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Abstract

Most evolutionary processes occur in a spatial context and several spatial analysis techniques have been employed
in an exploratory context. However, the existence of autocorrelation can also perturb significance tests when data is
analyzed using standard correlation and regression techniques on modeling genetic data as a function of explana-
tory variables. In this case, more complex models incorporating the effects of autocorrelation must be used. Here we
review those models and compared their relative performances in a simple simulation, in which spatial patterns in al-
lele frequencies were generated by a balance between random variation within populations and spatially-structured
gene flow. Notwithstanding the somewhat idiosyncratic behavior of the techniques evaluated, it is clear that spatial
autocorrelation affects Type I errors and that standard linear regression does not provide minimum variance estima-
tors. Due to its flexibility, we stress that principal coordinate of neighbor matrices (PCNM) and related eigenvector
mapping techniques seem to be the best approaches to spatial regression. In general, we hope that our review of
commonly used spatial regression techniques in biology and ecology may aid population geneticists towards provid-
ing better explanations for population structures dealing with more complex regression problems throughout geo-
graphic space.
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Introduction

Most evolutionary processes occur in a spatial con-

text. The genetic variation originated by random mutations

and drifting within local populations will disperse through

geographically-mediated gene flow, whereas selection gra-

dients will appear, since environmental factors will also be

geographically arranged. Consequently, since the late

1970’s, several techniques in spatial analysis started to be

used to investigate these processes by analyzing spatial pat-

terns of genetic variation among populations (see Epper-

son, 2003 and Diniz-Filho et al., 2008a for recent general

reviews). In turn, this allowed for the emergence of many

slightly different (but highly overlapping) research pro-

grams, integrating ecology, evolutionary biology and ge-

netics (Diniz-Filho et al., 2008a). These techniques usually

involve the estimation of parameters from spatial structure,

such as the geographic distance at which genetic data can

be considered independent, which in turn can be linked to

ecological or evolutionary processes, such as dispersal.

More complex micro-evolutionary inferences can be per-

formed by comparing mapping patterns and their spatial

signature, for different alleles and loci (see Sokal and Oden,

1978a,b; Sokal and Wartenberg, 1983; Sokal et al., 1989).

Understanding such patterns within species can also be im-

portant in optimizing strategies for biodiversity conserva-

tion (Diniz-Filho and Telles, 2002, 2006; Diniz-Filho et al.,

2006).

Most of these techniques rely on the spatial auto-

correlation patterns of genetic variation (Sokal and Oden,

1978a, b). Spatial autocorrelation occurs when closer sam-

ples in geographical space tend to be more similar or dis-

similar to each other than expected by chance alone, for a

given variable such as allele frequencies (Legendre and

Legendre, 1998). Spatial autocorrelation in a biological

variable can be caused by endogenous processes, in which

an intrinsic property of the organisms in spatially distrib-

uted populations (such as higher levels of dispersal) causes
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higher genetic similarity among neighboring locations. An-

other possibility is that an exogenous factor, in which the

genetic variable is responding to variation in an environ-

mental variation, causes the observed pattern (Fortin and

Dale, 2005; Kissling and Carl, 2008). In most cases, a com-

bination of these two “types” of factors will influence spa-

tial patterns in biological variables.

In population genetics, autocorrelation has been usu-

ally considered as caused by endogenous processes, espe-

cially when analyzing neutral markers (although natural

selection cannot be ruled out in many instances). Inferences

on micro-evolutionary processes have been reached based

on parameters extracted from autocorrelation analysis,

through a descriptive and exploratory analysis of the spatial

structure underlying genetic variation. However, recogni-

tion that isolation among populations caused by exogenous

effects (including anthropic disturbances) (see Manel et al.,

2003; Telles et al., 2007; Storfer et al., 2007; Holderegger

and Wagner, 2008; Soares et al., 2008;) can affect neutral

loci and create spatial patterns in genetic variation, has led

to other widely discussed approaches in spatial analyses in

diverse research areas in biology (i.e., ecology and bio-

geography - see Diniz-Filho et al., 2003, 2007b). The exis-

tence of autocorrelation can perturb significance tests and

parameter estimates on analyzing data using standard sta-

tistical techniques, when a given response variable (genetic

data) is modeled as a function of explanatory variables, as

for instance, patterns of human occupation or historical ef-

fects creating isolation among local populations. In this

case, more complex models incorporating the effects of

autocorrelation must be used instead of standard and well-

known regression and correlation models. The main prob-

lem is that spatial autocorrelation in data also causes infer-

ential statistical problems, since Type I errors in regression

and correlation analyses are always inflated (see Legendre,

1993). Thus, when dealing with exogenous processes af-

fecting genetic variation, it is important to apply statistical

techniques that take into account intrinsic demographic

factors and population dynamics creating intrinsic auto-

correlation.

Here, we review those modeling techniques which

have already been well studied and used in many fields of

biology and science in general (see Cressie, 1993; Haining,

1990, 2002; Schabenberg and Gotway, 2005), but only re-

cently have they been mentioned in the contexts popula-

tion, conservation and landscape genetics (Storfer et al.,

2007). We describe these techniques and show their appli-

cation in a simple simulation of genetic data, in which spa-

tial patterns in allele frequencies were generated by a bal-

ance between random variation within populations and

spatially-structured gene flow. We show that the avoidance

of their use tends to increase Type I errors when relating ge-

netic variation with exogenous factors structured on geo-

graphical space.

Spatial Regression Techniques

Spatial autocorrelation in residuals of standard
regression models

Suppose that an allele frequency is estimated in local

populations and that the purpose/proposal is to model the

dependence of this allele frequency on an explanatory vari-

able, such as temperature (when looking for selection gra-

dients) or intensity of anthropogenic effects that, for

example, could create patterns through increasing isolation.

The standard approach to analyze this kind of data is to per-

form a linear regression of allele frequencies (Y) against

the explanatory variable (X), so that the observed fre-

quency in each ith population can be expressed by:

Y Xi i ia b� � � � (1)

where a and b are the linear (intercept) and angular (slope)

coefficients and �i is the residual term, given by the differ-

ence between observed and expected frequency of the pop-

ulation i. In a matrix form, the equation above can be

written (and generalized) by:

Y X� �� � (2)

where � is the vector with coefficients associated with k ex-

planatory variables (plus the intercept term �0 or a). Thus,

the R2 of this regression model, given by the ratio between

predicted and observed sum of squares, will provide the

amount of variation in allele frequency that is “explained”

by the explanatory variables. It is assumed that the � term is

normally distributed with constant variance, and is inde-

pendently distributed among observations, so that cova-

riance matrix C among residuals is equal to:

C I� �2 (3)

where �2 is the variance of the residuals, which is constant

throughout the diagonal of C, and I is an identity matrix.

Under these assumptions, the coefficients in the vector �
can be obtained by:

� � �( )X X XyT 1 (4)

These coefficients are usually estimated by using

least-square techniques, and this simple non-spatial regres-

sion model will be called here Ordinary, or non-spatial,

Least-Squares (OLS) (which is actually the general method

of estimating �). However, a higher dispersal or migration

will link populations closer in geographical space, so that

any single stochastic variation will be shared among adja-

cent populations, and their similarity will be explained by

these stochastic processes and not by their common re-

sponse to X. Thus, close populations in geographic space

(i.e., which are linked by higher levels of gene flow) show

similar deviations from expected allele frequency by ef-

fects of X. This problem can be formally evaluated by

checking whether the residuals E of the model for local
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populations closer in geographic space are more similar

than expected by chance alone. In other words, this can be

evaluated by estimating spatial autocorrelation in model re-

siduals �.

Although autocorrelation at short distances will not

generate broad scale gradients, except if coupled with some

form of historical effects, autocorrelation among residuals

will actually generate an overestimation of residual degrees

of freedom, thus completely disturbing any significance

tests associated with the model. Even under alternative

frameworks for model evaluation, such as the information

theory (see Burnham and Anderson, 2002), model choice

will be perturbed by residual autocorrelation (Diniz-Filho

et al., 2008b).

The residual autocorrelation can be evaluated using

several techniques (see Sokal and Oden, 1978a,b, Legendre

and Legendre, 1998), but the most commonly applied ap-

proach in population genetics is to estimate Moran’s I

autocorrelation coefficients, given as:
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where n is the number of samples (local populations), yi and

yj are the values of the allele frequencies (or any quantita-

tive trait) measured in the populations i and j, y is the aver-

age of y and wij is an element of the W matrix. In this W

matrix, the elements are equal to 1 if the pair i, j of local

populations is within a given distance class interval (indi-

cating populations that are “connected” in this class), and

otherwise wij = 0. S indicates the number of entries (connec-

tions) in the W matrix. The value expected under the null

hypothesis of the absence of spatial autocorrelation is

-1/(n - 1).

In practice, Moran I is usually calculated by using dif-

ferent distance classes, connecting, in the W matrix, pairs

of local populations situated at increasing geographic dis-

tances. Thereby, a sequence of coefficients is obtained and

a spatial correlogram appears when they are plotted against

geographic distance classes. This correlogram better de-

scribes the complexity of spatial patterns, both in original

variable and model residuals. Most evolutionary inferences

using autocorrelation in population genetics and phylogen-

etic comparative analyses have been performed based on

correlograms, although these were not obtained from

model residuals, but instead from original allele frequen-

cies or phenotypes (Sokal and Oden, 1978a, b; Sokal and

Wartenberg, 1983; Sokal et al., 1989; Diniz-Filho and

Malaspina, 1995; Diniz-Filho, 2001, 2004).

The statistical significance of Moran’s I can be ob-

tained by estimating its variance, under different assump-

tions and obtaining a standard normal deviation statistics Z.

For model residuals, these formulae do not apply exactly

(see Schabenberg and Gotway, 2005), and so significance

levels can be established by randomization techniques

(Manly, 1997). Another recent development is to apply lo-

cal versions of Moran’s I, in which a spatial autocorrelation

coefficient is calculated for each spatial unit, thereby re-

vealing how similar neighbouring values are regarding

each of these “focal” spatial units (Sokal et al., 1998a,

1998b; Fotheringham et al., 2002). This is a more forceful

way of evaluating more localized spatial patterns in model

residuals, thus allowing for a better understanding of ge-

netic variation and greater ability in detecting problems in

regression models.

Mantel tests (Mantel, 1967; Manly, 1985, 1997) have

also been widely used in population genetics for comparing

geographic and genetic distances. In this context of spatial

regression, multiple Mantel tests (Smouse et al., 1986;

Manly, 1985) could be used to evaluate the effects of differ-

ent sets of explanatory matrices X in pairwise genetic dis-

tances. However, this is basically a partial regression model

(see below) in a matrix design, and has mainly been used

for exploring relationships and not correcting statistical in-

ference.

Once autocorrelation in model residuals is detected, a

number of modifications in Eq. (1) can be performed taking

this into account, both in order to improve understanding of

genetic variation, as well as to better estimate and test

model parameters. In general, we will refer to these subse-

quent models, as reviewed below, as “spatial regression

models”. These can be grouped into two classes, based on

the idea of incorporating autocorrelation either into a model

structure or into model residuals. Since the problem of

modeling spatially-structured genetic data appears when

autocorrelation exists in model residuals, as described

above, the solution to the problem is exactly to eliminate

this autocorrelation. This can be statistically achieved by

two different approaches (see Martins and Hansen, 1996):

1) it is possible to introduce into the model structure certain

spatial “terms”, such as additional vectors in X which are

other variables that capture spatial variation, so that E be-

comes independently distributed; or 2) assume that � is

autocorrelated, and explicitly incorporate this when esti-

mating coefficients in �. Both classes of models will be dis-

cussed in more detail below.

Incorporating geographic space in model structure

There are many ways of incorporating spatial vari-

ables into the model structure to eliminate residual auto-

correlation. This can be expressed by a general model of the

form:

Y � � �X G� � (6)

where X, � and � are as defined for Eq. (2) and G is a vector

or matrix (i.e., spatial terms and associated spatial coeffi-

cients) expressing geographic space or, more appropriately,

the geographically-structured genetic variation among lo-

cal populations. Thus, this class of spatial regression tries to

“filter” or eliminate autocorrelation in model residuals by
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capturing it in the G term of Eq. (6). Therefore, the problem

is how to define “space” in Eq. (6) and express it in G terms.

The first and simplest way of defining space is by di-

rectly using the spatial coordinates of populations (i.e., lati-

tude and longitude) that can be added as spatial predictors,

so that:

G LB� L (7)

where L is a vector with spatial coordinates of local popula-

tions and BL are the slopes of these coordinates. What Eq.

(7) is actually doing is to express part of genetic variation,

such as a north-south cline, as a plane in geographic space.

The spatial component in Eq. (7) can be changed by adding

polynomial expansions, thereby adjusting to quadratic or

cubic functions of spatial coordinates. This technique is

known as “trend surface analysis” (see Legendre and Le-

gendre, 1998), and is better designed to model broad scale

trends and not local autocorrelation in model residuals.

Anyhow, these can be useful if genetic variation is in part

caused by broad-scale effects, such as directional selection

gradients caused by environmental factors (such as temper-

ature) and is structured at these scales, or by colonization

historical events with strong directional components (see

Bocquet-Appel and Sokal, 1989).

Another way to express more localized spatial pat-

terns is by an autoregressive term. There are several forms

to express autoregressive models, but the main idea is that

the response variable Y can be modeled as:

Y � �� �WY (8)

where � is an autoregressive coefficient and W is a matrix

expressing spatial weightings, or rather, how one local pop-

ulation affects the other. The elements of W can be defined

in many ways, including connectivity (as in W matrices of a

spatial correlogram using Moran’s I) or by the inverse of

geographic distances dij among local populations

(wij = 1/dij). It is also possible to use another term to in-

crease the complexity of the relationship between weights

and distances, so that wij = 1/dij
�, where � is a coefficient

that controls curvilinearity in the relationship between geo-

graphic distances and weights. Thus, the above term �WY

is the estimated value of Y in a given local population if its

genetic variation is a function of nearby local populations

weighted by their geographic distances (expressed as

weights). Thus, the term G in the above equation can be ex-

pressed as the vector �WY, so that:

Y X +� �� � �WY (9)

This model is usually called the “lagged-response

autoregressive model”. Alternatively, it is possible to in-

corporate autoregressive terms, as defined above, for both

Y and X variables, so that the overall Eq. (6) becomes:

Y X + +� �� � � �WY WX (10)

where � are the spatial autoregressive coefficients � for

each explanatory variable. This model is usually called the

“lagged-predictor or mixed autoregressive model”.

A different approach to incorporating space into mod-

els is to extract eigenvectors from a matrix expressing the

spatial relationship among local populations, and to use

part to establish the term G of Eq. (6). This approach have

been called eigenvector-based spatial filtering, the princi-

pal coordinate of neighbor matrices (PCNM), or, and in

general, spatial eigenvector mapping (SEVM) (see Borcard

and Legendre, 2002; Borcard et al. 2004; Griffith, 2003;

Diniz-Filho and Bini, 2005; Griffith and Peres-Neto, 2006).

The basic difference among these slightly different applica-

tions is from which matrix expressing geographic space,

the eigenvectors are to be extracted. Diniz-Filho et al.

(1998) also proposed to extract eigenvectors from phylo-

genetic distance matrices, calling this process phylogenetic

eigenvector regression (PVR), and using this to express

phylogenetic components in a trait Y measured across spe-

cies (or populations, as seen in Diniz-Filho et al., 1999; see

also Diniz-Filho et al., 2007a for a more complex combina-

tion of spatial and phylogenetic mapping).

Eigenvectors of a spatial matrix express the relation-

ships among local populations at decreasing spatial scales,

so that first eigenvectors (i.e., those associated with large

eigenvalues) tend to express broad-scale structures,

whereas eigenvectors with small eigenvalues tend to ex-

press local patterns. Thus, the advantage of eigenvector

mapping is the flexibility in dealing with patterns at multi-

ple scales, and the possibility of iteractively improving

modeling process by adding or removing these eigenvec-

tors. However, this may also pose a problem, since a very

large number of eigenvectors (i.e., n - 1) exists, so there

must be a certain criterion for establishing which are to be

used in the model. This is the same as the “stopping-rule

problem” in multivariate analysis for deciding which

eigenvectors are meaningful (see Legendre and Legendre,

1998). Several criteria can be used, but in this modeling

context the most important is to parsimoniously select the

smallest number of eigenvectors that ensure a minimum de-

sirable level of spatial autocorrelation in residuals.

Incorporating autocorrelation in model residuals

The second class of spatial regression does not at-

tempt to minimize residual autocorrelation by “filtering” it

from variable Y, as described above. Instead, the idea is to

solve the problem by incorporating spatial autocorrelation

as part of residual variation, and correcting (or generaliz-

ing) the way coefficients in � and their variances are to be

estimated. The basic idea is actually based on Eq. (4) above.

Actually, Eq. (4) is a simplification of a more general equa-

tion of the form:

� � �( )X X X YT T
C C

1 (11)
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where C is a covariance matrix expressing the relationships

between local populations, quite similar (or analogous) to

W. Notice that, if there is no autocorrelation in residuals,

and variances are homocedastic, the C matrix becomes a

single number (�2), so that Eq. (10) is reduced to Eq. (4).

Once again, the different techniques that can be found

in the literature are named after different ways of defining

C. Wagner et al. (2005) also used a similar approach to gen-

eralize the AMOVA, a widely used technique in population

genetics. The most widely used techniques are simulta-

neous (SAR) and conditional (CAR) spatial autoregressive

models, based on p autoregressive coefficients and the W

matrix (see Wall 2004), and similar to those defined above,

in which the C matrix is given by:

C I W I WSAR � � �� �� � �2 1 1[( )] [ ]T (12)

and

C W I WCAR i
� � �[( )][ ]� �2 1

+
(13)

Another related model, called the moving average

(MA), can be obtained by defining C as:

C I W I WMA � � � �2[( )( ]+ + ) (14)

Equations (8) to (10) are also forms of simultaneous

autoregressive models, but since they are based on the “fil-

ter” approach, they are called lagged-models, whereas the

simultaneous form presented in Eq. (11) is sometimes re-

ferred to the SAR error model (Kühn, 2007, Dormann et al.,

2007, Kissling and Carl, 2008).

Finally, it is very important to note that success in the

application of these techniques is not always guaranteed,

because of model-fit problems. For example, if the spatial

structure way, as expressed in the W matrix, does not cap-

ture those spatial processes underlying genetic variation,

then the residual can still possess spatial autocorrelation.

Thus, it is important to use Moran’s I or some other auto-

correlation coefficient to test whether the assumption of

spatial independence of residuals is being violated or not.

A Simple Simulation

We showed the relative performance of the models

described above, by using a simple simulation of an isola-

tion-by-distance process in geographic space, generated

with EASYPOP 2.0 (Balloux, 2001). The simulation con-

sisted of a total of 30 local populations, each with 20 dip-

loid individuals (10 males and 10 females), with a known

spatial distribution (see below). Dispersal distance was

equal to 2 units, and a maximum of 10 alleles per locus was

generated under an infinite allele model, with maximum

variability. Gene dynamics occurred throughout 500 gener-

ations. Thus, spatial patterns that appear in genetic data (al-

lele frequencies) were generated by a purely spatially-

structured stochastic process combining mutation, drift and

gene flow, without exogenous effects.

As a reference for geographical dimension, the 30

populations were randomly assigned to a grid with 181

cells covering the Cerrado biome (Figure 1). The Cerrado is

the second largest biome in Brazil (the first is the Amazon

Rain Forest), occupying more than 1,500,000 km2, com-

prising a mosaic of different vegetation types dominated by

a tropical savanna matrix, but also ranging from open grass-

lands and rocky fields to dense woodlands and dry forests

(Oliveira-Filho and Marquis, 2002). The allele frequencies

were then modeled by using spatial regression techniques

as a function of the main directions of spatial variation in

human occupation throughout the biome, these being de-
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autocorrelation in the first distance classes.



rived from a factor analysis of 23 socio-economic vari-

ables, surrogates of modernization in farming, cattle

breeding and human demography (see Rangel et al., 2007

for details). Take note that we are not simulating any effect

of these factors on allele frequencies, and spatial patterns in

genetic data are only generated by endogenous processes.

Thus, statistically significant regression coefficients ex-

press the pure coincidence of spatial patterns in data (a

north-south directed cline in human demography) or an in-

flated Type I error of the different models under spatial

autocorrelation in the data. All spatial analyses were per-

formed using the SAM 3.0 (Spatial Analysis in Macro-

ecology; Rangel et al. 2006) program.

As foreseen, allele frequencies showed a significant

spatial pattern, with an expected spatial correlogram under

isolation-by-distance, with high positive autocorrelation

coupled with negative or stabilizing autocorrelation in the

last-distance classes (Figure 1). When modeling the allele

frequencies as a function of the three factors of human oc-

cupation (explanatory variables X), one would expect no

significant relationships to arise. However, on using the

standard OLS regression, out of the 20 models obtained, 14

contained at least one significant coefficient, and out of 60

regression slopes, a total of 29 were significant at the 5%

probability level (Table 1). By chance alone, one would ex-

pect to find 1 out of 20 models with some significant coeffi-

cients, or rather 3 coefficients out of the 60 tested. Thus,

despite the absence of causal relationships between Y and

X, the OLS tend to disclose many significant relationships

between genetic variation and exogenous processes.

Repeating these analyses, using the 7 different spatial

regression models, gave mixed results, when counting the

number of significant models and coefficients. For auto-

regressive models, elements in the W matrix were defined

as wij = 1/dij
3 (where dij are the distances between cells), and

for PCNM the eigenvectors used in the model were those

with significant spatial patterns (Moran I in the first dis-

tance class > 0.1), with truncation distance equal to 250 km.

In general, spatial regression models performed better than

OLS, both in terms of frequency of models and frequency

of coefficients, the two best models being LagRES and

PCNM, with a frequency of significant coefficients equal to

13% and 18%, respectively. However, some spatial regres-

sion methods, such as CAR, performed even worse than

OLS.

A “distance” from null expectation can also be ob-

tained for each method, by the sum of squares of standard-

ized slopes or each explanatory variable, assuming that

expected slopes are zero. According to this metric, SAR,

MA, LagRES and PCNM gave lower distances than OLS,

thus being less affected by autocorrelation and furnishing

results closer to the expected under the null hypothesis (a

null vector of slopes).

Finally, an ordination using a non-metric multidi-

mensional scaling of distances among methods, and based

on their standardized slopes, supports the above patterns.

LagRES, PCNM and TSA are the most diverse methods, at

extreme positions in ordination space (Figure 2), whereas

TSA is somewhat closer to OLS. The other methods are at

intermediate positions.

Discussion

Our analyses agree with the recent comparative eval-

uation by Bini et al. (2009), in the sense that the perfor-

mance of spatial regression models is quite idiosyncratic

208 Diniz-Filho et al.

Table 1 - A comparison of spatial regression methods based on the analy-

sis of null expectation, by regressing allele frequencies evolving under a

pure isolation-by-distance process against three explanatory variables

(factors). N. models refers to the frequency (out of 20 simulations) with at

least one significant (p < 0.05) regression slope, whereas N. coeff. shows

the frequency (out of 60 coefficients) of significant coefficients. The

Dist(H0) refers to the average Euclidian distances between the regression

coefficient vector � and the null expectation (all slopes are zero).

N. models N. coeffs Dist (H0)

OLS 0.65 0.38 0.140

TSA 0.75 0.33 0.170

PCNM 0.50 0.18 0.154

LagRES 0.40 0.13 0.076

LagPRED 0.40 0.20 0.113

SAR 0.70 0.35 0.118

CAR 0.70 0.38 0.138

MA 0.70 0.35 0.116

Figure 2 - Distribution of spatial regression methods in the 2D solution of

non-metric multidimensional scaling (NMDS) based on their standardized

slopes. The methods were: Ordinary Least-Squares (OLS); Principal Co-

ordinate of Neighbor Matrices (PCNM); Lagged Response (LagRES);

Lagged Predictor (LagPRED); Simultaneous Autoregression (SAR); Con-

ditional Autoregression (CAR); Moving Average (MA); Trend Surface

Analysis (TSA).



and data-dependent, at least in terms of parameter esti-

mates. From our analyses, it is evident that spatial filtering

approaches (especially LagRES and PCNM) seem to work

better for our simulated data than those incorporating auto-

correlation in model residuals, a result opposed to a slight

trend found by Bini et al. (2009) on analyzing 99 macro-

ecological datasets (although they also found a better per-

formance by SEVM, analogous to PCNM). This may be

due to the strong endogeneous component in our simulated

data, whereas in Bini et al. (2009), macro-ecological data

exogenous components are usually dominant (see also

Hawkins et al., 2007). The same is valid for simulations

performed by Dormann et al. (2007) and Kissling and Carl

(2008). In all these ecological analyses, LagRES was the

worst model, whereas here it was the model with the lowest

type I errors. At the same time, our performed simulations

are constrained by the shape of the Cerrado domain, so that

common clinal patterns may appear alone and by chance,

even without a causal basis, and it is difficult to tease these

effects apart.

Because of the relatively great number of signifi-

cantly large coefficients and models found in our analyses

(a minimum of 13% for LagRES), one could argue that spa-

tial regression models, although tending to perform better

than OLS, are not entirely effective in decoupling the en-

dogenous and exogenous processes driving allele frequen-

cies. This is true, although it is not necessarily due to

statistical problems with methods, but instead to conceptual

problems underlying correlation and causation (Shipley,

2000). It is important to note that, in our simulations, statis-

tically significant coefficients or models purely express the

coincidence of spatial patterns in data, or an inflated Type I

error of the different models, because of residual spatial

autocorrelation. We simulated stochastic patterns in allele

frequencies and used real patterns of human occupation in

the Cerrado as explanatory variables, thereby following re-

cent approaches in ecological data (Dormann et al., 2007;

Dormann, 2007; Kissling and Carl, 2008). Although this

approach is more realistic, it also opens the possibility of

common trends appearing by chance alone, since independ-

ent spatial patterns are not simulated in both Y and X vari-

ables. For example, if allele frequencies under

isolation-by-distance tend to form a cline, the spatial con-

figuration of the Cerrado alone, itself more oriented across

a north-south axis, would be enough to generate a correla-

tion with the north-south cline in human demography, even

if these two patterns are not intrinsically related. Spatial re-

gressions are mainly designed to deal with inflated Type I

errors due to/because of short-distance autocorrelation, and

would not solve broad-scale associations, so it would be

conceptually impossible to distinguish between causal ef-

fects when similar trends appear in data, even if they are

originated by different mechanisms. This is a general prob-

lem of all observation (not experimental) data (see Shipley,

2000), and is not a problem of particular modeling ap-

proaches.

Thus, part of the much higher Type I errors that ap-

peared in our analyses were due to a north-south cline that

arose in both allele frequencies (because of the spatial con-

figuration of local populations in the simulations) and hu-

man demography. Indeed, if this last explanatory variable

is not included in the analyses and the frequency of signifi-

cant models and coefficients are recalculated (Table 2), it is

possible to see that models are closer to null expectation

(i.e., zero slopes for the predictors). Also, Type I error of

OLS increases to 40%, whereas Type I errors of spatial re-

gression models are reduced to much more acceptable lev-

els, equal to 7.5% for LagRES (see Diniz-Filho and Torres,

2002 and Martins et al., 2002 for analogous Type I errors

estimated in comparative analyses) (Table 2). Notice that

when an improved performance appears, it mainly occurs

with “filtering” methods that remove the common trends,

and not with methods that deal with short-distance auto-

correlation in model residuals.

Despite the somewhat idiosyncratic results of com-

paring spatial regression models in the literature (Bini et

al., 2009), there is a consensus that spatial autocorrelation

affects and perturbs Type I errors and that, in this situation,

OLS does not provide minimum variance estimators (as

shown here in our simple simulations). In the recent devel-

opments in landscape and conservation genetics, genetic

data is usually regressed against sets of explanatory vari-

ables to detect factors associated with population structure.

So a warning against these undesirable effects in spatial

autocorrelation is necessary. Among the techniques tested,

PCNM and LagRES performed better with our simulated

data, although recently, LagRES has been the subject of

criticism in several papers (Dormann et al., 2007; Kissling

and Carl, 2008). Due to its flexibility and capacity to deal

simultaneously with problems in Type I error and parame-

ter estimation, we reinforce the notion that PCNM and re-

lated eigenvector filtering techniques seem to constitute the

best approach for spatial regression. In general, we hope

that our review of certain spatial regression techniques that
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Table 2 - The same analyses shown in Table 1, but regressing allele fre-

quencies evolving under a pure isolation-by-distance process against two

out of three explanatory variables (removing human occupation).

N. models N. coeffs Dist (H0)

OLS 0.55 0.40 0.069

TSA 0.35 0.25 0.073

PCNM 0.10 0.07 0.103

LagRES 0.15 0.07 0.033

LagPRED 0.20 0.12 0.055

SAR 0.40 0.30 0.060

CAR 0.50 0.45 0.070

MA 0.40 0.30 0.058



have been more commonly applied in biology and ecology

to solve autocorrelation “problems”, may help population

geneticists to provide better explanations for population

structure dealing with more complex regression problems

throughout geographic space.
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