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Abstract

A large part of the numerical procedures for obtaining the equilibrium path 
or load-displacement curve of structural problems with static nonlinear behavior is 
based on the Newton-Raphson iterative scheme to which are coupled the path-fol-
lowing methods. In this context, this study uses one technique, referred to as normal 
flow, in the process of obtaining the approximate nonlinear static response of struc-
tural systems. Basically, this technique is an adaptation made with in the Newton-
Raphson iterative scheme in an attempt to speed up the nonlinear solution process 
and/or remove convergence problems. To overcome the critical points and to trace 
the whole nonlinear equilibrium path, three different strategies are used in association 
with the normal flow technique: the cylindrical arc-length, the minimum residual dis-
placement norm and the generalized displacement. With this procedure, the perfor-
mance of these strategies when associated with the normal flow technique is valued. 
Two arches with highly nonlinear load-displacement curves are used in the study. The 
results obtained demonstrated that the association of the generalized displacement 
strategy with the normal flow technique contributes to the improvement of the non-
linear solution methodology.

Keywords: Static analysis, Geometric nonlinearity, Equilibrium paths, Incremental-
iterative scheme.

Resumo

Grande parte dos procedimentos numéricos para obtenção de caminhos de equi-
líbrio dos problemas estruturais com comportamento estático não linear baseia-se no 
método de Newton-Raphson, ao qual são acoplados métodos de continuação. Nesse 
contexto, esse trabalho usa uma técnica, referida como fluxo normal, no processo 
de obtenção da resposta aproximada não linear estática de sistemas estruturais. Tal 
técnica trata-se, basicamente, de uma modificação estabelecida no esquema iterativo 
de Newton-Raphson, na tentativa de acelerar o processo de solução e/ou contornar 
problemas de convergência. Para ultrapassar os pontos limites e traçar a trajetória de 
equilíbrio completa das estruturas, adotam-se três diferentes estratégias de iteração: 
comprimento de arco, norma mínima dos deslocamentos residuais e deslocamento 
generalizado. Com esse procedimento, é avaliado o desempenho dessas estratégias, 
quando associadas à técnica do fluxo normal. Dois arcos com caminhos de equilíbrio 
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Iterative strategies associated with the normal flow technique on the nonlinear analysis of structural arches

1. Introduction

2. Methodology for solving nonlinear structural problems 

não lineares são usados no estudo. Os resultados encontrados permitem concluir que a 
associação da estratégia do deslocamento generalizado com a técnica do fluxo normal 
contribui para a eficiência da metodologia de solução não linear.

Palavras chave: Análise estática, não linearidade geométrica, trajetória de equilíbrio, 
esquema incremental-iterativo.

Structural stability analyses using 
the Finite Element Method (FEM) usu-
ally involve solving a nonlinear equations 
system. Purely incremental methods or 
schemes that combine incremental and 
iterative procedures are used to obtain 
this nonlinear equation system solution. 
When only based on the Newton-Raph-
son method (Bathe, 1996), many schemes 
are not capable of passing through the 
critical points (bifurcation or limit points) 
that can appear in the equilibrium path. 
This occurs due to poor conditioning of 
the tangent stiffness matrix that becomes 
singular at these points.

An efficient methodology for non-
linear system solving should be able to 
trace the complete equilibrium path, 
and identify and pass through all of 
the existent singular or critical points 
of the structural system under analysis. 
According to Crisfield (1991), although 
many times the structure results before 
reaching its critical points is sufficient 
for the design purposes, determining 
the response in a post-critical interval is 
essential within the large displacements 
domain.

This work’s objective is to associate 

the normal flow technique with path-
following iterative strategies. Such an 
association should help overcome con-
vergence problems proper to numerical 
nonlinear structural analysis and/or im-
prove the computational performance of 
these strategies. This technique makes it 
possible to modify the Newton-Raphson 
iterative process, where the iterations are 
conducted along the normal direction 
to the Davidenko flows (Allgower and 
Georg, 1980). The normal flow technique 
was implemented into the Computational 
System for Advanced Structural Analysis 
program (CS-ASA; Silva, 2009). CS-ASA 
is based on the finite element method and 
performs nonlinear static and dynamic 
analyses of structures. Two slender arches 
with strongly nonlinear behavior are ana-
lyzed herein to show the performance of 
three iterative strategies associated with 
the normal flow technique. The strate-
gies adopted and available in CS-ASA 
are: the arch-length control idealized by 
Riks (1972), Ramm (1981), and Crisfield 
(1981), and used by many other research-
ers (Sousa and Pimenta, 2010; Lee et al., 
2011; Moghaddasie and Stanciulescu, 
2013); the minimum residual displace-

ment norm proposed by Chan (1988); 
and the generalized displacement control 
proposed by Yang and Kuo (1994). The 
next section presents details of the meth-
odology used in the solution of nonlinear 
structural problems, characterized by an 
incremental-iterative scheme.

It is worth mentioning some re-
searches involving normal flow technique 
in literature. Watson et al. (1987) and 
Watson et al. (1997) introduced the 
normal flow algorithm in the HOM-
PACK and HOMPACK90 software, 
respectively. Ragon et al. (2002) pres-
ents a study involving variants of the 
arc-length method and the normal flow 
algorithm. These authors stated that the 
algorithm could be more efficient than 
the arc-length method in cases where the 
equilibrium path is strongly nonlinear. 
Besides this, they wrote that the algo-
rithm maintains large increments even 
when the nonlinearity is accentuated. 
In addition, the use of iterations steps in 
the normal direction to the Davidenko 
flows insures that convergence during the 
iterative process occurs faster. Saffari et 
al. (2008) and Tabatabaei et al. (2009) 
also adopted this technique.

The equation that governs the static 
equilibrium of a structural system with 

geometrically nonlinear behavior can be 
written by Equation (1):

Fi (U) = λFr (1)

where Fr is a reference vector character-
izing the external load direction and λ is 
the load parameter; Fi is the internal force 
vector, which is a function of the displace-
ment, U, at the structure nodal points.

The structural problem solution 
of Equation (1) is obtained by using an 
incremental and iterative scheme. As such, 
for an incremental sequence of the load 
parameter Δλ, the respective nodal dis-

placement increments ΔU are calculated. 
As Fi is a displacement nonlinear function, 
iterations for correcting ΔU are necessary 
to obtain the solution.

Equation (1) can be rewritten as:

g = λFr - Fi (U) (2)

where g represents the gradient vector or 
the unbalance between the external and 
internal forces.

The Newton-Raphson method 
has been one of the most utilized in the 
solution of Equation (2). The objective is 

to determine the roots of this nonlinear 
relationship, which refers to the con-
figurations of the static equilibrium of the 
structure. In this method, it is admitted 
that given an initial estimate for the root, 
the problem is to determine a sequence 

of corrections until a solution is obtained 
with the desired precision. For this, Equa-
tion (2) is approximated using the Taylor 
series (Press et al., 1986). Therefore, for 
a load increment at the instant t + Δt, 
and at each iteration k, from the approxi-
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mated solution of the displacement field  U(k-1) = tU + ΔU(k-1), its correction δUk is calculated so that:

(3)

Note that the terms k and (k-1) 
are used herein to respectively refer 
to the current and previous iterations. 

Expanding the Taylor series to Equation 
(3), and considering the two first terms 
of the series, the expression for the 

correction of the nodal displacements 
becomes:

(4)

Thus, the new estimate for the solution, given by:

Uk=U(k-1)+δUk (5)

is considered to be the solution of the 
problem when a determined convergence 
criteria is satisfied.

The modified Newton-Raphson 
method is an alternative to the standard 
technique, in which the inclination of the 
tangent is maintained constant in all of the 

iterations. For the structural analysis, the 
stiffness matrix remains unaltered.

In both approaches to the Newton-
Raphson method, the load parameter is 
maintained constant during the iterative 
cycle. In case the entire equilibrium path 
is to be accompanied, it is necessary to 

permit its variation from iteration to 
iteration. Followed then was the general 
technique proposed by Batoz and Dhatt 
(1979), where the alteration of the load 
parameter is permitted and the change in 
the nodal displacement is established by 
the following equation for equilibrium:

K(k-1)δUk  =  g(U(k-1), λk), k ≥ 1 (6)

where the vector g becomes a func-
t ion of the d isplacement nodes  

U(k-1) calculated in the last iteration, and 
also of the current load parameter λk, 

which is now an unknown element and 
written as:

λk  =  λ(k-1) + δλk (7)

where δλk is a load parameter correction obtained using some iteration strategy (Silva, 2009).
Substituting (7) in (6) and using Equation (2), gives:

K(k-1)δUk = [(λ(k-1)+δλk) Fr-Fi
(k-1)], or, K(k-1) δUk = g(k-1)+δλkFr (8)

(10)

(9)

which is the new equation used in the 
iterative cycle.

When using Equation. (8), the vector 
of the iterative nodal displacement nodes 

can then be decomposed into two parts 
and is written as:

δUk = δUk
g+ δ λkδUk

r

with δUk
g=K-1(k-1)g(k-1) and δUk

r = K-1(k-1)Fr. 
The usage of this equation is referred 
to herein as the conventional process 
for the nonlinear solution methodology.

In the normal flow technique, the 

equilibrium between the internal and 
external forces is obtained by perform-
ing iterative corrections along of the 
normal direction to the Davidenko 
curves (Allgower and Georg, 1980; 

Maximiano, 2012). With this tech-
nique, the expression used to obtain 
the nodal displacement correction is 
given by:

which is, according to Watson et al. 
(1997), the unique solution for the mini-
mum Euclidian norm of Equation (6). 
Using Equation (10), the vectors δU and 
δUr in the current iteration are always 

perpendicular because the second term 
of the difference vector is a projection of 
the first in the direction of vector δUr

k.
Once the corrections δλk and δUk 

are obtained, the incremental variables 

ΔU and Δλ, together with the totals U 
and λ, are updated. The methodology 
described in this section is detailed in 
Table 1.

3. Results - numerical examples

In this section, the objective is to 
verify the computational efficiency of 
the following iterative strategies asso-

ciated with the normal flow technique: 
cylindrical arc-length control (AL), 
minimum residual displacement norm 

(MD) and generalized displacement 
control (GD). Such verification is made 
using the static analysis of the two 

g = (U(k-1)+δUk) = 0

δUk = K-1 g (U(k-1))
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arches that have nonlinear geometrical 
behavior. These arches are illustrated 
in Fig. 1 and will be described in sub-
sections below. 

From all the nonlinear finite ele-
ments formulations implemented in CS-
ASA, the one proposed by Pacoste and 
Eriksson (1997) is used in this analysis. 
Details of this formulation, which 
adopts the total Lagrangian reference 
and is based on the theory of Timosh-

enko, can also be found in Maximiano 
(2012) and Silva (2009).

The iterative process determining 
the displacement correction through 
Equation (9) — conventional process 
— was also used for comparison. In the 
two analyzed problems, were compared: 
the total number of load increments (Ntot) 
and iterations (Itot), the average number 
of iterations per load increment (Iavg), 
the processing time in seconds (CPU), 

and the number of restarting (Rest). 
Notice that a restart occurs when the 
maximum number of desired iterations 
is reached (nmax) and no convergence 
is obtained for a given load increment. 
In this case, the last configuration for 
the known equilibrium is returned to 
and the incremental-iterative process is 
restarted, reducing the value of Δλ0 by 
half. In the two analyses, the maximum 
number of iterations nmax was 21.

Table 1
 Incremental-iterative algorithm adopted

3.1 Partially-loaded circular arch 

The first example is the partially-
loaded circular arch, whose physical 
and geometric properties are given in 
Figure 1a. In this figure, E corresponds 
to elastic modulus, I to moment of 
inertia, R to radius, and A to the cross-

sectional area. The arch modeling used 
twenty beam-column elements. As non-
linear solution methodology control, a 
convergence tolerance ζ equal to 10-6 
and the modified Newton Raphson 
were adopted. To begin the analysis, the 

uniformly-distributed load intensity p 
for the first increment was considered to 
be equal to 100 N/m. Be aware that this 
value is corrected during the iterative 
process of this first increment. For the 
rest of the load steps, the definition of 

1. Load increment control:  i = 1, 2, 3,…, Ntot 
2. Incremental Tangent Solution ( 0, U0) 

2a. Calculate the tangent stiffness matrix: K 
2b. Solve: 1

r r=U K F  

2c. Define the initial load increment : 

( )( ) ( )( )

0

0 0 1 1
1

(

= ± +

= ±

T T
r r r r

T t T
r r r r

Increment based on arc - length

Increment based onGeneralized Stiffness Parameter GSP)

l U U F F

U U U U

 

2d. Determine: U = Ur  
2e. Update the variable in configuration t + t: (t+ t)  = t  + 0 and (t+ t)U = tU + U0 

3. Newton-Raphson Iterative Process: k = 1, 2, 3,..., nmax 

3a. Calculate the internal force vector: ( ) ( ) ( )1 1+ = +tkt t k
iiF F K U  

3b. Calculate the unbalanced force vector: ( ) ( ) ( ) ( ) ( )1 1 1+ +=k t t k t t k
r ig F F  

3c. If standard Newton-Raphson, update the stiffness matrix K 

3d. Calculate the load parameter correction, k: 

( )

( ) ( )

2
     0 (Silva, 2009)

    

    

k k

T Tk k k k k
r g r r

k t
r

Based on cylindrical arc - length(AL)

A B C
Based on minimum residual displ. norm (MD)

Based on generalized displacement (GD)

+ + =

=

=

U U U U

U( ) ( )T k t T k
g r rU U U

 

3e. Calculate the nodal displacement correction vector:  
k k k k

g r= +U U U , if Conventional process, or, 

( ) ( )Tk k k k
g r r kkkkk

rrg kT k
r r

+
= +

U U U
UUUU

U U
, if Normal flow technique,  

with ( ) ( )1 1 1k k k
g =U K g  and ( )1 1k k

r r=U K F  

3f. Update the load parameter, , and the nodal displacement vector, U: 
a) Incremental: k = (k-1) + k and Uk = U (k-1) + Uk 
b) Total: (t+ t) k = t  + k and (t+ t)Uk = tU + Uk 

3g. Verify the convergence (based on displacement): k kU U  

Yes: Stop the iterative process and go to step 4 
No: If k < nmax, return to step 3 

If k = nmax, reduce 0 by half and restart the process, step 2 

4. IF i < Ntot, Return to step 1 and make a new load increment  
    IF i = Ntot, Stop the incremental  process  

00

0
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(a) Partially-loaded circular arch

E = 20 KN/cm2 I = 10000 cm4 A = 1000 cm2

1000 cm

R = 625 cm

v

p

250 cm

P

254 cm

E = 0.1378 kN/cm2 I = 41.62 cm4 A = 64.52 cm2

v

(b) Circular arch with central load
Figure 1
Arches analyzed: geometry and loads.

Figure 2a shows the equilibrium 
paths obtained by controlling the vertical 
displacement, v, at the center of the arch. 
The generalized displacement strategy 
was used associated to the normal flow 

technique. This structure was studied 
by Xu and Mirmiram (1997) using a co-
rotational beam formulation and the non-
linear solution strategy proposed by Riks 
(1979). Note the good agreement between 

the response obtained by these authors and 
achieved in this work. Figure 2b shows the 
deformed arch configurations referring to 
the three load limit points, whose positions 
are indicated by the letters A, B and C.

(a) Equilibrium path

Present Work
Xu and Mirmiran (1997)

C

C

A

A

B

B

v (m)

p 
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)
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Normal flow technique
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(b) Variation of p during the incremental process
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v

Figure 2
Results obtained for the partially-loaded 
circular arch.

Table 2 presents the values for the 
parameters Ntot, Itot, Iavg, CPU and Rest 
obtained by using the three iterations 
strategies: AL, MD and GD, when as-
sociated to the normal flow technique. 
The results for the conventional process 
are also indicated in this table. When 
comparing these parameters for AL 
and MD, it is possible to observe the 

similarity between the computational 
performance obtained with the con-
ventional process and with the normal 
flow technique. Differently, the GD 
strategy was more efficient when asso-
ciated with the normal flow technique. 
It was observed that a smaller number 
of load increments and total iterations 
were necessary and consequently, the 

analysis was concluded in a shorter 
processing time. The best perfor-
mance of the normal flow technique 
is also graphically illustrated in Fig. 
2b. Notice that after reaching the load 
limit point B, a significant difference 
occurs between these two forms to 
correct the nodal displacement in the  
iterative process.

Table 2
Evaluation of the computation efficiency 
of the adopted strategies - Partially loaded 
circular arch.

3.2 Circular arch with central load

the load intensity occurs automatically by using some load increment strategies (definition of Δλ0).

Strategies
CONVENTIONAL PROCESS NORMAL FLOW TECHNIQUE

Ntot Itot Iavg Rest CPU(s) Ntot Itot Iavg Rest CPU(s)

AL 1702 10251 6 0 7.61 1705 10269 6 0 7.75

MD 1500 9412 6 2 7.46 1500 9412 6 2 7.60

GD 2497 13187 5 3 11.15 1500 9412 6 2 7.46

The circular arch submitted to 
a concentrated load of intensity P, as 

showed in Fig. 1(b), is the other structure 
chosen to evaluate the efficiency of dif-

ferent iterative strategies when associated 
with the normal flow technique. Taking 
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(a) Equilibrium path (b) Variation of p during the incremental process
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Figure 3

Results obtained for the circular arch with 
central load.

Table 3 presents the values encoun-
tered for the parameters Ntot, Itot, Iavg, 
CPU and Rest obtained using the three 
iteration strategies: AL, MD and GD, all 
associated with the normal flow tech-
nique. The conventional solution process 
was adopted for comparison. Therefore, 
as in the previous example, a significant 

difference between these two approaches 
could be observed when the GD strategy 
was used. The results showed a number 
of smaller load increments, less total 
iterations and no restarting occurrences, 
insuring substantially reduced process-
ing time. 

Figure 3(b) presents the variation 

for load P during the incremental process. 
Note that the results differ around the 
limit point C, and from this point on the 
efficiency of the normal flow technique 
can be perceived. Returning to Table 3, 
see that the arc-length strategy was not 
able to trace the equilibrium path, diverg-
ing at the very beginning of the analysis.

4. Discussion

This study investigated the compu-
tational performance of three iterative 
strategies associated with the normal flow 
technique when used for the nonlinear 
static response of structural systems. 
The normal flow technique is related to 
a modification of the Newton-Raphson 
iterative scheme so as to overcome con-
vergence problems and/or accelerate the 
solution process. The path-following 
strategies used in the study were: cylindri-
cal arc-length control, minimum residual 
displacement norm control, and general-
ized displacement control.

The nonlinear analysis of two 

slender arches was performed and the 
obtained results were compared to the so-
lutions found in literature. When utilizing 
the strategy based on the generalized dis-
placement control, the responses obtained 
in both analyses showed that the normal 
flow technique significantly contributed 
to improving the computational perfor-
mance of the adopted nonlinear solution 
methodology. This combination permitted 
the complete tracing of the equilibrium 
trajectory for a smaller number of load 
increments and iterations, and as such, 
diminished the computer-processing time 
over that of conventional processes. In this 

case, larger load increments were main-
tained even when the curve nonlinearity 
was accentuated, as was also observed 
by Ragon et al. (2002). In addition, the 
solution process was restarted less often 
than in the conventional process. The 
same efficiency was not observed when the 
normal flow technique was combined with 
the arc-length or the minimum residual 
displacement norm strategy.

Finally, it is important to point out 
that among the strategies used in this 
study, the minimum residual displacement 
norm excelled in the two analyses when 
the conventional process was used.

Table 3
Evaluation of the computational efficiency 

of the adopted strategies - Circular arch 
with central load.

Strategies
CONVENTIONAL PROCESS NORMAL FLOW TECHNIQUE

Ntot Itot Iavg Rest CPU(s) Ntot Itot Iavg Rest CPU(s)

AL* 400 862 2 2 9.36 400 859 2 2 9.66

MD 649 1451 2 0 15.17 649 1451 2 0 15.81

GD 2220 3224 1 3 39.92 649 1451 2 0 15.34

*It was not able to go beyond the load limit point B

into consideration the symmetry of the 
model, only half of the arch was dis-
cretized and 35 finite elements were used. 
Load P was presumed to be equal to 0.4 
N to initiate the analysis. This value, as 
discussed in the previous example, is 
corrected during the iterative process of 
the first increment. A tolerance of ζ = 10-3 
for the convergence of the iterative cycle 

was adopted. The study was performed 
utilizing the standard Newton-Raphson 
method. In this situation, the obtained 
load x vertical displacement curve at the 
point of load application is exhibited in 
Fig. 3(a). The load limit points in the 
analysis obtained numerically by Yang 
and Kuo (1994) are indicated by the 
positions: A, B, C, D, E, and F of this 

same figure as well as the arch deforma-
tion configuration when these points 
are reached. These authors studied 
this structure under a central load for 
validation of generalized displacement 
strategy (DG) and adopted 26 finite 
elements. Again, note the consistency of 
this paper’s results with those found in 
literature.
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