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Abstract - The present study investigated the dynamics of batch adsorption of manganese onto bone char by 
using two distinct mathematical formulations: the diffusion model and the shrinking core model. Both models 
assumed spherical particles and adequately described the transient behavior of metal adsorption under 
changing operating conditions. Comparatively, the diffusion model described the manganese adsorption better 
at distinct particle sizes even when small particles were used (dp ≤ 0.147 mm); the shrinking core model 
proved to be more reliable when larger adsorbent particles were used (dp > 0.147 mm), and it described 
experimental data better at changing solid-liquid ratios. Manganese adsorption was favored when: (i) smaller 
adsorbing particles were used due to the increase in the contact area and easier access to reacting sites of the 
char; however, such an effect proved to be limited to dp ≤ 0.147 mm, and (ii) higher solid-liquid ratios were 
used due to the increase in the available reacting sites. External and intraparticle mass transfer dependences 
on particle size and solid-liquid ratio were also investigated, and results corroborated with prior investigations 
found in the literature. 
Keywords: Adsorption; Manganese; Bone char; Diffusion model; Shrinking core model. 

 
 
 

INTRODUCTION 
 

The treatment of industrial effluents containing 
dissolved metals is commonly done using chemical 
precipitation, which is a relatively simple operation 
and an efficient method to attend to legal require-
ments. The method, however, is not advantageous in 
the treatment of sulfuric aqueous solutions contain-
ing manganese, as is the case of acid rock drainage 
(ARD) effluents generated in the southeastern region 
of Brazil, because manganese presents high solu-
bility within a wide range of pH (Bamforth et al., 
2006). In fact, the precipitation of manganese may 
occur at high pH values of approximately 10-11. 

After the manganese has been removed, the pH of 
the effluent must be neutralized in order to discharge 
the treated water; therefore, the consumption of rea-
gents is considerable. In addition, the quantity and 
the toxicity of the sludge will depend on the type and 
concentration of the dissolved metals. Therefore, it 
may result in a costly operation.  

The removal and/or recovery of manganese from 
a typical nickel laterite waste solution was evaluated 
by Zhang et al. (2010) using distinct precipitation 
agents, such as hydroxides, carbonate, and SO2/air 
oxidative mixture. The best result in terms of effi-
ciency and economics was obtained by applying a 
combined method. Hydroxide or carbonate precipita-
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tion was adequate for the removal/recovery of a large 
proportion of Mn(II), followed by oxidative precipi-
tation applied to reduce manganese concentrations to 
a very low level. A literature review covering various 
separation and recovery methods, including solvent 
extraction, ion exchange, as well as hydroxide, car-
bonate, sulfide, and oxidative precipitations, is pre-
sented by Zhang and Cheng (2007). These methods 
are briefly compared and assessed in terms of their 
selectivity, efficiency, reagent costs, and product 
quality.  

The adsorption of metals onto low cost sorbents, 
such as bone char, has also been evaluated as an 
alternative method to treat effluents (Choy and 
McKay, 2005; Giraldo and Moreno-Piraján, 2008; 
Kumar et al., 2010; Moreno et al., 2010; Martins et 
al., 2014; Vieira et al., 2014; Sicupira et al., 2014). 
Manganese, as well as cadmium, copper, iron, nickel 
and zinc, could be efficiently removed from sulfuric 
solutions at nearly neutral pH. As bone char consists 
basically of hydroxyapatite (Ca10(PO4)6(OH)2) and 
calcite (CaCO3), it also raises the pH of the aqueous 
solution due to the dissolution of the calcite, thus 
contributing to a reduction in the lime consumed in 
the current treatment of ARD solutions containing 
manganese by means of chemical precipitation. In 
fact, the efficiency of metal adsorption is not favored 
in acidic medium due to proton competition at pH < 5.  

Experimental results obtained by Moreno et al. 
(2010) and Sicupira et al. (2014) using ARD efflu-
ents revealed that manganese adsorption onto bone 
char followed satisfactorily the Langmuir equilib-
rium isotherm, with a value of qm between 22 and 
30 mg g-1. This proved to be a chemisorption process, 
which is strongly influenced by operating variables, 
such as the pH of the aqueous phase and the solid/ 
liquid ratio. Regarding its dynamics, manganese 
adsorption follows a pseudo-second order kinetic 
model (Ho, 2006). In addition, data fitting to simpli-
fied intraparticle diffusion models, such as those of 
Weber and Morris (1963), revealed that manganese 
diffusion within particles is the main rate-limiting 
step, whereas external mass transfer and intraparticle 
diffusion phenomena may also affect the removal of 
manganese when particles of smaller sizes are used. 

In an attempt to evaluate the dynamics of manga-
nese adsorption onto bone char and to identify the 
main phenomena that affect the process as a whole, 
two distinct models were developed in the present 
paper. In the diffusion model, the transient concen-
tration of manganese is assessed by differential mass 
balances in the external aqueous phase and inside 
particles (Costodes et al., 2003). According to this 
model, both intraparticle and chemical reaction rates 

may occur simultaneously. Hence, metal concentra-
tion inside the particles depends on time and space. 
The diffusion model consists of a system of partial 
differential equations to be solved numerically. In the 
shrinking core model, two distinct regions (named 
reacted, or ash region, and non-reacted region) may 
exist inside particles, and the reaction front moves 
towards the center of the particle, while adsorption 
proceeds. In this case, metal concentration depends 
solely on time. The model consists of a system of 
ordinary differential equations whose numerical so-
lution is much simpler to be obtained. However, the 
diffusion model is classical and it is normally applied 
to describe adsorption processes. In this context, the 
aim of the present work is evaluate how adequate the 
shrinking core model could describe manganese 
adsorption. A diffusion model was also developed for 
comparison purposes.  
 
 

DEVELOPMENT OF BATCH ADSORPTION 
MODELS 

 
To model the manganese adsorption onto bone 

char in a batch operation, the following assumptions 
were formulated: (i) the aqueous phase is an isother-
mal and incompressible fluid containing manganese 
at a known initial concentration and pH; (ii) the po-
rous adsorbent particles of bone char are perfectly 
spherical, containing reacting sites that are homoge-
neously distributed within them; (iii) the reaction of 
manganese in the bone char particles is governed by 
a chemisorption mechanism (Sicupira et al., 2014); 
(iv) equilibrium is described by the Langmuir ad-
sorption isotherm (Sicupira et al., 2014); (v) the sys-
tem is perfectly mixed, so the external mass transfer 
process occurs solely in a thin boundary layer sur-
rounding the particles, and (vi) the pH of the external 
phase is constant with time due to the buffer effect of 
calcite dissolution from the bone char. 
 
Diffusion Model (DM) 
 

The mass-balance equation of manganese in the 
bulk solution is given as follows: 
 

p
e S i r R

dC
k A C C

dt 
    
 

          (1) 

 
The mass balance of manganese inside the spheri-

cal porous particles of bone char considers that: (i) 
mass transfer of metal is described mathematically 
by Fick’s law, assuming an effective intraparticle 
diffusion coefficient that is constant and independent 
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of concentration, and (ii) the rate of adsorption of 
manganese is due to the chemical reaction that occurs 
at reacting sites that are homogeneously distributed 
within the particle (Crank, 1975). 
 

2
2
efi i

a

DC C q
r

t r r tr
 
         

        (2) 

 
The equilibrium relation between q and Ci is 

given by the Langmuir adsorption isotherm (Sicupira 
et al., 2014): 
 

1
m i

i

aq C
q

aC



               (3) 

 
The reaction by which the immobilized manga-

nese is formed proceeds quite rapidly when com-
pared with the diffusion process, and for this reason 
the kinetics are assumed to be instantaneous and not 
involved in the rate-controlling process (Teixeira et 
al., 2001; Lee and McKay, 2004; Jena et al., 2004); 
therefore, local equilibrium can be assumed to exist 
between the free Ci(r,t) and immobilized q(r,t) com-
ponents of the diffusing manganese species. Hence, 
deriving Eq. (3) and substituting into Eq. (2): 
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      (5) 

 
Equations (1) and (5) are subjected to the follow-

ing initial and boundary conditions: 
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        (8) 

 
Shrinking Core Model (SCM) 
 

According to this model, the adsorbing particle is 
surrounded by an external film and consists of two 
distinct regions schematically shown in Figure 1: the 

permeable product layer, which is loaded in manga-
nese (Rp ≤ r < rc), and the unreacted core, which shrinks 
uniformly as the reaction progresses (rc ≤ r ≤ 0).  
 

 
 
Figure 1: Spherical particle representation using the 
shrinking core model.  

 
The reaction between Mn2+ ions and the reactant 

solid B of the char is assumed to be irreversible and 
occurs solely at the product-reactant interface (r = rc) 
according to the following stoichiometric reaction: 
 

) (
2

( ) ( ) aq s immobilizedMn b B Mn B   
      

(9) 

 
The model assumes that a pseudo steady-state ap-

proximation is valid and that the driving force in 
both external and particle mass transfer is linear, 
while the driving force in the reaction core incorpo-
rates the Langmuir isotherm. In the adsorbing parti-
cle, the relative effect of each resistance may change 
as the reaction proceeds because the length of the 
permeable product layer increases with time. If all 
mechanisms occur simultaneously, the system should 
be handled accordingly and the following rate ex-
pressions for each stage (film diffusion, product 
layer diffusion, and chemical reaction, respectively) 
can be formulated (Levenspiel, 1999; Han, 2002): 
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The adsorption rate N(t) is related to the differen-
tial mass balance over the system by equating the 
decrease in manganese concentration in the solution 
with the accumulation of the adsorbate in the bone 
char and the mass balance on a spherical element of 
adsorbate particle as given by, respectively: 
 

24
( ) c m cr q drdC dq

N t V W
dt dt b dt

 
         (11) 

 
Depending on which step of Equation (10) is slow-

est, that step is limiting for the overall adsorption 
process. Three limiting steps may occur: (i) diffusion 
through the film boundary layer (in this case, 

p
i r R

C
 = 0), (ii) diffusion through the porous product 

layer (in this case, 
p

i r R
C

 = C and 
c

i r r
C  = 0), and 

(iii) chemical reaction at the reactant-product inter-
face (in this case, 

c
i r r

C  = C). For each case, an 

equation giving the time required for a reaction to 
proceed from particle radius Rp to rc can be obtained 
by integrating drc/dt with time from 0 to t (Han, 
2002). If all mechanisms occur simultaneously, the 
mass-balance equation for manganese in the bulk 
solution is: 
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      (12) 

 
the average loading of manganese in the char is: 
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and the temporal variation of the reacting-core radius 
is given by: 
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      (14) 

Equations (12)-(14) were subjected to the follow-
ing initial conditions: 
 

  00C C   0q     0   c pr R     (15) 

 
According to this model, the adsorption rate of 

manganese onto bone char is controlled by the re-
spective resistances to film diffusion, product layer 
diffusion, and chemical reaction. If an instantaneous 
reaction within spherical adsorbent particles prevails, 
the third resistance of Eqs. (12)-(14) is null. 
 
Numerical Solution of Models and Estimation of 
Parameters 
 

Both models were solved numerically using 
MATLAB software (Version 7.0). The diffusion 
model, Eqs. (1), (5)-(8), contains a partial differential 
equation, which was discretized using the implicit 
finite difference method. Other numerical methods, 
such as Crank-Nicholson’s implicit finite difference 
method; a semi-analytical solution method; and the 
Cartesian collocation method were compared else-
where in terms of accuracy, stability, convergence, 
and computation in CPU time (Lee and McKay, 
2004; McKay, 2001). The solution of the shrinking 
core model, Eqs. (12)-(15), was obtained using the 
fourth-order Runge-Kutta method. The same numeri-
cal solution was used by Sarkar and Bandyopadhyay 
(2011) and Jena et al. (2004). Properties such as 
accuracy, stability, convergence and computational 
time of the numerical methods used in the present 
work are available elsewhere (Hoffman, 1992; Pinto 
and Lage, 2001). 

Experimental data obtained by Sicupira et al. 
(2014) using laboratory solutions containing manga-
nese were fitted to both models in an attempt to as-
sess the values of mass transfer and chemical reac-
tion rate parameters under changing operating condi-
tions. The estimation of parameters was done nu-
merically by minimizing an objective function (F) 
using an optimization routine found in MATLAB 
software based on the Nelder-Mead simplex direct 
search method (Lagarias et al., 1998). The objective 
function adopted in this work is the sum of the 
squared deviation between estimated (Cest) and ex-
perimental (Cexp) concentrations of manganese in the 
external aqueous phase: 
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Sh Sherwood number (-) 
S/L solid-liquid ratio (g mL-1) 
t time (s) 
V volume of aqueous phase (L) 
W weight of the adsorbent (g) 
 
Greek Symbols 

 particle porosity (-) 
 density of adsorbent particle (g m-3) 
a apparent density of adsorbent particle  

(g m-3) 
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