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HIGHLIGHTS

Too many or too few environmental variables are unsuitable for SDM.
Ineffective indicators for species distribution must be excluded

Bioclimatic indicators are key plant distribution variables.

Collinearity, contribution, and ecological significance affect predictor selection

This synthetic strategy for integrating correlation coefficient, contribution level, and expert
choice of predictors can facilitate the selection of suitable environmental factors..

ABSTRACT

Selecting predictors for species distribution models (SDMs) is a major challenge.
In this study, we evaluated a comprehensive set of 62 environmental predictors that
may be related to the occurrence of Fagus hayatae. We modeled F hayatae as a
case study to compare model performance through different environmental predictor
subsets according to three selection procedures, namely correlation coefficients between
predictors, contribution level of predictors, and expert choice of biologically relevant
predictors. The three selection procedures provided satisfactory results with high
performance using about 6-10 valid predictors but had their respective limitations.
Consequently, we suggest a synthetic strtegy of predictor selection. Accordingly, the
first step was identifying and eliminating ineffective variables with nonidentifiability by
using bivariate scatterplots. Next, calculate the correlation coefficients between other
candidate predictors. Finally, comprehensively select the applicable environmental
predictors with lower correlation coefficient on the basis of highly contribution level and
expert knowledge for SDM of target species.
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INTRODUCTION

In the past three decades, species distribution
models (SDMs) have been increasingly used to solve
many scientific and managerial problems related to
climate change, conservation planning, ecological theory,
and invasive species (Guisan and Thuiller, 2005; Austin
and Van Niel, 201 I; Petitpierre et al., 2017; Zhang et al.,
2019). Generally, SDMs are composed of three elements
(Sangermano and Eastman, 2012), namely a dependent
variable (species occurrence data), explanatory variables
(environmental predictors), and an algorithm or function
for representing relationships
(modeling methods). Numerous studies have explored
the performance of different modeling methods (Guisan et
al., 2007) and effects of species sampling sizes and spatial
bias (Wisz et al., 2008; Syfert et al., 2013). By contrast,
environmental predictors have been less commonly
discussed (Franklin, 2010), although the selection of
environmental predictors is relevant to SDM performance
and its subsequent applications (Williams et al., 2012).
Thus, the appropriate selection of predictors for SDMs is a
major challenge (Aratjo and Guisan, 2006; Franklin, 2010;
Watling et al., 2012; Petitpierre et al., 2017).

To the greatest possible extent, data of species
occurrence and environmental predictor layers should
be collected before modeling species distribution.
Environmental predictors can be divided into indirect,
direct, and resource gradients (Guisan and Thuiller,
2005). According to the conceptual model of using
environmental predictors (Guisan and Zimmermann,
2000; Franklin, 2010), direct and resource variables
are preferred for predicting plant distribution. For
example, Austin and Van Niel (201 ) suggested that light,
temperature, nutrients, water, CO2 levels, disturbance,
and biota are the seven groups of variables that control
plant distribution. Although attention should be mainly
focused on explanatory power and the ecological basis
of choosing predictors (Araljo and Guisan, 2006), the
use of candidate variables of an SDM depends on the
availability of environmental layers. In practice, many
environmental predictors used in SDMs are indirect
variables or surrogates of direct and resource variables
(Franklin, 2010; Austin and Van Niel, 201 1); for example,
elevation is used as an agency of mountain temperature
based on lapse rate (Chiu et al., 2014).

Problems related to over-parameterization and
overfitting of a model may arise with the use of and
excessive number of variables in SDMs (Guisan and
Zimmermann, 2000; Tyberghein et al., 2012), particularly
when highly correlated variables exist. Collinearity or

species—environment
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high correlation between variables is a common feature
of ecological data (Mac Nally, 2002). Adopting a predictor
selection procedure to reduce the number of variables to
as few as possible is necessary for two reasons (Dormann,
201 I). First, a higher number of variables corresponds to
greater correlation among them. Second, a higher number
of variables corresponds to a greater likelihood of one of
them spuriously contributing to the model (type | error).
Although principal component analysis is a method used
to deal with collinearity of variables (Dormann et al.,
2013), it is difficult to interpret a modeled result based
on it. Alternatively, some studies have reported retaining
only those predictors that contribute more than 0.5% or
5% to the SDM and discarding the others (Young, 2010;
Yang et al., 2013). However, to avoid the collinearity or
nonidentifiability of predictors, a common method used
is identifying and eliminating redundant variables by using
the pairwise Pearson correlation coefficients among all
candidate variables. The absolute value of the threshold
of the correlation coefficient (|r|) is usually 0.7 (Dormann
et al, 2013); however, different researchers may use
different threshold values, such as |r| > 0.9 (Randin et al.,
2009), |r| > 0.85 (Syfert et al., 2013), |r| > 0.8 (Young,
2010), and |r| > 0.6 (Andreo et al., 2011). In addition
to noncorrelated predictors, Watling et al. (2012) used a
subset of user-defined biologically relevant environmental
predictors in SDMs. Consequently, Williams et al.
(2012) suggested that the identification of redundant
variables relies on a combination of a priori ecological
considerations, knowledge of derivation and accuracy of
each variable, awareness of relationships among variables,
and a rigorous process of testing the utility of alternative
sets of predictors in a statistical model.

The appropriate selection of environmental
predictors is a critical step in modeling species
distribution (Aratjo and Guisan, 2006; Austin and Van
Niel, 201 I; Watling et al., 2012; Williams et al., 2012).
Three common approaches of variable selection are as
follows: using all available bioclimatic variables without
justification, reducing the number of bioclimatic and
biophysical covariates to account for collinearity, and
selecting variables on the basis of ecological knowledge
(Porfirio et al., 2014). Each SDM has an appropriate
predictor selection method associated with it, namely
expert knowledge, statistical significance, and iterative
selection based on training accuracy (Lippitt et al., 2008).
In this study, we compared the performance of models
by using different environmental predictor subsets
corresponding to three selection procedures, namely
correlation coefficients between predictors, contribution
levels of predictors, and expert selection of biologically
relevant predictors.
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MATERIAL AND METHODS

Study area and target species occurrence data

Taiwan is a subtropical mountainous island at the
periphery of East Asia (Figure | A). The study area covered
an area in northern Taiwan (Figure |IB), extending from
121.1925-121.8913°E and 24.4210-24.9024°N. The
target species in this modeling study was Fagus hayatae
Palib., a relic and stenotopic tree. The distribution area
of F hayatae was mapped in the National Vegetation
Diversity Inventory and Mapping Project of Taiwan
(Chiou et al., 2009), extending over 1,282 ha and ranging
from 1,100 to 2,100 m above sea level and limited to
a few ridges nearby (Figure 1B). We generated regular
points at 200-m intervals by using ArcGIS version 10.0
(ESRI; Redlands, USA) with the Geospatial Modeling
Environment software version 0.7.2.0 (Beyer, 2012).
According to our species occurrence data, 319 F hayatae
points were extracted (presence-only; Figure 1C) and
used in all of the SDMs with different environmental
predictor subsets. The regular 319 occurrence data
prevented the effects of sample size and spatial bias for
SDMs (Wisz et al., 2008; Syfert et al., 201 3).

120°E

(A) /.*'r

Fagus hayatae
distribution area

+  sampling points

FIGURE | (A) Geographic location of Taiwan. (B) Digital elevation
model of the study area and spatial distribution

(red points) of Fagus hayatae. (C) Partially enlarged
occurrence data (red sampling points) of £ hayatae.
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Environmental predictors

We evaluated a comprehensive set of 62
environmental predictors that may be related to the
occurrence of F hayatae. The 62 predictors and their
abbreviations are listed in Supplementary Table |. These
include monthly mean temperature and precipitation
(Chiu et al., 2009), bioclimatic variables (version |.4;
Hijmans et al., 2005), warmth index, coldness index (Kira,
1991), biotemperature, potential evapotranspiration
ratio (Holdridge, 1967), summer and winter half-yearly
precipitation (Su, 1985), humidity index (Xu, 1985),
effective warmth index (Chiu et al., 2012), temperature
annual range (Wolfe, 1979), whole light sky space (Lai et
al,, 2010), elevation, latitude, longitude, and slope, which
were produced using a digital elevation model (DEM)
provided by the Taiwan Forestry Bureau Aerial Survey
Office. Furthermore, by using the Geomorphometry and
Gradient Metrics Toolbox (Evans, 201 1), data concerning
dissection, roughness, compound topographic index,
heat load index, topographic radiation aspect index,
surface relief ratio, surface curvature index, slope
position, and surface/area ratio were calculated from
DEM. All environmental predictor layers were generated
in ArcGIS at a 40-m spatial resolution in the same
geographic extent.

Selection procedure for environmental predictors

Before selecting environmental predictors, we
eliminated the variables without discrimination power,
which were identified through detection using bivariate
scatterplots in the preliminary model analysis and through
decision-making (Morisette et al., 2013).

In this study, we used the following three procedures
with backward elimination to select environmental
predictors on the basis of comprehensive recommendations
made in different studies, including studies by Lippitt et al.
(2008), Dormann (201 I), Watling et al. (2012), Williams et
al. (2012), and Porfirio et al. (2014).

|. Selection based on the Pearson correlation
coefficients (r) between predictors: Highly correlated
variables (following the sequence |r| > 0.95, 0.90, 0.85,
0.80, 0.75, 0.70, 0.65, 0.60, and 0.55) were removed, and
others were retained as environmental predictors in the
SDM. In this procedure, if 61 predictors were retained
and used in the SDM, we labeled the predictor subset as
Ré61, and the subset with 32 predictors was labeled as R32;
a similar labeling method was adopted for all subsets.

2. Selection based on the training contribution
level of predictors: Variables with low contribution
percentages (CP) of <0.1%, 0.2%, 0.3%, 1%, 3%,
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and 9% were sequentially removed, and others were
retained as environmental predictors in the SDM. In
this procedure, if 61 predictors were retained and used
in the SDM, we labeled the predictor subsets as Cél,
and the subset with 30 predictors was labeled as C30;
a similar labeling method was employed for all subsets.

3. Selection based on expert selection of
biologically relevant predictors: Five experienced
ecologists studied F. hayatae and removed the biologically
irrelevant variables; the other variables were retained as
environmental predictors in the SDM. In this procedure,
if 61 predictors were retained and used in the SDM, we
labeled the predictor subsets as E61, and the subset
with 3| predictors was labeled as E31; a similar labeling
method was adopted for all subsets.

Model creation and evaluation of accuracy

To predict the distribution of F hayatae, we used a
general-purpose machine learning SDM method, Maximum
Entropy Modeling of Species Geographic Distributions
(MaxEnt; Elith et al., 201 I). MaxEnt has been shown to be a
robust SDM method for presence-only species data (Guisan
et al.,, 2007), and it is becoming one of the most widely
used methods for SDMs. We used MaxEnt 3.3.3 k (http://
www.cs.princeton.edu/~schapire/maxent/) for 20 cross-
validated replicates, 5000 maximum iterations, and logistic
output format with other default settings. The logistic output
was used as a species-suitable index value or predicted
occurrence probability (Elith et al., 201 ).

To assess the performance of models using
different environmental predictor subsets, we used
receiver operating characteristic (ROC) curve analysis
and the true skill statistic (TSS) (Allouche et al., 2006).
Use of the ROC is a common approach for threshold
independent evaluation, where “sensitivity” is plotted
against “l — specificity” for all possible thresholds,
thus avoiding the subjective selection of one or several
thresholds for the evaluation (Gontier et al., 2010).
Following the guidelines from Swets (1988), standard
values for the area under the curve (AUC) of the
ROC plots were graded as follows for assessing model
performance: failed (AUC = 0.5-0.6), poor (AUC =
0.6-0.7), fair (AUC = 0.7-0.8), good (AUC = 0.8-0.9),
and excellent (AUC = 0.9-1.0). In addition, TSS is a
threshold-dependent evaluation index. We adapted the
suggestion provided in a study by Liu et al. (2013) and
used the maximized sum of sensitivity and specificity as
the threshold to transform the predictive occurrence
probability into species presence or absence (I or 0).
For a2 X 2 confusion matrix, TSS was defined (Allouche
et al.,, 2006) as TSS = (ad — be)/[(a + ¢) (b + d)] =
sensitivity + specificity — |.
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RESULTS AND DISCUSSION

Bivariate scatterplot between all predictors

A Dbivariate scatterplot is a preliminary
inspection that reveals the relationship between
paired environmental predictors. Figure 2A shows all
scatterplots created in ArcGIS and some examples of
the paired predictors. The random relationship between
TAR (for abbreviations, refer to Supplementary Table |)
and DIS predictors, where the correlation coefficient was
<0.001, is presented in Figure 2B. High correlation, or
collinearity, was observed between ELE and Biol (Figure
2C); the correlation coefficient was 0.998. If a model
contains collinear predictors, the variance estimates
are typically inflated, resulting in biased prediction
(Quinn and Keough, 2002; Solomon et al., 2002). The
scatterplot of Cl vs. TRAI (Figure 2D) clearly showed no
discrimination of Cl variable with constant zero values.
Although ClI variables have often been used to indicate
the upper limit of the distribution of evergreen broad-
leaved forests, their use is inappropriate for a subtropical
island such as Taiwan (Chiu et al., 2014). After examining
each scatterplot of all paired environmental predictors,
we discarded the Cl variable due to its nonidentifiability
and retained the other 61 variables as candidate
predictors in subsequent processing procedures. Figure
2 also reveals some collinearity among environmental
predictors (see Supplementary Table 2). Consequently,
creating the scatterplot for each pair of environmental
predictors before running the SDM was correct and
necessary (Williams et al., 2012; Morisette et al., 2013).

Predictor subsets through backward elimination

Table | presents the subsets of selected
predictors used in different SDMs through backward
elimination. These predictor subsets were labeled using
three selection procedures; subsets were labeled with
“R” for Pearson correlation coefficient (r), “C” for
training contribution level, and “E” for expert selection,
followed by the number of predictors used in different
subsets. Supplementary Table 2 lists all pairwise Pearson
correlation coefficients between predictors. Ten
predictor subsets were based on Pearson correlation
coefficients of predictors used in SDMs; these included
Ré61, R32, R27, R23, R21, RI8, RI2, R9, R8, and Ré.
Furthermore, seven predictor subsets based on the
training contribution level of predictors used in SDM
were available, namely C61, C30, C28, C23, CI5, C9,
and Cé. In addition, seven predictor subsets based on
expert selection of biologically relevant predictors were
used in SDM, namely E61, E3I, E26, E2I, El6, EII,
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FIGURE 2 Examples of scatterplots of variables: (A) scatterplot matrix between all environmental predictors generated by AcrGIS; (B)
TAR vs. DIS plot (for abbreviations, refer to Supplementary Table 1), which reveals a random relationship (|r| < 0.001);
(C) ELE vs. Biol plot, which presents high correlation (|r| > 0.998); (D) Cl vs. TRAI plot, which indicates no discrimination
between Cl values in sampling points. Blue points represent the values of environmental predictors on all modeling grids; red
points represent the values of environmental predictor on all Fagus hayatae occurrence grids.

and E6. The ratio of the maximum (R61, Cé1, and E61)
to minimum (R6, C6, and E6) number of predictors in
different subsets was > 10.

Table 2 presents the r between predictors and
the CP (%) of individual predictors used in the R6, C6,
and E6 models. Only PER and CTI were selected twice,
whereas the other predictors were selected only once
in the R6, C6, and E6 models. The results revealed
that different selection procedures resulted in different
predictor subsets used in SDM. ltalicization indicates
high correlation between Té and Bio5 (|r| = 0.90) and
between Biol6 and longitude of raster (LON) (|r| =
0.93) in the C6 model and between Bio4 and WI (|r| =
0.88) in the E6 model. All predictors in the R6, C6, and E6
models could be divided into following two categories:
thermal/moisture-related or topography/geography-
related variables. The CP of individual predictors from
46.7 to 0.0 exhibited a high level of inconsistency among
models such as Ré, C6, and E6 (Table 2).

Performance comparison of models on the basis of
different predictor subsets

Figure 3 presents a comparison of model
performance measured using AUC and TSS criteria
within 10-R-subsets, 7-C-subsets, and 7-E-subsets. The
AUC was excellent (> 0.9) across all 22 models with
different predictor subsets (Supplementary Table 3).
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Overall, the AUC values (overall mean 0.976)
were higher than the TSS (overall mean: 0.939), as
shown in Figure 3. Analysis of variance indicated
significant differences (P < 0.05) within the |10-R-subsets,
7-C-subsets, and 7-E-subsets for the ROC and TSS
criteria. Only minor differences were observed among
the models that used 12 or more predictors with respect
to both AUC and TSS, namely R61-RI2 (Figure 3A and
B), C61-C15 (Figure 3C and D), and E61-E16 (Figure
3E and F). The five models, namely R9, R8, R6, El I, and
E6, used as predictor subsets (Figure 3A, B, E and F) had
significantly lower performance than the other subsets.
Figure 3 also presents a significant reduction in SDM
accuracy between RI12 and R9, C15and C9, and El | and
E6. The results suggest that in our case, the appropriate
number of predictors was approximately 10. Moreover,
satisfactory performance could be achieved using as
few as six predictors (Figure 3C and D). In a review by
Porfirio et al. (2014), 119 variables were once used in
different SDM studies. The mean annual precipitation
and mean annual temperature were the most commonly
used variables, observed in 43% and 37% of related
studies, respectively. In this study, variables related to
temperature and moisture or their integrated index
were used in the R6, C6, and E6 models, which again
indicated the crucial roles of temperature and water in
plant distribution (Austin and Van Niel, 201 1).
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TABLE | The total 22 subsets of predictors selected through backward elimination used in different SDM models, labeled with three
selection procedures (Pearson correlation coefficient as “R,” training contribution level as “C,” and expert selection as “E”) and
appended with the number of predictors.

Label Subsets of selected predictors
Ré6I TI,T2,T3,T4,T5 T6,T7, T8, T9, TIO, T, TI2, Pl, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, PI2, Biol, Bio4, Bio5, Bio6, Bio8, Bio9,

= Cé6l BiolO, Biol2, Biol5, Biol6, Biol7, Biol8, BT, PER, WI, EWI, HI, PS, PW, PSR, PWR, TAR, ELE, SLO, LAT, LON, SR, DIS, ROU, SRR,
=E6l CUR, SP SAR, CTI, HLI, TRAI, WLS
R32 P2, P3, P4, P5, Pé, P7, P8, Bio4, Bio5, Bio6, Biol2, Biol5, Biol 6, Biol7, Biol8, PER, WI, HI, PS, PSR, SLO, LAT, LON, SR, DIS, SRR,

CUR, SAR, CTI, HLI, TRAI, WLS
R27 P2, P3, P5, P6, P7, P8, Bio4, Bio5, Bio6, Biol5, Biol 6, Biol 7, Biol8, PER, WI, HI, PS, LAT, SR, DIS, SRR, CUR, SAR, CTI, HLI, TRAI, WLS

R23 P2, P3, P5, P6, P8, Bio4, Bio6, Biol5, Biol6, Biol7, Biol8, PER, PS, LAT, SR, DIS, SRR, CUR, SAR, CTI, HLI, TRAI, WLS

R21 P3, P5, P6, P8, Bio4, Bio6, Biol5, Biol 6, Biol 7, Biol8, PER, PS, LAT, SR, SRR, CUR, SAR, CTI, HLI, TRAI, WLS

RI8 P5, Bio4, Bioé, Biol5, Biol6, Biol 7, Biol8, PER, PS, LAT, SR, SRR, CUR, SAR, CTlI, HLI, TRAI, WLS

RI2 Bio4, Biol5, Biol 6, Biol8, PER, SR, SRR, CUR, SAR, CTI, TRAI, WLS

R9 Bio4, Biol5, Biol8, PER, SR, SRR, SAR, CTI, WLS

R8 Bio4, Biol5, Biol8, PER, SR, SRR, SAR, CTI

R6 Biol5, Biol8, PER, SR, SRR, CTI

€30 TI,Té,T7,T8, Pl, P2, P4, P5, P6, P8, P9, P10, PI I, Bio4, Bio5, Bio6, Bio9, Biol0, Biol5, Biol6, Biol7, Biol8, HI, PS, PW, TAR, ELE,
LAT, LON, TRAI

C28 Té6,T7,T8,Pl, P2, P4,P5, P6, P8, P9, PIO, Pl I, Bio4, Bio5, Bio6, Bio9, Biol0, Biol 5, Biol6, Biol 7, Biol8, HI, PS, TAR, ELE, LAT, LON, TRAI

C23 T6,T7,T8,Pl, P2, P8, P9, P10, Pl I, Bio4, Bio5, Biol0, Biol5, Biol6, Biol7, Biol8, HI, PS, TAR, ELE, LAT, LON, TRAI

CI5 Té, T7, T8, PI, P8, Bio4, Bio5, Biol5, Biol 6, Biol8, HI, PS, LAT, LON, TRAI

c9 Té,T7, Pl, Bio5, Biol5, Biol6, HI, PS, LON

Cé T6, P1, Bio5, Biol6, PS, LON

Bio4, Bio5, Bio6, Bio8, Bio9, Biol0, Biol2, Biol5, Biol 6, Biol7, Biol8, PER, WI, EWI, HI, PS, PW, PSR, PWR, SLO, SR, DIS, ROU, SRR,
CUR, SB SAR, CTI, HLI, TRAI, WLS
E26  Bio4, Bio5, Bio6, Bio8, Bio9, Biol0, Biol2, Biol5, Biol 6, Biol 7, PER, WI, EWI, HI, PS, PW, SLO, SR, DIS, ROU, CUR, SR SAR, CTI, TRAI, WLS

E3I

E21 Bio4, Bio5, Bioé, Bio8, Bio9, Biol2, Biol5, Biol7, PER, WI, EWI, PS, PW, SLO, SR, CUR, SP.SAR, CTI, TRAI, WLS
El6 Bio4, Bio5, Bio8, Biol2, Biol5, Biol7, PER, WI, EWI, PS, SLO, SR, SB CTI, TRAI, WLS

Ell Bio4, Bio8, Biol2, Biol7, PER, WI, EWI, SR, SP_CTI, WLS

E6 Bio4, Biol2, PER, WI, CTI, WLS

TABLE 2 Pearson correlation coefficient (r) between predictors
and their contribution percent (CP, %) individually in
the R6, C6, and E6 models. Italicization indicates a
strong correlation between predictors.).

Predictive maps based on different predictor subsets

The comparison of model performance was
conducted with a total of 440 MaxEnt models by using 22

Ré model Biol5 Biol8 _ PER SR SRR CTI ) ; ) 7
Biol5 034 009 -002 000 -00I predictor subsets with 20 replicates. The predictive maps
Biol8 023 0.00 0.0 0.02 of mean occurrence probability using 22 predictor subsets
PER -0.22 -0. . . .
SR 0 g 388 88; are presented in Supplementary Figure |. Furthermore,
EZBI'FT -0.05 Supplementary Figure | reveals that the predicted
CP (%) _ 33.8 182 467 1.1 0.1 0.0 distribution area expanded when the prediction variables
I_ T Pl Bi Biol P! LON .
cé Te del__T6 0.40 o'gg 0'326 0.3?6 0%7 were R6, C6, or E6, which means that some unused
Pl 034 059 053 0.6 variables may have still had predictive power. The overall
Bio5 0.30 0.34 0.36
Biol6 0.68 0.93 patterns of 22 predictive maps were consistent, although
PS 0.59
LON some slight differences were observed among the
E%F:n(:ﬁ)el éizc;z Blig.l72 L?Ef{ 2@"4 ICI.I'.? \I/\?Lg maps. Supplementary Table 4 lists the spatial correlation
Bio4 020 054 08 0.08 00l coefficient (r) across 22 predictive maps calculated by
Biol2 -0.62 0.42 0.00 0.17
PER 044 007  -0.20 pairing grid-based probabilistic values. The correlation
WiI 0.09 -0.03 . . .
cTl 016 coefficients of most pairs were more than 0.80, which
WLS ol . .
CP(%) 145 382 202 263 o 03 indicated a high consistency among the 22 maps. Lower

correlation coefficients (<0.79) were noted in the
As indicated in Figures 3A and B, setting the

correlation coefficient threshold between variables at 0.7
was appropriate (|r| > 0.7 variables eliminated in R12
with higher accuracy, |r| > 0.65 variables eliminated in

predictive maps that used R6 and E6 subsets, but all of
these were greater than 0.67. Although these results
mean that the three selection strategies are all effective,

R9 with lower accuracy). The |r| = 0.7 threshold was
recommended by Dormann et al. (2013) and is often
used, although other authors have suggested that |r| can
be set at a value between 0.6 and 0.9 (Randin et al., 2009;
Young, 2010; Andreo et al., 201 I; Syfert et al., 2013).

LIN and CHIU

we still cannot know which strategy or environmental
factor is the most ecologically significant. Therefore, the
comprehensive application of these three strategies may
be a better and more practical approach. For example,
when the R strategy is used alone, LON will be selected
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FIGURE 3 Comparison of model performance. Model performance was compared using the ROC by AUC and TSS criteria within the
(A, B) 10-R subsets, (C, D) 7-C subsets, and (E, F) 7-E subsets. Each box-plot with a mean (dotted line) illustrates results of 20
cross-validation runs based on different predictor subsets by using backward elimination.

because of its low correlation coefficient with other
factors, but if we use the comprehensive application of the
three strategies, LON can be screened out in E strategy
by experts who judge that its ecological significance is low.

For the visual comparison of predictive maps,
the average and difference in predicted occurrence
probability according to the three backward elimination
procedures are illustrated in Figure 4. The average
occurrence probability (mean * standard deviation) of
maps (left of Figure 4) modeled using 10-R subsets, 7-C
subsets, and 7-E subsets was 0-0.8710 (0.0243 + 0.133),
0-0.7288 (0.0187 = 0.0038), and 0-0.8776 (0.0244 =
0.0125), respectively. Therefore, the average probability
modeled by predictor subsets from three procedures
was highly similar (also see Supplementary Figure I).
The results implied that using backward elimination of
redundant variables that considered the correlation
coefficients between predictors (Dormann et al., 2013;
Syfert et al., 2013), contribution level of predictors

LIN and CHIU

(Young, 2010; Yang et al., 2013), or expert selection of
biologically relevant predictors (Watling et al., 2012;
Harris et al., 2013) are all reasonable methods.
Differences in occurrence probability (right of
Figure 4) of R61—R6, C61—Cé6, and E61—E6 were
—0.8140 to 0.7651 (mean: —0.0263), —0.5297 to
0.6467 (mean: —0.0049), and —0.7619 to 0.8294
(mean: —0.0253), respectively. A detailed comparison
of predictive maps is also presented in Supplementary
Figure |. Overall, the predictive probability modeled
using a large number of predictors (R61, C61, and E61)
was less than that of small number of predictors (R6, C6,
and E6). This is possibly because the use of too many
predictors in SDM results in over-parameterization and
overfitting of the model (Guisan and Zimmermann, 2000;
Tyberghein et al., 2012). The situation was true in our
case with high collinearity or highly correlated predictors
(see Supplementary Table 1), such as |r| > 0.9 between
TI-T12, Biol, Bio8, Bio9, Biol0, BT, WI, EWI, and ELE.
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By the images in Figure 4, we can see that the difference
between the full 61-variable model and the simplest
6-variable model is not unacceptable, it means that there
is no need to use too many variables in SDM (Guisan and
Zimmermann, 2000; Tyberghein et al., 2012).

Proposed approach to selecting predictors

Overall, the three procedures (high correlation,
contribution level, and expert knowledge) for selecting
predictors provided satisfactory results with high
performance (Figures 3 and 4). However, the three
procedures had their respective limitations. For example,
biologically relevant predictors with strong correlations
were vague in the selection procedure. Furthermore,

CERNE

regarding the contribution level of the procedures,
collinearity was observed between predictors, such as
Bio5 vs. T6 (|r| = 0.9), as presented in Table 3. Finally,
the shortcomings of the expert knowledge procedure
were not limited to the collinearity between predictors
(Table 3) but also included artificial subjective decisions.
Although numerous studies have been conducted on F
hayatae (Shen et al., 2015; Ying et al., 2016), identifying
the most suitable set of environmental predictors for SDM
for F hayatae was difficult. Consequently, we propose a
synthesis approach by combining the aforementioned
three procedures to select predictors.

According to the aforementioned results, we
suggest the following simple approach of combining
different procedures of predictor selection.
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FIGURE 4 Average of and difference in probability maps. The average of (left) and difference in (right) probability maps based on different
MaxEnt predictor subsets from three backward elimination procedures.
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I Identify and eliminate ineffective variables with
nonidentifiability, such as Cl in our case, through bivariate
scatterplot analysis.

2. Calculate the correlation coefficients between
other candidate predictors

3. Gradually select predictors within some highly
correlated candidate subset on the basis of expert
knowledge concerning biologically relevant predictors
for target species and a low contribution level, which
facilitates rejection of redundant predictors.

In order to understand whether the synthetic
(abbreviated as S) strategy is superior to the other three
(R, C, E) strategies, we choose 7 environmental factors
for these four strategies to simulate the distribution of F.
hayatae. Figure 5 compares SDM performance using R,
C, E, and S strategies to select 7 environmental factors.
The results show that S strategy is closer to the true
distribution of F hayatae than the other three strategies,
and the S strategy is more clearly to reveal that the
distribution of F hayatae is mainly controlled by thermal-
moisture regime and topographic location. Consequently,
the synthetic selection strategy of environmental factors
proposed in this paper can help to select the predictors
suitable for SDM.
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