ISSN 0104-6632 Printed in Brazil www.abeq.org.br/bjche

Vol. 25, No. 03, pp. 483 - 490, July - September, 2008

HEAT TRANSFER STUDIES IN A SPIRAL PLATE HEAT EXCHANGER FOR WATER – PALM OIL TWO PHASE SYSTEM

S. Ramachandran^{1*}, P. Kalaichelvi² and S. Sundaram³

 ¹Department of Chemical Engineering and Materials Science, Amrita School of Engineering, Phone: +(91) 422 2656422, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore, Tamil Nadu, 641 105, India. E-mail: jeyramrad@yahoo.com
²Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, 620 015, India.
³Department of Electronics and Instrumentation Engineering, Sastra University, Thanjavur, Tamil Nadu, 613 402, India.

(Received: August 18, 2006; Accepted: March 04, 2008)

Abstract - Experimental studies were conducted in a spiral plate heat exchanger with hot water as the service fluid and the two-phase system of water – palm oil in different mass fractions and flow rates as the cold process fluid. The two phase heat transfer coefficients were correlated with Reynolds numbers (Re) in the form $h = a Re^m$, adopting an approach available in literature for two phase fluid flow. The heat transfer coefficients were also related to the mass fraction of palm oil for identical Reynolds numbers. The two-phase multiplier (ratio of the heat transfer coefficient of the two phase fluid and that of the single phase fluid) was correlated with the Lockhart Martinelli parameter in a polynomial form. This enables prediction of the two-phase coefficients using single-phase data. The predicted coefficients showed a spread of ± 10 % in the laminar range.

Keywords: Heat transfer coefficient; Two - phase flow; Lockhart Martinelli parameter.

INTRODUCTION

Conventional shell and tube heat exchangers have certain operational limitations. These are successfully addressed in compact exchangers such as plate / spiral type equipment. The advantages of these equipments include higher heat transfer rates, less fouling, operational flexibility, ease of maintenance and lower space requirement. They are also better suited to handle slurries, viscous liquids and can be operated where the approach temperatures are low.

In chemical industries, two phase flow is a process necessity. A better understanding of the rates of momentum and heat transfer in multi phase flow conditions is a must for the optimal design of the heat exchanger. (Ho et al., 1995). To simplify the complexities in design, transfer coefficient correlations

are being developed using pure phase thermophysical properties and system parameters like flow geometries and flow velocities. (Jensen, 1988; Gut et al., 2004) Considerable research is being pursued in two phase flow areas particularly in the area of fluid dynamics. The first detailed study in two phase flow was carried out by Lockhart and Martinelli in the year 1949. A number of such studies are cited in the references section (Naphlon and Wongwises., 2002; Manglik and Bergles, 1995; Downing and Gunol Kojasoy, 2002; Chen et al., 2004 Rani Hemamalini, et al., 2005).

However the field which has received relatively less attention is the study of heat transfer involving two phases (especially two immiscible liquids) in a compact heat exchanger. In the present work, experiments were done in a spiral plate heat

^{*}To whom correspondence should be addressed

exchanger with hot water as the service fluid and two-phase mixtures of water and palm oil in different ratios and flow rates as the cold process fluid. Experimental runs with single-phase fluids (pure water and pure palm oil) on the process side were also carried out. The heat transfer coefficients on the cold side were correlated with Reynolds numbers. The heat transfer coefficients were then related to the quality for identical Reynolds numbers. The twophase multiplier (ϕ_L) based on heat transfer coefficients of pure fluid and two-phase mixture correlated well with the Lockhart - Martinelli Parameter (L – M Parameter $-\chi_{tt}^2$). This enables prediction of the two-phase, service side coefficients (for the range of Reynolds numbers studied) using single-phase data. The predicted coefficients showed a variance of \pm 10 % over the experimental values for the Laminar flow range.

MATERIALS AND METHODS

The heat exchanger dimensions are given in Table 1. The experimental setup is illustrated in Figure 1.

The service fluid used was water, heated in a stainless steel vessel by steam purging. A temperature controller was used to maintain the inlet

temperature to the heat exchanger. The process fluid was stored in a separate stainless steel tank. Weighed quantities of food grade palm oil and demineralized water were charged into this tank to obtain the experimental range of mass fractions of palm oil (0% to 100%). Agitation in the tank was maintained by air bubbling. Two fractional horsepower centrifugal pumps were used for the circulation of the two streams of fluids. The two phase side rotameter was calibrated for each experimental mass fraction before the experimental run. Online, calibrated Resistance Temperature Detectors (RTDs) with digital indicators were used for the temperature measurements of the inlet and outlet streams of the service and process fluids.

The service fluid side inlet temperature and flow rate were kept steady. The two phase side flow rate was varied and for each selected flow rate observations of all four temperatures and two flow rates were recorded after steady state was reached. Experimental runs with pure liquids in the process side (water, palm oil) were also carried out. Fouling possibilities were eliminated by cleaning both process side and service side with hot water before each run. This was accomplished by pumping hot, mild detergent solution on both the process and service side followed by rinse pumping with pure hot water.

Table 1: Details of the Spiral Plate Heat Exchanger

Exchanger Details	Value
Channel size, (w x b), m	0.005 x 0.205
Plate thickness, m	0.00063
Flow Length, (L), m	10.926
Heat Transfer Area, m ²	2.24

Brazilian Journal of Chemical Engineering

CALCULATION METHODOLOGY

a) The following basic relations were used for calculating the overall heat transfer coefficients and individual heat transfer coefficients on the single phase and two phase sides.

$$Q = M_h C p_h (\Delta T)_h$$
(1)

 $U = Q / A (\Delta T)_{lm}$ ⁽²⁾

$$Nu = 2.0 \, \text{Gz}^{0.33} \tag{3}$$

This correlation between Nusselt Number (Nu) and Graetz Number (Gz) is adopted from equation 12.25 in the book of McCabe et al. (2001)

$$Nu = h_h d_e / k_h \tag{4}$$

 $Gz = M_h Cp_h / k_h L$ (5)

$$1 / U = 1 / h_{h} + t / k_{ss} + 1 / h_{20}$$
 (6)

b) The Quality Parameter X is defined as

$$X = \frac{1}{1 + \rho_w Q_w / \rho_f Q_f}$$
(7)

c) The Lockhart Martinelli (L – M) Parameter (χ_{tt}^2) is defined as

$$\chi_{tt}^{2} = \left(\frac{1-X}{X}\right)^{2-m} \left(\frac{\rho_{f}}{\rho_{W}}\right) \left(\frac{\mu_{W}}{\mu f}\right)^{m}$$
(8)

d) The factor m is obtained from the correlation

$$\mathbf{h} = \mathbf{a}\mathbf{R}\mathbf{e}^{\mathrm{m}} \tag{9}$$

e) The two phase multiplier $Ø_L$ is defined as

$$\mathcal{O}_{\mathrm{L}} = \mathbf{h}_{2\mathcal{O}} / \mathbf{h}_{1\mathcal{O}} \tag{10}$$

RESULTS AND DISCUSSION

Single Phase Results

The experimental results of single phase studies are presented in the form of a plot between Reynolds Number and $h_{1\phi}$ in Figure 2. Re and $h_{1\phi}$ were correlated by regression analysis in the form given in equation 9 and the values of a and m are given in Table 2.

Two Phase Results

Two phase studies were carried out with different mass fractions of palm oil in water (20%, 40%, 60%, and 80%). The experimental values of the inlet and outlet temperatures of the hot and cold fluids and the corresponding Re values are provided in Table 3.

Figure 2: Variation of Heat Transfer Coefficient with Re for Water-Palm Oil System

Brazilian Journal of Chemical Engineering Vol. 25, No. 03, pp. 483 - 490, July - September, 2008

Palm Oil (%)	а	m
0	0.0004	1.9696
20	0.0003	1.9696
40	0.0002	2.0084
60	0.0001	2.0238
80	0.00008	1.991
100	0.00004	2.0518

Table 2: Correlation Constants a and m for Water - Palm Oil system

Table 3: Experimental values of the inlet and outlet temperatures of the hot and cold fluid

100% Palm Oil						
Sl.No	T _{h1} K	T _{h2} K	Re of Hot Water	T _{c1} K	T _{c2} K	Re of Cold Fluid
1	334	333	3401	303	333	833
2	334	332	3401	303	325	845
3	334	332	3401	303	325	862
4	334	332	3401	303	327	945
5	334	332	3401	303	329	1003
6	334	331	3350	303	324	1057
7	334	331	3350	303	328	1197
8	334	329	3302	303	319	1310
9	334	328	3302	303	319	1330
10	334	329	3302	303	325	1379
10	334	329	3302	303	323	1461
12	334	327	3257	303	325	1607
12	224	327	3257	303	323	1820
15	224	320	3237	303	324	1629
14	224	323	2127	303	216	2130
15	334	321	312/	303	310	2527
	T	T	80 % Paim Oli	T	T	D C
Sl.No	T _{h1} K	T _{h2} K	Re of Hot Water	T _{c1} K	K	Re of Cold Fluid
1	335	333	5449	303	328	833
2	335	333	5449	303	328	852
3	335	332	5361	303	319	869
4	335	332	5361	303	322	936
5	335	331	5361	303	315	952
6	335	331	5361	303	321	1009
7	335	330	5282	303	318	1147
0	225	330	5282	303	217	1147
8	225	329	5205	303	317	1293
9	225	320	5205	303	320	1370
10	333	327	5205	303	314	1390
11	335	327	5205	303	317	1449
12	335	325	5136	303	318	1/19
13	335	323	5056	303	313	1824
14	335	321	4979	303	311	2157
15	335	321	4890	303	308	2549
	1		60% Palm Oil	1	1	1
Sl.No	T _{h1} K	T _{h2} K	Re of Hot Water	T _{c1} K	T _{c2} K	Re of Cold Fluid
1	334	332	7062	303	329	842
2	334	331	6958	303	322	879
3	334	331	6958	303	323	853
4	334	330	6958	303	317	946
5	334	330	6958	303	320	975
6	334	329	6856	303	317	990
7	334	329	6856	303	315	1152
v v	224	320	6765	303	313	1200
0	224	227	6765	202	202	1257
9	224	527 226	0/00	203	323	1337
10	334	520 225	0/05	303	217	1305
11	554	325	6660	303	317	1411
12	334	323	6559	303	318	1669
13	334	321	6461	303	313	1874
14	334	320	6461	303	314	2169
15	334	317	6402	303	312	2482

Brazilian Journal of Chemical Engineering

Continuation Table 3

40 % Palm Oil						
SUNO	T _{h1}	T _{h2}	Re of	T _{c1}	T _{c2}	Re of
51.100	K	K	Hot Water	K	K	Cold Fluid
1	334	332	8822	304	330	839
2	334	331	8693	304	324	860
3	334	330	8693	304	316	855
4	334	329	8565	304	310	935
5	334	330	8693	304	321	962
6	334	329	8565	304	320	995
7	334	328	8565	304	319	1146
8	334	327	8541	304	319	1299
9	334	326	8541	304	319	1366
10	334	325	8320	304	316	1380
11	334	324	8320	304	315	1429
12	334	322	8194	304	314	1683
13	334	320	8071	304	312	1850
14	334	319	7951	304	312	2157
15	334	316	7876	304	310	2507
	•		20 % Palm Oil			
SI No	T _{h1}	T _{h2}	Re of	T _{c1}	T _{c2}	Re of
51.10	K	K	Hot Water	K	K	Cold Fluid
1	337	334	10984	302	329	833
2	337	333	10984	302	323	851
3	337	333	10984	302	324	856
4	337	332	10817	302	319	927
5	337	332	10817	302	322	964
6	337	331	10817	302	321	983
7	337	330	10643	302	321	1130
8	337	329	10643	302	321	1293
9	337	328	10486	302	323	1351
10	337	327	10486	302	320	1361
11	337	326	10333	302	319	1434
12	337	325	10333	302	324	1618
13	337	323	10195	302	321	1850
14	337	320	9885	302	316	2146
15	337	317	9711	302	314	2523

Figure 2 also presents the two phase experimental heat transfer coefficients, $h_{2\phi}$ as a function of Re. For the two phase system, Re is based on the weighted average thermo-physical properties of the fluids at the respective mean bulk temperatures. It is seen that the two phase data falls in between the values for the single phase. These data are fitted by regression to the correlation given in equation 9 and the values of a and m are given in Table 2. The calculated values

of $h_{2\phi}$ based on these constants agreed with the experimental data with an error of ± 15 % as shown in the trend lines in Figure 2.

The experimental data shown in figure 2 is used to calculate the values of the two phase multiplier (ϕ_L) and the L – M parameter (χ_{tt}^2).

Figures 3, 4 and 5 present the relations φ_L Vs X, χ_{tt}^2 Vs X and χ_{tt}^2 Vs φ_L respectively.

Figure 3: Variation of the Two Phase Multiplier (φ_L) with Quality (X)

Brazilian Journal of Chemical Engineering Vol. 25, No. 03, pp. 483 - 490, July - September, 2008

Figure 4: Variation of L – M Parameter (χ_{π}^{2}) with Quality (X)

Figure 5: Variation of the Two Phase Multiplier (φ_L) with L - M Parameter (χ_{π}^2)

The variation of $\phi_L \text{ with } {\chi_{tt}}^2$, shown in Figure 5 is represented by equation 11.

$$\varphi_{\rm L} = -0.163 + \frac{3}{\chi_{\rm tt}} - \frac{0.163}{{\chi_{\rm tt}}^2} \tag{11}$$

The Correlation coefficients (R^2) for the trend equations in Figures 3, 4 and 5 are given in Table 4.

The experimental heat transfer coefficients $(h_{2\phi})$ and their corresponding calculated values based on equation 11 for different quality values (X) and Reynolds Numbers and the corresponding % error are given in Table 5. It is seen from this Table that the error ranges between ± 10 % for the laminar range. The results were re-ascertained by conducting validation runs.

Equation 11 can also be rewritten as

$$\varphi_{\rm L} = 1 - \frac{18.4}{\chi_{\rm tt}} + \frac{1}{{\chi_{\rm tt}}^2} \tag{12}$$

where ϕ_L is the modified two phase multiplier for water – palm oil system. This modified two phase multiplier is expressed as

$$\phi_{\rm L}^{'} = -\frac{\phi_{\rm L}}{0.163}$$
 (13)

Equation 12 is of the form

$$\phi_{\rm L} = 1 + \frac{C}{\chi_{\rm tt}} + \frac{1}{{\chi_{\rm tt}}^2}$$
(14)

suggested by Chisholm and Laird (1958) .The value of C is - 18.4 for water - palm oil two phase system.

Trend Line Equation	Correlation Coefficient (R ²)	Reference
$\varphi_L = 5.4165 \text{ X} + 6.088$	0.945	Figure 3
$\chi_{tt}^{2} = -0.007X + 0.0037$	0.9542	Figure 4
$\phi_{\rm L} = -0.163 + \frac{3}{\chi_{\rm tt}} - \frac{0.163}{{\chi_{\rm tt}}^2}$	0.9515	Figure 5 (Equation 11)

Table 4: Correlation Coefficients

Brazilian Journal of Chemical Engineering

De	h ₂₀ for 20 % Palm Oil (W/m ² K)			
Re	Experimental	Calculated	% Error	
833	182.3	172.8	+ 5.2	
983	284.6	306.2	- 7.6	
1680	812.2	761	+ 6.3	
2146	1125.9	1022.3	+ 9.2	
2461	1304.1	1159.3	+ 11.1	
Do		h ₂₀ for 40 % Palm Oil (W/m ² K)		
ĸe	Experimental	Calculated	% Error	
860	150	158.3	- 5.5	
995	223.2	217	+2.8	
1683	637	655.5	- 2.9	
2157	883	946.6	- 7.2	
2579	1111.4	1248.1	- 12.3	
Be	h_{20} for 60 % Palm Oil (W/m ² K)			
Ke	Experimental	Calculated	% Error	
845	103.7	97.2	+ 6.3	
990	161.8	165.7	- 2.4	
1666	461.8	456.3	+ 1.2	
2165	640.2	697.2	- 8.9	
2523	752.0	828.7	- 10.2	
Ba	h ₂₀ for 80 % Palm Oil (W/m ² K)			
Ke	Experimental	Calculated	% Error	
833	64.3	60.4	+ 6.0	
1000	100.4	92.7	+ 7.7	
1830	335.3	319.2	+ 4.8	
2150	397.4	407.3	- 2.5	
2557	481.3	449.7	+ 6.5	

Table 5: Experimental and Calculated Heat Transfer Coefficients for Water – Palm Oil System

CONCLUSION

Two phase flow studies were conducted in a spiral plate heat exchanger using water – palm oil system. Heat transfer coefficients were related to the quality of the two phase systems. The correlations between quality (X), φ_L and L – M parameter show a good agreement with experimental data. This correlation can be used for the prediction of two phase heat transfer coefficients and are useful in the design of heat exchangers for two phase duties in the Re and temperature ranges investigated. The validation experimental runs have demonstrated the reliability range of this correlation. Further work at higher Re and for different two phase systems is in progress in this laboratory.

NOMENCLATURE

а	Experimental correlation	(-)
	constant	
b	Channel height	m
Cp_h	Specific heat of hot fluid	J/kg K
d _e	Equivalent diameter of the	m
	flow channel	

$\mathbf{h}_{\mathbf{h}}$	Heat transfer coefficient on hot fluid side	$W/m^2 K$
$h_{1\emptyset}$	Heat transfer coefficient of	$W/m^2 K$
h _{2Ø}	Heat transfer coefficient of	$W/m^2 K$
k h	Thermal Conductivity of hot	W/m K
k _{ss}	Thermal conductivity of the wall	W/ m K
L	Length of the Flow Channel	m
- Mh	Mass flow rate of hot fluid	kg/s
m	Experimental correlation	(-)
0	Heat transferred	W
$Q_{\rm f}$	Volumetric Flow rate of palm oil	kg/s
Q_{w}	Volumetric Flow rate of water	kg/s
Ты	Inlet Temperature of water	К
T _{h2}	Outlet Temperature of water	K
T_{c1}	Inlet Temperature of palm	K
T _{c2}	Outlet Temperature of palm	K
t	Wall thickness of the spiral	m

	plate	
U	Overall heat transfer	$W/m^2 K$
	coefficient	
W	Channel width	m
Х	Quality	(-)

Greek Letters

ØL	Two Phase Multiplier	(-)
$\rho_{\rm f}$	Density of palm oil	kg/m ³
$\rho_{\rm w}$	Density of water	kg/ m ³
$\mu_{\rm f}$	Viscosity of palm oil	kg/ms
γ_{μ}^{2}	Lockhart Martinelli	(-)
λtt	parameter	
$(\Delta T)_{h}$	Temperature drop of hot	K
	fluid	
$(\Delta T)_{lm}$	Logarithmic Mean	(-)
	Temperature	
	Difference between hot and	K
	cold fluid	

REFERENCES

- Chen, Y.-T., Kang, S.-W., Tuh ,W.-C., Hsiao, T.-H. (2004), Experimental Investigation of Fluid Flow and Heat Transfer in Micro Channels, Tamkang Journal of Science and Engineering 7, 11 – 16.
- Chisholm, D., Laird, A. D. K. (1958), Two Phase Flow in Rough Tubes. Trans ASME, 80, 276 – 286.
- Gut, J. A. W., Fernandez, R., Pinto, J. M., Tadini, C. C.

(2004), Thermal Model Validation of Plate Heat Exchangers with Generalized Configurations. Chemical Engineering Science, 59, 4591 – 4600.

- Ho, J. C., Wijeysundera, N. E., Rajasekar, S., Chandratilleke, T. T. (1995), Performance of a Compact, Spiral Coil Heat exchanger. Heat Recovery Systems and CHP, 15(5), 457 – 468.
- Jensen, M. K., (1988). One Dimensional Two Phase Flow, AIChE Symposium Series, 84, 114 - 119.
- Manglik, R. M., Bergles, A. E. (1995), Heat Transfer and Pressure Drop Correlations for the Rectangular Offset Strip Fin Compact Heat Exchanger. Experimental Thermal and Fluid Science, 10(2), 171 – 180.
- McCabe, W.L., Smith J. C., Harriot P., Unit Operations of Chemical Engineering, Mc-Graw Hill, Sixth Edition, 2001.
- Naphlon P., Wongwises S. (2002), An Experimental Study on the In- Tube Convective Heat Transfer Coefficients in a Spiral Coil Heat Exchanger. International Communication in Heat and Mass Transfer, 29(6), 797 – 809.
- Rani Hemamalini, R., Partheeban, P., Sarat Chandra J., Sundaram, S. (2005), The Effect of Pressure Drop Across Horizontal Pipe and Control Valve for Air/Palm Oil Two Phase Flow. International Journal of Heat and Mass Transfer, 48, 2911 – 2921.
- Scott Downing, R., Kojasoy G. (2002), Single and Two Phase Pressure Drop Characteristics in Miniature Helical Channels, Experimental Thermal and Fluid Science, 26, 535 – 546