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Abstract

This paper describes an accurate method for com- . ' SEREN o 1
puting the dimensions of boxes directly from perspective : .‘
projection images acquired by conventional cameras. The :
approach_ls bas_ed on prOJectlve geometry and Compme_%igure 1. Scanner prototype: (left) Its operation. (rigbmera’s view
the box dimensions using data extracted from the box si- ™ from another position showing the recovered dimensions and
Ihouette and from the projection of two parallel laser be- uncertainty computed in real time.
ams on one of the imaged faces of the box. In order to
identify the box silhouette, we have developed a statis-
tical model for homogeneous-background-color removal 1. INTRODUCTION
that works with a moving camera, and an efficient voting ~ The ability to measure the dimensions of three-
scheme for the Hough transform that allows the identifi- dimensional objects directly from images has many prac-
cation of almost collinear groups of pixels. We demons-tical applications including quality control, surveiliee
trate the effectiveness of the proposed approach by autoanalysis of forensic records, storage management and cost
matically computing the dimensions of real boxes usingestimation. Unfortunately, unless some information rela-
a scanner prototype that implements the algorithms andting distances measured in image space to distances me-
methods described in the paper. We also present a discugasured in 3D is available, the problem of making mea-
sion of the performed measurements, and an error propa-surements directly on images is not well defined. This
gation analysis that allows the method to estimate, fromresults from the inherent ambiguity of perspective projec-
each single video frame, the uncertainty associated to alltion caused by the loss of depth information.
measurements made over that frame, in real-time. This paper presents a method for computing box di-

mensions from single perspective projection images in a

Keywords: Computing dimensions of boxes, image- completely automatic way. The approach uses informa-
based metrology, extraction of geometric information tion extracted from the silhouette of the target boxes and
from scenes, uncertainty analysis, real time. can be applied when at least two of their faces are visible,
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even when the target box is partially occluded by other 2. RELATED WORK
objects in the scene (Figure 1). We eliminate the inherent  Many optical devices have been created for making
ambiguity associated with perspective images by projecmeasurements in the real world. Those based on active
ting two parallel laser beams, apart from each other by a&echniques project some kind of energy onto the surfa-
known distance, onto one of the visible faces of the box.ces of the target objects and analyze the reflected energy.
We demonstrate this technique by building a scanner proExamples of active techniques include optical triangula-
totype for computing box dimensions and using it to com- tion [1] and laser range finding [22] to capture the shapes
pute the dimensions of boxes in real time (Figure 1). Thisof objects at proper scale [17], and ultrasound to measure
can be an invaluable tool for companies that manipulatedistances [10]. In contrast, passive techniques rely only
boxes on their day-by-day operations, such as courierspn the use of cameras for extracting the three-dimensional
airlines and warehouses. structure of a scene and are primarily based on the use of
The paper presents a revised and significantly extenstereo [18]. In order to achieve metric reconstruction[13]
ded version of the work originally described in [9]. The both optical triangulation and stereo-based systems re-
new materials in this extended version include: (i) the usequire careful calibration. For optical triangulation, ees
of variable-size elliptical Gaussian kernels in the Houghimages of the target object with a superimposed moving
transform voting procedure (Section 5). The use of suchpattern are usually required for accurate reconstruction.
kernels makes the transform more robust to discretization Labeling schemes for trihedral junctions [4, 15] have
errors and allows the proper detection of support silhou-been used to estimate the spatial orientation of polyhe-
ette lines of boxes with bent edges; (ii) the determinationdral objects from images. These techniques tend to be
of the plane spanned by the laser beams using a calibresomputationally expensive when too many junctions are
tion procedure (Subsection 3.2.1). The use of calibrateddentified. Additional information from the shading of the
data removed the only assumption in the original deriva-objects can be used to improve the process. Silhouettes
tion [9] of the equations shown in Section 3 and improved have been used in computer vision and computer graphics
the accuracy of the method; (iii) the statistical analy$is o for object shape extraction [16, 21]. These techniques re-
the results (Section 7.1) was significantly enhanced conquire precise camera calibration and use silhouettes-obtai
sidering a larger number of real boxes and new graphsied from multiple images to define a set of cones whose
that improve the interpretation of these results. Such arintersections approximate the shapes of the objects.
analysis shows that the proposed approach is both accu- Criminisi et al. [5] presented a technique for making
rate and precise; and (iv) a modeling of the error propaga3D affine measurements from a single perspective image.
tion along all steps of the algorithm that allows our system They show how to compute distances between planes pa-
to estimate the uncertainty in the computed measurementsallel to a reference one. In case of some distance from
in real time (Section 7.2). a scene element to the reference plane is known, it is
The main contributions of this paper include: possible to compute the distances between scene points
and the reference plane. If such a distance is not known,

e An algorithm for computing the dimensions of bo- the computed dimensions are correct up to a scaling fac-

xes in a completely automatic way in real-time (Sec- tor. The technique requires user interaction and cannot
tion 3); be used for computing dimensions automatically. Pho-

togrammetrists have also made measurements based on

e An algorithm for extracting box silhouettes in the single images [23], but these techniques also require user
intervention.

presence of partial occlusion of the box edges (Sec- )
tion 3.1): In a work closely related to ours, Lu [20] described a

method for finding the dimensions of boxes from single
gray-scale images. In order to simplify the task, Lu as-
sumes that the images are acquired using parallel ortho-
graphic projection and that three faces of the box are visi-
ble simultaneously. The computed dimensions are appro-
. ) ) o ximately correct up to a scaling factor. Also, special care
* An efficient voting scheme for identifying nearly s required to distinguish the actual box edges from lines
collinear line segments with a Hough transform j, the hox texture, causing the method not to perform in
(Section 5); real time.
Our approach computes the dimensions of boxes from
e A derivation of how to estimate the error associated single perspective projection images, producing metric
with the computed dimensions from a single image reconstructions in real time and in a completely automatic
in real time (Section 7.2). way. The method can be applied to boxes with arbitrary

o A statistical model of homogeneous background co-
lor for use with a moving camera under different
lighting conditions (Section 4);
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Contour
Direction

Figure 2. Identifying the target box silhouette. Naive amh: (b) Background segmentation, followed by (c) Highspiiter (note the spurious
“edge” pixels). Proposed approach: (d) Contouring of thedoound region, (e) Contour segmentation, (f) Groupinglitate segments for the
target silhouette, and (g) Recovery of supporting linesiitiouette edges and vertices.

textures, can be used when only two faces of the box argrocedures [13].
visible, even when the edges of the target box are partially  The number of visible faces of the box can be ob-

occluded by other objects in the scene. tained by checking if the projection of some of the ed-
ges that share the same direction in 3D is (almost) pa-

rallel in 2D. In this case, two faces of the box are vi-
3. COMPUTING BOxX DIMENSIONS sible; otherwise, three faces are visible simultaneously.

We model boxes as parallelepipeds although real bo—AIthOUgh this approach has proven to produce good re-

: . sults for well-constructed boxes, most real boxes present
Xes can present many imperfectiorsy, bent edges and

. X : some distorted edges, which breaks the parallelism as-
corners, asymmetries, etc.). The dimensions of a paralle=

lepi . sumption. Thus, in practice, it is more effective to as-
epiped can be computed from the 3D coordinates of four o : .
. . sume that three box faces are visible. Since the system is
of its non-coplanar vertices. Conceptually, the 3D coor- capable of computing the dimensions of boxe8(akiz
dinates of the vertices of a box can be obtained by inter- P puting '

. . , we can afford to discard frames if the silhouettes recove-
secting rays, defined by the camera’s center and the pro-

jections of the box vertices on the camera’s image pIanered from the acquired images do not satisfy the imposed

with the planes containing the actual faces of the box in?equlrements. In this case, the perception of the user is

3D. Thus, before one can compute the dimensions of a gi_S|m|Iar to that of a barcode scanner user: if no answer is

ven box (Section 3.3), its necessary to find the projec'[ionscomi.ng out, just slightly (?han_ge the scanne_r's orientation
of the vertices on the image (Section 3.1), and then ﬁndrelatlvely to the target object in order to get .
the equations of the planes containing the box faces in 3D
(Section 3.2). 3.1. FINDING THE PROJECTIONS OF THE VERTI-

In the following derivations, we assume that the ori- CES
gin of the image coordinate system is at the center of the The projection of the vertices can be obtained as the
image, with theX-axis growing to the right and thg- corners of the box silhouette. Although edge detection
axis growing down, and assume that the imaged boxesechniques [3] could be used to find the box silhouette,
have three visible faces. The case involving only two visi- these algorithms tend to be very sensitive to the presence
ble faces is similar. Also, we assume that the images usedf other high-frequency contents in the image. In order
for computing the dimensions were obtained through li-to minimize the occurrence of spurious edges and sup-
near projectioni(e., using a pinhole camera). Although port the use of boxes with arbitrary textures, we perform
images obtained with real cameras contain some amourgilhouette detection using a model for the background pi-
of radial and tangential distortions, we compensate suchxels. Since the images are acquired using a handheld ca-
distortions in real time with the use of simple warping mera, proper modeling of the background pixels is requi-
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red and will be discussed in detail in Section 4. ..to w
However, as shown in Figure 2 (a, b and c), a naive ap-
proach that just models the background and applies sim-
ple image processing operations, like background remo-
val and high-pass filtering, does not properly identify the
silhouette pixels of the target box (selected by the user by
pointing the laser beams onto one of its faces). This is
because the scene may contain other objects, whose si-
Ihouettes possibly overlap with the one of the target box.
Also, the occurrence of some misclassified pixels (see Fi-
gure 2, c) may lead to the detection of spurious edges.
Thus, a suitable method was developed to deal with these
problems. The steps of our algorithm are shown in Figu-
res2(a, d, e, fandg).
In our approach, the target box silhouette is obtained
starting from one of the laser dots, finding a silhouette ,12
pixel and using a contour-following procedure [12]. The 3
seed silhouette pixel for the contour-following is found
stepping from the laser dot within the target foreground
region and checking whether the current pixel matches ,a)o
the background model. In order to be a valid silhouette,
both laser dots need to fall inside of the contouring re- Figure 3. Vanishing points«) and vanishing linesX;). e;, v;, mo,
gion. Notice this procedure produces a much cleaner set acgrfﬂiczs :E: isnlﬂ]%?(i/rgr’:gx"gﬁz ‘;ﬁ;sfg;g‘;e;ethegggi: ﬁgi;pj'ht?uet
of border pixels (Figure 2, d) compared to results shown
in Figure 2 (c). But the resulting silhouette may include
overlapp_ing objects, and one still needs to iden_ti_fy which ihe rate of abou9 fps).
border pixels belong to the target box. To facilitate the

handling of the border pixels, the contour is subdivided the six vertices are obtained intersecting pairs of adja-

into its most perceptually significant straight line seg- S . ;
ments [19] (Figure 2, €). Then, the segments resultingcentsupportmgImesforthe silhouette edges (Figure.2, g)

L ) : .. “Section 5 discusses how to obtain those supporting lines.
from the clipping of a foreground object against the limits
of the frame €.9.,segments, o andp in Figure 2, e) are
discarded. Since a box silhouette defines a convex poly3-2: COMPUTING THE PLANE EQUATIONS
gon, the remaining segments whose two endpoints are not  1he set of all parallel lines in 3D sharing the same
visible by both laser dots can also be discarded. This tesfliréction intersect at a point at infinite whose image un-
is performed using a 2D BSP-tree [11]. In the example ofd€r Perspective projection is called a vanishing paint
Figure 2, only segments d, &, [, ¢, u andv pass this test.  1he line defined by all vanishing points from all sets of

still, there is no guarantee that all the remaining Seg_paraIIeI lines on a planH is called the vanishing ling

ments belong to the target box silhouette. In order to resOf I (Figure 3). The normal vector & in a given ca-

trict the amount of possible combinations, the remainingMera’s coordinate system can be obtained multiplying the

chains of segments defining convex fragments are grou;ranspose of the camera’s intrinsic-parameter matrix by

ped €.g.,groupsA, B andC in Figure 2, f). We then try the coefficiems of\ [.13]. Sinc_e the resulting vector_is
to find the largest combination of groups into valid por- not necessarily a unit vector, it needs to be normalized.

tions of the silhouette. In order to be considered a valigEduations (1) and (2) and Figure 3 show the relationship
combination, the groups must satisfy the following vali- 2M0ng the vanishing poinis;, vanishing lines\; and the
dation rules: (i) they must characterize a convex polygon:SUPPorting lines:; for the edges that coincide with the
(ii) the silhouette must have six edges (the silhouette ofMaged silhouette of a parallelepiped with three visible
a parallelepiped with at least two visible faces); (iii) the faces: The supporting lines are ordered clockwise.

laser dots must be on the same box face; and (iv) the com-

puted lengths for pairs of parallel edges in 3D must be Wi = €i X Cit3 1)
approximately the same. In the case of more than one Ai = Wi X W(i41)mod3 (2)
combination of groups pass the validation tests, the sys-

tem discards this ambiguous data and starts processingwhere0 < i < 2,0 < j < 5, \; = (ax,,bx,,cx,)? and
new frame (our system is capable of processing frames ak is the cross product operator. The normaj, to plane

Once the box silhouette is known, the projections of
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11, is then given by

RKT);
N, = ——— 3
. _ Box
whereNy, = (An,, Bn,, Cr, ). K is the matrix that mo- d,
dels the intrinsic camera parameters [13] dds a re- / Face Normal
flection matrix (Equation 4) used to make theaxis of o o
the image coordinate system grows in the up direction. N
L
Qy Y Og 1 0 O 2 A
K = 0 oy oy , R= 0 —1 0 (4) Ib I P,
0 0 1 0 0 1 Py i q
Laser Beams i 7 A o
In Equation (4).a; = f/s, andey, = f/s,, where
fis the chal Iength, and, ands, are the dimensions of M § x Laser Dots
the pixel in centimetersy, o, ando, represent the skew Camera | —

and the coordinates of the principal point, respectively.
Figure 4. Top view of a scene. Two laser beams apart in 3B;,by

. Once we hanVHi' f'nd'”g DHi’_the fourth CO_ef'fI- project onto one box face at pointy and P;, whose distance in 3D is
cient of the plane equation, is equivalent to solving the dyy. « is the angle between L and N, .

projective ambiguity and will require the introduction of

one more constraint. Thus, consider the situation depic-

ted in 2D in Figure 4 (left), where two laser beams, pa-the normal vector of the face onto which the dots project,
rallel to each other, are projected onto one of the facesand the known distanag,:

of the box. Let the 3D coordinates of the laser dots de-

fined with respect to the camera coordinate system be dy = d  _ du (10)

ld — -
Py, = (XPO,YPO,ZPO)T and P, = (Xpl,Ypl,Zpl)T, COS(a) _(NLL)

respectively (Figure 4, right). Sind&, and P; are on the

: whereq is the angle betweelN,, the normalized projec-
same planél, one can write

tion of N1 onto the plane defined by the two laser beams,
AnXp,+BuYp,+CnZp, = AuXp,+BuYp, +CruZp, andL is the vector representing the laser beam direction.
(5) For now, we will assume that the laser plane is parallel to
Using the linear projection model and given the cameraXZ plane and. = (0,0, 1)". Therefore N
pi = (xp,,yp,,»1)7, the homogeneous coordinates of iS obtained by dropping thE coordinate ofN; and nor-
the pixel associated with the projection of poft one ~ Malizing the resulting vectou;, can also be expressed as

can reprojecp; on the planeZ = 1 (in 3D) using the Euclidean distance between the two laser dots in 3D:
p/i = (IP; » Ypl 1)T = RK?lpi (6) dlzd = (Xp, _XP0)2+(YP1 _YP0)2+(ZP1 _ZP0)2 (11)
and express the 3D coordinates of the laser dots on thgypstituting Equations (7), (8) and (10) into (11) and sol-
face of the box as ving for Zp,, one gets
Xp, =apZp, ; Yp, =y Zp, and Zp,  (7) 5
' ' d
Substituting the expression foXp,, Yp,, Xp, and Zp, = ak2+2dbk+c (12)
Yp, (Equation 7) in Equation (5) and solving f@ip,, we
obtain wherea = (2, )% + (Ypy)* + 1,0 = 2 2 +ypr ypr +1
Zpy =kZp, ®)  andc= (Tp)? + (yp; ) + 1. GivenZp,, the 3D coordi-
where P . nates ofP; can be computed as
nZy + Bnyy +Cn
k - 1 1 9 = T = / / T
Apr6 + BHyp6 ¥ CH ( ) P (XP1 ) YP1 ) ZP1) (:Epl ZP1 ) yp] ZP1 ) ZP1 )(13)

Now, letd;;, andd;q be the distances, in 3D, between The projective ambiguity can be finally removed by
the two parallel laser beams and between the two laseeomputing theDr; coefficient for the plane equation of
dots projected onto one of the faces of the box, respectithe face containing the two dots:
vely (Figure 4). Section 6 discusses how to find the laser
dots on the image;, can be directly computed fromvy, Dn = —(AnXp, + BuYp, +CnZp,) (14)
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3.2.1. Estimating the Laser Plane: In practice, it is 52 G
difficult to guarantee that the plane defined by the laser § 15
beams is parallel to the camer&s” plane, and that the g 10k
L vector is aligned with the cameté-axis. In our scan- 2 in . ——
ner prototype, we noticed that although the laser beams § ? E
are parallel to each other, the plane they defifig)(is G O —— é - .
not parallel to the camera’s Z plane. Therefore, it is ne- c Chromaticity Axis
cessary to take into account the angle between these two S _ o
planes before computing, and theni,q (Equation 10). 8 ey e ciorion taheid for

The orientation ofI;, and the direction of thé vec- each slice (the small rectangles).

tor were estimated projecting the laser beams on a planar

checkerboard calibration pattern, placed at varying dis-

tances from the scanner. By collecting the coordinatessults for our application. Shading variations in the back-
of a set of 3D points (corresponding to these projections)ground and shadows cast by the boxes usually lend to mis-
along the laser lines, we estimated bbtl's orientation  classification of background pixels. Horprasatral. [14]
andL’s direction with respect to the camera’s coordinate describe a statistical method that computes a per-pixel

system. model of the background from a set of static background
images. While this technique is fast and produces very
3.3. COMPUTING THE BOX DIMENSIONS good segmentation results for scenes acquired from a sta-

Having computed the plane equation of a face of thelic camera, it is not appropriate for use with moving ca-
box, one can recover the 3D coordinates of vertices of thaf€ras- Also it requires a complete new calibration when
face. For each such vertexon the image, we computé the lighting conditions change too much. To avoid pro-

using Equation (6). We then compute its correspondingblems from lighting changes, a threshold sollution based
Zy coordinate by substituting Equation (7) into the plane ©n hué component of the HSV color space might seem to

equation for the face. Givefy,, both Xy andYy coor- bg a goo.d solution. Howgver, such an approach tends to
dinates are computed using Equation (7). Since all visiblgMisclassify foreground pixels whose colors are close to
faces of the box share some vertices with each other, thd€ background color. _

D coefficients for the other faces of the box can also be [N order to support a moving camera, we have deve-
obtained, allowing the recovery of the 3D coordinates of loped an approach that proved to be robust, lending to
all vertices on the box silhouette, from which the dimen- Very satisfactory results. It works under different ligtui

sions are computed. conditions by computing a statistical model of the back-
Although not required for computing the dimensions 9round, which contains a single hue. Such a model is
of the box, the 3D coordinates of the inner vertex (Fi- defined by achromaticity axisthat represents the mean

gure 3, top) can also be computed. Its 2D coordinate€Xpected shade of the background under various lighting

are obtained as the intersection among three lines. Eacfonditions and golynomial curvedescribing a variable
such line is defined by a vanishing point and the silhou-threshold along the chromaticity axis.

ette vertex falling in between the two box edges used to  Thealgorithmtakes as input a sevoimages/; of the
compute that vanishing point. This situation is illustra- Packground acquired under different lighting conditions.
ted in Figure 3. Since it is unlikely that these three lines IN the first step, we computg, the average color of all
will intersect exactly at one point, we approximate this in- Pixels in allimages’;, and the eigenvalues and eigenvec-
tersection using least-squares. Given the inner vertex 2030rs associated with the colors of those pixeisand the
coordinates, its corresponding 3D coordinates are coméigenvector associated with the highest eigenvalue define

puted using the same algorithm used to compute the 3C~N axis in the RGB color space (the chromaticity axis).
coordinates of the other vertices. The chromaticity distortior of a given colorC' is com-

puted as the distance frofto the chromaticity axis.
After discarding the pixels whose projections on the
chromaticity axis have at least one saturated channel (they

4. A MODEL FOR BACKGROUND PI-  |end to misclassification of bright foreground pixels), we
XELS subdivide the chromaticity axis inte slices (Figure 5).

In order to obtain the box silhouette, we need to clas-For each slice, we comput& and og,, the mean and
sify the pixels as either background or foreground pixels.the standard deviation, respectively, for the chromaticit
One of the most popular techniques for object segmentadistortion of the pixels in the slice. Then, we com-
tion is chroma keying [24]. Unfortunately, standard ch- pute a threshold; for the maximum acceptable slice-
roma keying techniques do not produce satisfactory re-chromaticity distortion considering a confidence level of
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Figure 6. Hough Transform parameter space obtained withdheentional (left) and the new voting scheme (right) agpto the segments shown
in Figure 2 (). The peaks represent the supporting linesifbouette edges.

99% asdr; = d; + 2.3304,. the detection of the most significant lines is computatio-
Finally, the coefficients of a polynomial that models nally intensive and turned out to be a bottleneck to our
the chromaticity-distortion thresholds are computed bysystem. To reduce the amount of computation, an alterna-
fitting a curve through thér values at the centers of the tive to the conventional voting process was developed.
slices (Figure 5). Intuitively, such a polynomial descsbe

X ) As seen in Section 3.1, silhouette pixels are organized
a variable threshold for the different shades of the back~ . perceptually most significant straight-line segments

ghrOl;lnd C(I)Ior. Oncz_the C(;)e;flmednti have been con}putelhe new voting scheme consists in casting votes directly
the d values are discarded and the tests are performeg, i, qq segments, instead of for individual pixels as it is

liraditionally done [7]. Thus, for each segment, tped)
parameters of its supporting line are computed from the
average position of the set of pixels defining the segment
Co . and from the 2D eigenvectors of that pixel distribution.
|s_|l|)||gagge: tha.?. tZe th;GShOId dec;‘med by the polynondgal, The eigenvector with the smaller eigenvalue is the nor-
Wil b€ classilied as foreground. mal to the line, s can be computed as the dot product

. Changing the background color only requires _obtai- between this eigenvector and the average pigek the
ning samples of the new background and computing theangle between th& -axis of the image and the secondary
new values for the chromaticity axis and the coefficients

fh | Al It ible that the b eigenvector. The use of eigenvectors makes the process
oft € polynomial. It IS F;]OSS' it att_e_ o;textgre May yobust, allowing it to handle lines with arbitrary oriertat
contain some pixels whose chromaticity distortions are i 2 consistent way.

smaller than the threshold defined by the polynomial for

a given background color shade. In this case, the classi- For each segment, we distribute its votes in the para-
fication process would incorrectly indicate the presenceMeter space using a Gaussian elliptical kernel (Figure 6,
of background pixels inside the box region. However, right), whose central position is defined by thed) para-

the silhouette detection approach described in Section 3.Mneters of the line fit to its set of pixels. The Gaussian ker-
can handle groups of misclassified foreground pixels andnel spread the votes over a region of the parameters space
in practice, no problems have been noticed as a result ofround(p, #), according to the quality of the fit. Notice
possible such misclassification. According to our experi-however, that different segments have different numbers

mentsJOO slices and a po'ynomia' of degree 3 produce of piXeIS, as well as have different degrees of diSperSion
very satisfactory results. around their corresponding best-fitting lines. The smaller

the dispersion, the more concentrated these votes should
be in the parameter space. We estimate the quality of the
line fit by computing the variances and covariance of the
5. IDENTIFYING ALMOST COLLINEAR  (, 9) parameters. The variances give the dimensions of
SEGMENTS the axes of the elliptical kernel, while the covariance give
To compute the image coordinates of the box verticesthe orientation of the ellipse. One can compute the vari-
first we need to obtain the supporting lines for the silhou-ances and covariance pfandé using a linear regression
ette edges. We do this using a Hough transform proceprocedure [6]. However, standard linear regression proce-
dure [7]. However, the conventional voting process anddures use the slope-intercept line notation, so one can use

C being tested against the background color mo@éis
the projection of” on the chromaticity axis. In this exam-
ple, as the distance betweéhand the chromaticity axis
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a first order uncertainty propagation analysis [25] to com-large areas with saturated pixels. We solved this problem
pute the variances and covariance@ndd from the va- by setting the camera’s shutter speed so that the laser dots
riances and covariances of the slope-intercept parameterare the only elements in the image with high luminance.
Once one has computed the variances and covariance as- Since the image of a laser spot is composed by seve-
sociated witfp andd, the votes are cast using a bi-variated ral pixels, we approximate the actual position of the dot
Gaussian distribution [26]. The use of a Gaussian kerneby the centroid of its pixels. According to our experi-
distributes the votes around a neighborhood, allowing thements, a variation of one pixel in the estimated center of
identification of approximately collinear segments. This the laser spot produces a variation of a few millimeters
is a very important and unique feature of our approachin the computed dimensions. These numbers were obtai-
that allows our system to better handle discretization erned assuming a camera standing about two meters from
rors and boxes with slightly bent edges. A detailed ex-the box. After computing the position of the inner ver-
planation about the proposed voting process can be foungex (Section 3.3), the face that contains the laser dots is
in [8]. identified.

Using the new approach, the voting process and the The system may fail to properly detect the laser dots if
peak detection are significantly improved because thethey project on some black region or if the surface exhi-
amount of cells that receive votes is substantially redu-bits specular peaks. This, however, can be avoided by
ced. Figure 6 shows the parameter space after the traditiaiming the beams on other portions of the box. Due to the
onal (left) and the new (right) voting processes have beerconstruction of the scanner prototype and to some epipo-
applied to the segments shown in Figure 2 (f). Using thelar constraints [13], one only needs to search for the laser
conventional (i.e., per-pixel) voting scheme [376,884  dots inside a small window in the image. Although a sin-
votes are distributed ove?28,255 cells. In contrast, gle laser beam could be used to break the projective am-
the new approach only cagis382 votes distributed over  biguity, the use of two beams introduces additional cons-
5,020 cells, which represents7% of the number of votes  traints that make silhouette identification more robust.
and2.2% of the number of cells used in the conventional
approach. As a result, the produced voting map is very
clean (Figure 6, right), reducing ambiguities and impro-
ving the identification of the most important lines. The /- RESULTS
extra cost involved in computing the covariance matrices We have built a prototype of a scanner for compu-
associated with a few segments and by the use of Gauding box dimensions and implemented the techniques des-
sian elliptical kernels to cast votes is more than compen-cribed in the paper using C++. The system was tested
sated by the huge saving achieved. on several real boxes. For a typical scene, such as the

Special care must be taken when thparameter is  one shown in Figure 2, it can process video and com-
close to0° or to 180°. In this situation, the voting process pute box dimensions at abo9 fps. For comparison,
continues in the diagonally opposing quadrant, at-the the frame rate drops ta0 fps if the traditional pixel-
position (see Figure 6, peaksandt). For the examples based Hough-transform voting scheme (Figure 6, left) is
shown in the paper, the parameter space was discretizedsed. Such numbers illustrate the effectiveness of the pro-
using 360 angular steps in the range= [0°,180°) and posed voting solution. These measurements were made
1,600 p values in the rangp-400, 400). on a2.8 GHz PC with1.0 GB of memory. A video se-

guence illustrating the use of our scanner can be found at
http://www.inf.ufrgs.br/"laffernandes/boxdimensions
Figure 1 (left) shows the scanner prototype whose

6. FINDING THE LASER DOTS hardware is comprised of a firewire color camera (Point

The ability to find the proper positions of the laser dots Grey Research DragonFly witht0 x 480 pixels), al6
in the image can be affected by several factors such asnm lens (Computar M1614, with manual focus, no iris
the camera’s shutter speed, the box materials and textuand 30.9 degrees horizontal field of view) and two laser
res, and ambient illumination. Although we are using a pointers. The camera is mounted on a plastic box and the
red laser §50 nm class II), we cannot rely simply on the laser pointers were aligned and glued to the sides of this
red channel of the image to identify the positions of the box. In such an assembly, the laser beamslarg cm
dots. Such a procedure would not distinguish between theapart. For our experiments, we acquired pictures of boxes
laser dot and red texture elements on the box. Since thérom distances varying fror.7 to 3.0 meters to the ca-
pixels corresponding to the laser dots present very high lumera. The background was created using a piece of green
minance, we identify them by thresholding the luminance cloth and its statistical model was computed from a set of
image. However, just simple thresholding may not work 23 images. Figure 7 shows some examples of boxes used
for boxes containing white regions, which tend to have to test our system. Some of these boxes are particularly
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computer graphics techniques. Using images generated
by the simulator, our system can recover the dimensions
of the box with an average relative error@58%. Next,

we analyze some of the results obtained on real boxes.

7.1. STATISTICAL ANALYSISON REAL BOXES

In order to evaluate the effectiveness of the proposed
approach, we carried out a few statistical experiments.
First, we selected several real boxes (Figure 7) and ma-
nually measured the dimensions of all their edges with a
ruler. Each edge was measured twice, once per shared
face of the edge. The eight measurements of each box
dimensions were averaged to produce a single value per
© (d) dimension. All measurements were made in centimeters.

We then used our system to collect a totaBdfmeasure-

ments of each dimension of the same box. For each col-
lected sample, we projected the laser beams on different
parts of the box. We used this data to compute the mean,
standard deviation and confidence intervals for each of
the computed dimensions. The confidence intervals were

computed a€’'l = |T — by T T e | wherez is

(f) the meang is the standard deviation,is the size of sam-
)

ple andt, is at—Student variable witm — 1 degrees of
freedom, such that the probability of a measuizelongs
to CI isv. The tightest the”' ], the more precise are the
computed values.

Figure 8 shows the computed confidence intervals
with v = 99.5%. Note that the values of the actual di-
(9) (h mensions (the red line) fall inside most these confidence

intervals, indicating accurate measurements. Boxes (f),
Figure 7. Examples of real boxes used for testing. (g) and especially the wooden box (h) are the ones with
tightest confidence intervals. Those are well constructed
) boxes. Wider confidence intervals were obtained for bo-
xes with bent faces and edges, like boxes (a) and (e). The
only box whose actual dimensions do not fall inside the
confidence interval is box (d). This box has a cardboard
camera (Equation 4) were estimated using a calibrationdd that changes the box silhouette, shifting the computed
procedure [2]. mean values away from the true ones.

The geometry of the box is somewhat different from Another estimate of the error can l_Je expressed as the
a parallelepiped due to imperfections introduced duringrélative errore = |z —z, | /z,,, wherez is the computed
construction and handling. For instance, bent edges, difdimension and:, is the value of the actual dimension. Fi-
ferent sizes for two parallel edges of the same face, lack offuré 9 shows a histogram of the relative errors in the me-
parallelism between opposing faces, and warped corner§Surements obtained with our scanner prototype for the
are not unlikely to be found in practice. Such inconsisten-P0xes shown in Figure 7. The higher relative errors were
cies lend to errors in the orientation of the silhouette ed-cOmputed for boxes (a), (d) and (e) (the ones exhibiting

ges, which are cascaded into the computation of the boxmperfections) and is in accordance with the experiment
dimensions. summarized in Figure 8. Considering all measurements,

In order to estimate the inherent inaccuracies of thethe mean relative error for all real boxes}ig5%, indica-

proposed algorithm, we performed measurements on &N9 Very good accuracy.

wooden box (Figure 7, h) that was carefully constructed

to avoid these imperfections. We have also implemented &.2. ERROR PROPAGATION

simulator that performs the same computations onimages The error associated to a variablecomputed from a

of synthetic boxes (exact parallelepipeds) generatedjusinset of experimental data can be estimated using the fol-

——

challenging: (e), (f) and (g) are very bright; (f) and (g
have a reflective plastic finishing; and box (b) is mostly
covered with red texture. The dimensions of these boxe
vary from13.8t0 48.2 cm. The intrinsic parameters of the
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Given these variables, the Jacobian of the function that
Edges computes the length of the target box edges can be ob-
. . . tained as shown in Equation 17. The partial derivatives
Figure 8. Confidence intervals computed from measuremérite o . lculated usi he chai | h f
edges of the boxes shown in Figure 7. The boxes edges ard byrte In Vf_are calculate _usmg t_ e chain rule over the set o
length. equations presented in Section 3.

| | vi=(ge o & )
lowing error propagation model [25]:
- The error propagation model expressed by Equati-
Aw=VfAs Vf (15) ons 15, 16 and 17 allows our system to estimate the un-
whereA,, is the covariance matrix that models the errors certainty associated with the measurement of each edge
in w; V f is the Jacobian matrix for the functigify) that of the box in _reaI time. This mformaupn can be useq to
computes each term of from then input variables; and ~ discard unreliable measurements, which may result if the
Ay is the covariance matrix that models the errors of theP0X is relatively far from the camera, or if one of the box
input variables. The model assumes a Gaussian distribu€d9es approaches a direction almost perpendicular to the
tion of the errors around the mean values estimated byfameras image plane.
f(99) and allows the computation of confidence intervals ~ Special care must be taken when choosing the dis-
for the length of each visible edge using a single inputtance between the laser beams. The uncertainty in the
image. computed dimensions increases as the lasers distance de-
To apply this error propagation model, one needs tocreéases, because the relative error tends to increase as the
estimate the error associated to each input variable. In th&istance becomes smaller. However, the distance between
proposed method, the input variables are: the laser beams constrains the minimal accepted size for
a box, since both laser dots must fall inside the same face.
e h; = (pi,ei)T, 0 < i < 5: the coefficients of the  So, for a given application, one should consider a trade-

normal equation of the supporting lines for the si- off between the minimal box size and the accepted uncer-
Ihouette edges (12 variables); tainty in the measurements.

o pj= (:z:p].,ypj)T, 0 < j < 1: the image coordinates

of the laser dots (4 variables); 8. CONCLUSIONS AND FUTURE WORK

e dj: the distance between the laser beams (1 varia- We have presented a completely automatic approach
ble); for computing the dimensions of boxes from single pers-
pective projection images in real time. The approach uses
e K: the camera’s intrinsic-parameters matrix (5 vari- information extracted from the silhouette of the target box
ables); and removes the projective ambiguity with the use of two
parallel laser beams. We demonstrated the effectiveness
of the proposed techniques by building a prototype of a
scanner and using it to compute the dimensions of seve-
So, Ay is a25 x 25 covariance matrix, comprised by ral real boxes even when the edges of the target box are

o [ = (XL,YL,ZL)T: the laser beam direction (3
variables).

the variances and covariances of all input variables: partially occluded _by other objects. ) )
We have also introduced an algorithm for extracting
Ay =diag (Ang, - -y Ang, Apo s Apy, Aay,, A, AL) box silhouettes in the presence of partially occluded ed-

(16) ges, an efficient voting scheme for grouping approxima-
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tely collinear segments using a Hough transform, and a [7] R. O. Duda and P. E. Hart. Use of the Hough
statistical model for background removal that works with transformation to detect lines and curves in pictu-
a moving camera and under different lighting conditions. res.Communications of the ACM5(1):11-15, Jan.
We validated the proposed approach performing a statisti- 1972.
cal analysis over measurements obtained with our scanner
prototype from real boxes. In addition, we presented an [8] L. A. F. Fernandes. Um método projetivo para
analytical derivation of uncertainty propagated along the calculo de dimensdes de caixas em tempo real. Mas-
entire computation chain that allows real-time estimation ter's thesis, Universidade Federal do Rio Grande do
of the error in the computed measurements. The statistics ~ Sul, Porto Alegre, RS, Brazil, Jan. 2006. (in Portu-
and experimental validation have shown that the proposed  guese).
approach is accurate and precise.

Our algorithm for computing box dimensions can also [9] L. A. F. Fernandes, M. M. Oliveira, R. da Silva,
be used by applications requiring heterogeneous back- ~ @nd G. Crespo. Computing box dimensions from
grounds. For that, background detection can be perfor- single perspective images in real time. Rrocee-

med using a technique like the one described in [14]. In dings of XVIIl Brazilian Symposium on Computer
this case, the camera should remain static while the boxes ~ Graphics and Image Processing (SIBGRAPI 2005)
are moved on some conveyor belt. pages 155—162, Natal, RN, BraZiI, Oct. 2005. IEEE

We believe that these ideas may lead to optimizations ~ Computer Society.
on several procedures that are currently based on manual _ _
measurements of box dimensions. We are currently ex[10] F. Figueroa and A. Mahajan. A robust method to

ploring ways of using arbitrary backgrounds with a mo- determine the coordinates of a wave source for 3-
ving camera. D position sensing. ASME Journal of Dynamic
Systems, Measurements and Conttdl6:505-511,
Sept. 1994.
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