, which is not mentioned in
the work of Ye and Fischer.

3 Publication of Components
ComPublish is an architecture that aims at publishing

software components and their related artifacts, such as
models, diagrams, source code and other documents. Be-
sides publishing components, ComPublish also provides a
uniform view of components that belong to the same appli-
cation domain. The main services of ComPublish are [12]:
(i) to describe components based on domain information;
(ii) to integrate this description with the semantics of other
published components from the same domain; (iii) to pro-
vide search mechanisms over the published components;
and (iv) to store and retrieve software components.

Figure 1 shows the architecture of ComPublish.
ComPublish users interact through the Service Manager
(SM) that provides a CORBA interface to list available do-
mains (mediators), to access all related mediators, and to
download a stored component. The integration of compo-
nent descriptions is mapped on mediators. The Object Server
GOA [13] stores domain ontologies metadata from media-
tors and provides query facilities through OQL. To store

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

57

components locally, ComPublish can use the GOA system.
To publish and store components on the Web, it uses the
LeSelect [14] information integration architecture. The me-
diator interacts with a LeSelect client, which acts as a trans-
lator, and can access components published and stored by
LeSelect server publication facilities.

In the following sections we detail the ComPublish ser-
vices starting from the publishing process, then presenting
modules and services of the integration layer and
ComPublish main interface.

3.1 – Publishing sites

To publish and access a component in a remote site
through ComPublish, the component owner must install Le
Select system [14]. Le Select provides facilities for data and
program publishing on the Web. It also provides facilities
for publishing metadata associated to the published data.

Based on the work of Guerrieri [15], which uses XML for
documenting the various phases of software development,
ComPublish generates XML documents for describing soft-
ware components. Thus, for all components to be published,
the publisher has to associate an XML description docu-
ment. In order to provide a uniform component documenta-
tion process, pre-defined XML DTDs are created accord-

Figure 1: ComPublish Architecture.

ing to the different application domains and component
categories. In general, the component description attributes
include: the application domain, the application develop-
ment phase (e.g., analysis, design or implementation), cat-
egory (e.g., code, diagram), language, and author, among
others.

Both the component archive and its related XML docu-
ment must be informed to LeSelect by editing (through a
conventional text editor) a wrapper definition file, which is
a configuration archive (also in XML format) that stores the
list of all published data. Finally, the publisher emails the
ComPublish administrator informing his site identification.

3.2 – Mediation Layer

The main idea behind ComPublish is to adapt Heteroge-
neous and Distributed Data Base System (HDDS) technolo-
gies, such as mediators [16] combined with ontology [17, 18]
to integrate, identify and retrieve software component reposi-
tories instead of legacy databases. Mediators represent and
integrate domain information repositories (distributed and/or
heterogeneous). Metadata found in mediators describe the
repositories of components, presenting the domain, their se-
mantics, software architecture and interfaces. ComPublish
works with a query engine from the GOA system and therefore

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

.

Metadata at GOA

Repository

Integration

Layer Translator

Mediator3

Reuse Environment

SM

Le Select

Server

Mediator1

Mediator2

Le Select

Server

Le Select

Server

Domain Metadata

-GOA Repository

Metadata at GOA

Repository

Metadata at GOA

Repository

Web

Browser

Translator Translator

Components (models, diagrams,

use cases, documents, source

code, programs, etc.)

Component descriptions

58

ad hoc queries on this metadata are used to analyze the avail-
able components. The organization of mediators with ontol-
ogy drives the user search along heterogeneous vocabulary.

ComPublish offers an integrated view of published com-
ponents at the Internet. ComPublish integration layer, based
on mediators and wrappers [16], provides the binding of dif-
ferent components to their domain concepts. To assist the
identification of related components and their appropriate
domain organization, each mediator represents a domain on-
tology and provides the mapping to their respective com-
ponents repository. Domain ontologies are used to help the
search for reusable components through the representation
of domain semantic concepts [10]. Therefore, this mediation
layer promotes domain integration and mechanisms to trans-
late component requests across ontologies.

The main services of the mediation layer are:

• Mediators – organizes the mappings between metadata
and the data providers associated to the mediator. This
metadata includes component descriptions imported
from each Le Select published site and a hierarchy of
ontological terms, both related to the domain repre-
sented by the mediator. Each mediator can be acti-
vated from different machines interconnected in a net-
work and managed in an independent manner. How-
ever, related mediators within an ontology can com-
municate among themselves by the CORBA protocol.

• GOA Metadata Repository – the component descrip-
tion is transferred via translator to the component ap-
plication domain corresponding mediator, then inte-
grated to the mediator metadata and stored by GOA
object storage system. GOA provides services for stor-
ing data as object, and query facilities through OQL.
All mediator metadata are stored in a GOA repository.
GOA is also responsible for all query processing and
optimization services provided by the mediator.

• Translators – are responsible for linking mediators to
remote component repositories. Each translator en-
capsulates a Le Select API Client that is able to es-
tablish a socket connection to a remote Le Select
server and ask for its services. These services in-
clude metadata import and component download.

3.3 – Service Manager

The Service Manager (SM) is responsible for metadata
of mediators, translators and data sources availability, and
for dealing with ontological commitments between related
mediators (domains). An external application (e.g., a browser
or a reuse environment) is able to access the services of
ComPublish through SM, which can be seen as a special
mediator that manages and provides access to all other
mediators of the integration layer. SM stores metadata about

available mediators, and is capable of creating ontological
bindings between related ontologies in order to query sev-
eral mediators. It is also responsible for the creation and
modification of mediators.

4 Searching for Components
The search for components in our architecture, named

CompAgent combines searching, classification and filter-
ing of components published on the Web, as well as com-
ponents available from ComPublish. CompAgent is based
on advances on intelligent information retrieval on the Web.
Techniques such as user models (profiles), collaborative
modeling and recommendations are used for composing
the retrieval system.

Figure 2 shows a general overview of CompAgent. The
main service of CompAgent is a meta search, using a Web
search engine (i.e., Google Search Engine1 [19]), and
ComPublish component searching services. CompAgent
filters, classifies and merges information coming from these
search engines through the following modules (Figure 2):

• Search Agent – it is the main element of the
CompAgent search architecture. The Search Agent
(SA) interacts with the Web search engine and the
ComPublish system, as detailed in section 4.1.

• Machine Learning Module – Machine Learning tech-
niques are used to observe and learn the behavior of
the user while he navigates through domain informa-
tion or chooses information among suggestions done
by the WWW agent. The Feedback Agent, internal
to the machine learning module, processes the ob-
served behavior. Another responsibility is to update
the recommendation base and collaborative base,
which supply information for the algorithm of the
filtering agent. This module also provides informa-
tion that is used to adapt the user profile.

1 Google was chosen as the search engine for the architecture as
detailed in [20]. When compared to AltaVista [21], Google pre-
sented many advantages, such as being able to presenting of a more
complete Internet index, and a powerful algorithm for classifying
the page relevance. Since it is an academic tool, it is possible to use
it remotely without any commercial restriction.

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

59

Figure 2: Componentes Seach Architecture

• Collaborative Agent – this agent interacts with the
filtering agent to recommend components based on
the existing information about the user stereotype.
All users of the same stereotype share links that are
considered to be important by one user category.
These links are stored on a base, called the collabo-
rative base.

• Recommendation System – is responsible for insert-
ing components and information provided by the
person in charge of modeling the domain, in this case,

the domain engineer. As shown in Figure 3, the de-
gree of relevance of that component and some do-
main description is informed to the recommendation
system. The filtering algorithm uses the recommen-
dations, which are stored as objects in the recom-
mendation base.

• Filtering Agent – is responsible for the filtering and
organization of component search results. The infor-
mation of components is presented to the user ranked
by the degree of importance.

Figure 3: Recommendation System Manager

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

ComPublish

Filtering

Agent

User

User
User Profile

Web Search

Engine

HTML HTML

Interface

Search Agent

Machine

Learning

Module

Collaborative

Agent

Recommendation

System

Recommendation

Base

Domain

Engineer
Collaborative

Base

60

wakRV k

m

a

p

k
aki

�� � �
� �

),(
1 1

�

4.1 – Using CompAgent Services
First, the user informs (Figure 4) the main characteristic

of the component being searched. The filtering degree can
be one of the following relevance degrees: Definitively Im-
portant, Very Important, Important, Quite Important, and
Not Very Important. This term will work as the cutoff value
for the returned links by the Web Search Engine and
ComPublish.

Figure 4: Search Frame

The SA composes a message containing the query pa-
rameters to be processed internally by ComPublish. This
message contains the application domain so that ComPublish
can use the adequate mediators and all attributes the user
wants to find. ComPublish system receives the message and
builds the corresponding query. This query scans the local
and remote repositories that are linked to the required do-
main. Components metadata are searched to match the com-
ponent features specified by the user. Successful compo-
nents are listed back to SA in a XML document. This XML
document contains all component attributes that were re-
quested by the query. This document is parsed and compo-
nent attributes are extracted. These attributes (for instance,
name, category, date, author, development phase, language,
description, among others) are passed to the filtering agent.

The filtering process starts by obtaining a classification
measure, RV, in Equation 1, for each of the n returned links.
Each RV

i
 value is calculated after function ó that matches

the keywords from the user profile against the attribute
values extracted from link i. In Eq. 1, for each attribute a

a
,

the number of occurrences of each keyword k
k
 are counted

and multiplied by the degree of relevance (w
k
) of the key-

word k
k
., where m is the number of attributes in link i and p

is the number of keywords from the user profile.

(Eq. 1)

The next step consists in checking whether that link i is
already part of the recommendation base or the collabora-
tive filtering base. If the link is found, it means that this link
has been previously chosen by a user of the same stereo-
type, or has been recommended by the domain engineer
responsible for the current domain. Therefore, RV

i
 (Eq. 2)

incorporates the previous value (Eq. 1) plus doubling the
weights of the links on the collaborative base (w

rb
) and on

the collaborative filtering (w
cf
) multiplied by the relevance

assigned to the link in the specific base. The relevance is
represented as r

rb
 for recommendation base and r

cf
 for col-

laborative filtering.

(Eq. 2)

The third step of the Filtering Agent is to consider the
ranking of the link returned by the resulting list from Google,
mainly due to the reliability degree supplied by the algo-
rithm of PageRank, used internally by this search engine.
Equation 3 calculates the new RV

i
 value, by incorporating

the previous RV
i
 (Eq. 2) and adding a value representing the

link rank. This measurement is the difference between the
number of returned links (nl) and the position of link i (pl

i
).

This value is multiplied by 0.5.

(Eq. 3)

After sorting the classification value of all links, the one
with the highest ranking is taken and serves as the value for
filtering the remaining links. The process consists in divid-
ing the classification value of link i (RV

i
) by the value of the

most relevant link (RV
h
) (Equation 4). The obtained value is

compared to the cutoff value previously informed by the
user (Figure 5). In case the division value (DV

i
) is smaller

than the cutoff value, the link is ignored, and is not inserted
in the result to be shown to the user.

(Eq. 4)

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

))*()*((2 rwrwRVRV cfcfrbrbii
����

)5.0)((���� plnlRVRV iii

RVRVDV hii
/�

61

A similar process is applied for links returned by
ComPublish, but the position of the returned component,
as presented in Equation 3, is not considered, since
ComPublish does not incorporate a classification algorithm
for establishing the importance of the link.

Finally, the Web post-processed results are merged and
presented to the user (Figure 5). The user can pick the re-
turned link or component that he finds most relevant for his
domain engineering process. In case the choice is a compo-
nent, download is done for the machine of the user. If it is a
page, the correspondent page is opened on the default
browser of the machine.

Figure 5: Results Frame

When the user chooses a link, the feedback process is
activated. Initially, the recommendation base is analyzed. If
any domain engineer has recommended this link, its weight
will be increased by one unit. If the user who is choosing
the link is a domain engineer, the link is added to the recom-
mendation base. A similar process is done for links in the
collaborative base, but with a small difference, if the chosen
link does not exist in the collaborative base of the current
user, it is inserted into the base. If the link is already there,
its weight is increased by one unit.

5 Using Mediation Services in the Legislative
Domain

We have experimented the mediation layer with local
components repositories for the legislative domain as part
of a project conducted at the Municipal Legislative House

of Representatives from Rio de Janeiro (CMRJ). The project
aimed at integrating the effort in software development in
the legislative domain. Our example considers the develop-
ment of an application that revises and prepares new pro-
posals for the municipal Code in the legislative domain.

In this application (Figure 6), data source 1 provides a
Java package (set of related classes) named “Proposal Cre-
ation” and data source 2 has a binary software component
called “New Subject”. The Legislative Domain Mediator
provides an ontology term named “proposal”, which is as-
sociated to the metadata terms “New Proposal” and “New

Project” which are mapped to both component data sources.
However, there was a previous Judiciary Domain Mediator
registered in the architecture. The judiciary domain has an
ontology term named “code” that is mapped to a compo-
nent named “Search Code Database”. Since the proposal
creation may involve activities related to pre-existing mu-
nicipal codes, the SM administrator associated the legisla-
tive with the judiciary domain, through a hyponym2 rela-
tionship between the two domain ontologies.

Thus, when our user accesses the ComPublish inter-
face to retrieve components related to the creation of new
proposals, he can choose to access information from all
related mediators, i.e., generic mediators, specific media-
tors, associated mediators or all of them. Suppose our user

2 A hyponym is a type of ontological relationship between two
ontological terms related to two different domains [9].

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

62

decided to retrieve information from the Legislative Domain
and its associated mediators. He would access components
from the Legislative and the Judiciary Mediator (see Figure
6). The formulation of the query is based on selecting the
component type. For each component, a description is pre-
sented and the user can select one or more components to
be retrieved.

Through the mediation structure, users can search for
components in a transparent and uniform way [10]. In the
above example, users do not have to know where compo-
nents are stored. Moreover, users do not have to query all
component repositories, using each repository query lan-
guage format (when a query language exists) to find where
needed components are stored. They do not have do know
either how to access data sources.

Figure 6: Mediator Services in the Legislative Domain

In addition, the user can search the Web in order to find
other components related to these domains. In this case,
the user may use the CompAgent. Suppose the user wants
to find components related to the legislative ontological
term “emenda orgânica” on the Web. The Search Agent
(SA) from CompAgent interacts with the Web search en-
gine and with the ComPublish system. SA composes a

message containing the query parameters to be processed
internally by ComPublish. SA is also responsible for open-
ing a connection and sending the query to the Web search
engine (i.e., Google). Once the connection is opened, SA
controls the number of links to be received, performs the
parsing of each received page, extracting information such
as title, link, description, description from Google (regis-
tered by the user responsible for that page), and passes
this information to the Filtering Agent (Figure 5).

6 Conclusions
In this work we address interoperability issues between

repositories of software components on the Web. A media-
tion layer was built on top of the LeSelect system, organiz-
ing the description of components according to its applica-

tion domain. In our architecture, components are described
through XML and published by LeSelect servers. OQL
queries can be issued to the mediation layer and are pro-
cessed by the GOA object server, which can present query
results as a list of suggested components along with its
repository link, also in XML.

Without our search engine, if a user has to search for

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

Service Manager

(SM)

Legislative

Mediator

Judiciary

Mediator

Translator

lator

Translator

Translator

Proposal

Creation
New Subject

Search Code

Database

Code

Code

Proposal

New Project

New

Proposal

Hyponym
Proposal

63

domain information using the available techniques, such as
Web filters, he has to use general Internet search mecha-
nisms such as keyword-based spiders. In this kind of search,
the user is probably presented with a lot of irrelevant infor-
mation. Besides, even if he finds some interesting site, the
available domain information might not be in the adequate
format, requiring some kind of conversion. Moreover, there
are no agents that guide the user to more interesting related
information, as we do in our work.

We believe that the component search and publication
mechanism provided by our architecture can improve soft-
ware development based on component reuse. Our approach
allows users to express component requests at a higher
level of abstraction when compared to keyword based ac-
cess or component interface based access. The innovative
aspect of our proposal is the use of domain engineering
with mediators, for reusable component retrieval, both on
the Web and on registered repositories. Currently, there is
an operational prototype, implemented in Java and C++,
with filtering agents and a mediation layer with local reposi-
tories. The coupling with LeSelect architecture is, actually,
running and provides remote publishing of components.

References
[1] Jacobson, I.; Griss, M.; Jonsson, P.; “Software Reuse:

Architecture, Process and Organization for Business
Success”; Addison Wesley Longman, May, 1997.

[2] Seacord, R.; Hissan, S.; Wallnau, K, “Agora: A Search
Engine for Software Components”, IEEE Internet
Computing, vol.2, no.6, November/December,1998, pp.
62-70.

[3] ComponentSource, www.componentsource.com.
Accessed in 9/Apr/2003.

[4] Sprott, David: “Software Components Marketplace
Reality”. Interact Journal, A CBDi Forum Publication
in www.cbdiforum.com, May 2000.

[5] RIG; “Reusable Library Interoperability Group” at
http://www.asset.com/rig/, 1996.

[6] Prieto-Díaz, R.; Implementing Faceted Classification
for Software Reuse; Communications of the ACM,
vol.34, no.5, May 1991.

[7] Ye, Y.; Fischer, G.: “Promoting Reuse with Active Reuse
Repository Systems”, IEEE ICSR 2000, Vienna, June
2000, pp. 302-317.

[8] Werner, C.; Braga, R.; Mattoso, M. “Odyssey: A Reuse
Environment based on Domain Models”; Proceedings
of IEEE Symposium on Application-Specific Systems
and Software Engineering Technology (ASSET’99),
Texas, 1999, pp. 49-57.

[9] Braga, R.; Costa, M.; Werner, C.; Mattoso, M. “A
Multi-Agent System for Domain Information
Discovery and Filtering”, XIV Brazilian Symposium
on Software Engineering, João Pessoa, October 2000,
pp.179-194.

[10] Braga, R., Werner, C.; Mattoso, M.: “The Use of
Mediation and Ontology Technologies for Software
Component Information Retrieval”, Proceedings of
ACM Symposium on Software Reusability (SSR’01),
Toronto, May 2001, pp.19-28

[11] Braga, R.; Mattoso, M.; Werner, C.: “Using Ontologies
for Domain Information Retrieval”, in DEXA 2000 DomE
Workshop, September 2000, pp. 100-104.

[12] Pinheiro, R.: “ComPublish: A System for the
Publication, Search and Retrieval of Software
Components on The Internet”. Master´s Thesis, PESC/
COPPE/UFRJ, 2002 (in Portuguese).

[13] Mattoso, M. et al. “Persistency of components in a
reuse environment”, XIV Brazilian Symposium on
Software Engineering, João Pessoa, October 2000,
pp.251-254 (in Portuguese).

[14] LeSelect - A Mediator System Developed at the Caravel
Project. INRIA, France, In http://www-caravel.inria.fr/
LeSelect/, Accessed in 9/Apr/2003

[15] Guerrieri, E.: “Software Document Reuse with XML”,
Proceedings of ICSR-5, Victoria, BC, Canada, June,
1998, pp. 246-254.

[16] Wiederhold, G.: “Mediators in the Architecture of
Future Information Systems”; IEEE Computer Society
Press, Vol.25, March 1992, pp. 38-49.

[17] Wiederhold, G.; Jannink, J.: “Composing Diverse
Ontologies”; 8th Working Conference on Database
Semantics (DS-8), Rotorua, New Zealand, January 1999.

[18] Nieto, E. M.: OBSERVER: An Approach for Query
Processing in Global Information Systems based on
Interoperation across Pre-existing Ontologies,
Doctoral Thesis, Universidade de Zaragoza, November
1998.

[19] Google Search Engine, http://www.google.com,
Accessed in 9/Apr/2003.

[20] Costa, M.: “CompAgent: A tool for support Domain
oriented information search and Retrieval on the Web”.
Master´s , PESC/COPPE/UFRJ, 2002 (in Portuguese).

[21] AltaVista Search Engine, http://www.altavista.com,
Accessed in 9/Apr/2003.

Software Components Retrieval Through
Mediators and Web Search

Robson P. de Souza, Marcelo N. Costa, Regina M. M. Braga,
Marta Mattoso and Cláudia M. L. Werner

