
Genomic growth curves of an outbred pig population

Fabyano Fonseca e Silva1, Marcos Deon V. de Resende2, Gilson Silvério Rocha1,

Darlene Ana S. Duarte1,3, Paulo Sávio Lopes3, Otávio J.B. Brustolini4, Sander Thus5,

José Marcelo S. Viana6 and Simone E.F. Guimarães3

1Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
2Embrapa Florestas/Universidade Federal de Viçosa, Colombo, PR, Brazil.
3Departamento de Ciência Animal, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
4Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
5Department of Animal Sciences, Wageningen University, Wageningen, Netherlands.
6Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil.

Abstract

In the current post-genomic era, the genetic basis of pig growth can be understood by assessing SNP marker effects
and genomic breeding values (GEBV) based on estimates of these growth curve parameters as phenotypes. Al-
though various statistical methods, such as random regression (RR-BLUP) and Bayesian LASSO (BL), have been
applied to genomic selection (GS), none of these has yet been used in a growth curve approach. In this work, we
compared the accuracies of RR-BLUP and BL using empirical weight-age data from an outbred F2 (Brazilian Piau X
commercial) population. The phenotypes were determined by parameter estimates using a nonlinear logistic regres-
sion model and the halothane gene was considered as a marker for evaluating the assumptions of the GS methods in
relation to the genetic variation explained by each locus. BL yielded more accurate values for all of the phenotypes
evaluated and was used to estimate SNP effects and GEBV vectors. The latter allowed the construction of genomic
growth curves, which showed substantial genetic discrimination among animals in the final growth phase. The SNP
effect estimates allowed identification of the most relevant markers for each phenotype, the positions of which were
coincident with reported QTL regions for growth traits.
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Introduction

The success of pig production systems, including the

evaluation of alternative management and marketing strate-

gies, requires knowledge of the body weight behavior over

time, commonly referred to as the growth curve. This

knowledge allows the assessment of growth characteristics

in actual production situations and translates this informa-

tion into economic decisions.

Differences among animal growth curves partly re-

flect genetic influences, with multiple genes contributing at

different levels to the overall phenotype. Hence, selection

strategies that attempt to modify the growth curve shape to

meet demands of the pork market are very relevant. In the

current post-genomic era, understanding the genomic basis

of pig growth cannot be limited to simply estimating

marker effects using body weight at a specific time as a

phenotype, but must also consider changes in body weight

over time. According to Pong-Wong and Hadjipavlou

(2010) and Ibáñez-Escriche and Blasco (2011) this can be

done by estimating the marker effects for parameters of

nonlinear regression models that are widely used to de-

scribe growth curves.

Regardless of the phenotype used, a major challenge

in genome-wide selection (GS) is to identify the most pow-

erful statistical methods for predicting phenotypic values

based on estimates of marker effects. Since the seminal GS

paper by Meuwissen et al. (2001), several studies have

compared the efficiency of simple methods, such as the

RR-BLUP (Random Regression Blup) (Meuwissen et al.,

2001), with more sophisticated methods, such as Bayesian

LASSO (BL) (de los Campos et al., 2009). The main differ-

ence between these two very popular GS methods is that the

first one assumes, a priori, that all loci explain an equal

amount of genetic variation, while the second one allows

the assumption that each locus explains its own amount of

this variation. Although these two methods have already

been compared in other studies, so far there has been no
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comparison of these methods using a major gene, such as

the halothane gene in pigs (Fujii et al., 1991), as a marker.

In addition, these methods have not yet been applied to the

analysis of growth curves in conjunction with nonlinear re-

gression models.

In this study, we compared the accuracies of RR-

BLUP and BL for predicting genetic merit in an empirical

application using weight-age data from an outbred F2 (Bra-

zilian Piau X commercial) pig population (Silva et al.,

2011). In this approach, the phenotypes were defined by pa-

rameter estimates obtained with a nonlinear logistic regres-

sion model and the halothane gene was considered a single

nucleotide polymorphism (SNP) marker in order to evalu-

ate the assumptions of the GS methods in relation to the ge-

netic variation explained by each locus. Genomic growth

curves based on genomic estimated breeding values were

constructed and the most relevant SNPs associated with

growth parameters were identified.

Material and Methods

The phenotypic data was obtained from the Pig

Breeding Farm of the Department of Animal Science,

Universidade Federal de Viçosa (UFV), MG, Brazil. A

three-generation resource population was created and man-

aged as described by Band et al. (2005). Briefly, two natu-

ralized Piau breed grandsires were crossed with 18

granddams from a commercial line composed of Large

White, Landrace and Pietrain breeds, to produce the F1

generation from which 11 F1 sires and 54 F1 dams were se-

lected. These F1 individuals were crossed to produce the F2

population, of which 345 animals were weighed at birth and

at 21, 42, 63, 77, 105 and 150 days of age. The use of these

animals was reviewed and approved by the Bioethics com-

mittee of the Department of Veterinary Medicine (DVT-

UFV) in agreement with the Guide to the Care and Use of

Experimental Animals of the Canadian Council on Animal

Care.

The SNPs used for fine mapping and estimation of

marker effects were selected based on their spacing within

chromosomes that contained quantitative trait loci (QTL)

previously identified in this same population. These mark-

ers were distributed as follows: SSC1 (n = 56), SSC4

(n = 54), SSC7 (n = 59), SSC8 (n = 30), SSC17 (n = 25) and

SSCX (n = 12), with the average distances (cM) being, re-

spectively, 5.17, 2.37, 2.25, 3.93, 2.68 and 11.0. The ani-

mals were genotypes using Golden Gate/VeraCode

technology, which provides a robust and flexible platform,

in conjunction with a BeadXpress reader from Illumina. A

total of 237 markers (236 SNPs plus the halothane gene)

were used, with the halothane gene being considered a spe-

cial marker for reasons explained later.

Five of the nonlinear regression models (Brody,

Gompertz, logistic, von Bertalanffy and Richards) most

widely used to describe animal growth curves were fitted to

the weight-age data using the nls function of R (R Develop-

ment Core Team, 2011) software. The usefulness of the

models was compared based on the goodness of fit, the ad-

justed coefficient of determination and the residual stan-

dard deviation, which showed a relative superiority of the

logistic model. This model is given by (Ratkowsky, 1983):

w
[1+exp( - t )]

e
ij

1i

2i 3i ij

ij
� �

�

� �
, (1)

where wij is the animal weight i at age (t)j, �1i is the mature

weight (kg), �2i reflects the weight at time t = 0 (birth

weight, kg), �3i is a general growth rate (curve slope at the

inflection point), and eij is a residual term, assumed to be in-

dependent and normally distributed.

Once the parameters estimates of the logistic model

for each animal ( ��
1i

, ��
2i

and ��
3i

) were obtained, these val-

ues were used as dependent variables in a linear model in

order to perform a pre-correction for fixed effects (sex and

lot). These pre-corrected observations (residual plus gen-

eral mean) were used as phenotypes in the GS regression

models in order to identify SNP marker effects. This is a

well-known two-step procedure (Varona et al., 1999;

Pong-Wong and Hadjipavlou, 2010) in which, in the first

step, a growth curve is fitted separately to the data of each

animal and, in the second step, the growth curve parameter

estimates from the previous step are taken as records. The

main advantage of this method is its statistical simplicity

since the growth model and GS model are fitted independ-

ently; however, more sophisticated methods, such as

Bayesian joint analysis (Varona et al., 1999) also have been

used in GS (Ibáñez-Escriche and Blasco, 2011) and pro-

duced good results.

With respect to GS, the phenotypic outcomes

(pre-corrected phenotypes for fixed effects), denoted from

now on by yi (i = 1, 2, ..., 345), were regressed on marker

covariates xik (k = 1, 2, ..., 237) following the regression

model proposed by Meuwissen et al. (2001):

y x e
i ik k i

k 1

� � �
�
�� � ,
237

, (2)

where yi is the phenotypic observation of animal I, � is the

general mean, �k is the effect of marker k and ei the residual

term, e ~ N
i e( , )0 2� , in which are included the dominance

and epistatic effects. In this model, xik take the values 2 -

2pk, 1 - 2pk and 0 - 2pk for the SNP genotypes AA, Aa and

aa at each locus k, respectively, where pk is the allele fre-

quency at the locus k. Using matrix notation, this GS model

can be rewritten as:

y 1' I X e� � �
�
�� �

k k

k 1

237

, (3)

where 1’ and I are, respectively, a unit vector and an iden-

tity matrix with dimensions 345, where y = [y1, y2, ...,

y345]’345x1, Xk = [x1k, x2k, ..., x345k]’345x1 and e = [e1, e2, ...,

e345]’345x1.
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The first method used to fit the GS model was

RR-BLUP (Meuwissen et al., 2001), in which �k is consid-

ered a random marker effect, � ��k

2N
k

~ ( , )0 assuming that

� � � �� � � �1 2 327

2 2 2 2� � � �� (i.e., all loci explain an equal

amount of genetic variation). This method was imple-

mented using an equivalent model (called G-BLUP) in the

R software (R Development Core Team, 2011) by package

rrBLUP (Endelman, 2011) and the function mixed.solve,

which solves a mixed model equation of the form:

N

e
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is the vector of genomic breeding val-

ues. Thus, admitting the additive genetic variance ( )�a

2

given by ��
2

237

2p (1 p )
k k
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�
� (Habier et al., 2007) it can be

shown that:

var( ) var var( )u X X

X X'

�
�

�
�

�

�
� � �

� �
� �k k

k 1

k k

k 1

k k

� �
237 237

� ��
2

237
2

237

237

2k 1

a

k k

k 1

k k

k 1

p (1 p )�

�

�

�
�

�
�

	

�

�

�
�
�
�

�

�

X X' �
�
�
�

� �a

2
G,

with G being the so-called genomic relationship matrix.

With this approach, it is possible to work through the

well-known Henderson mixed model equation using the

REML estimation method, which provides estimates of

variance components for calculating the heritability by

� � ( � � )h 2 � �� � �a a e

2 2 2 . Since � � �u X X� �
�
� k k

k 1

�
237

�, with

X X X X� �[ | |... | ]
1 2 237 345 237

and � [ , ,... , ]� � �� � �
1 2 237 237 1

,

the estimated marker effects vector can be obtained by the

simple normal equation system of � ( ) ( � )� � 	
X' X X' u .

The second used method was BL (de los Campos et

al., 2009), which is a more general method because it as-

sumes that each locus explains its own amount or contribu-

tion to the overall variation. This method has been used to

solve multicollinearity problems and may also be em-

ployed in situations where there are more markers (cova-

riates) than observations. The BL is a penalized Bayesian

regression procedure, whose general estimator is given by

� arg min ( � ) ( � )� � �� 	 	 �
�
�
�

�
�
��

�� � �y X ' y X
k

k 1

237

where � is the

regularization parameter. When � = 0 there is no regulariza-

tion and when � > 0 there is a shrinkage of the marker ef-

fects toward zero, with the possibility of setting some iden-

tically equal to zero, resulting in a simultaneous estimation

and variable selection procedure. This characteristic of the

BL method is especially useful for F2 populations in which

larger haplotype blocks with many redundant SNPs in each

block are expected; the latter implies multicollinearity that

impairs fitting of the model (Eq. (2)). Thus, the regulariza-

tion imposed by BL reduces some redundant SNPs to zero,

thereby bypassing the problem of multicollinear SNPs in

haplotype blocks. The package BLR (de los Campos et al.,

2009; Pérez et al., 2010) of R software was used for this

analysis. This package assumes that the joint prior distribu-

tion of marker effects (�1, �2, ..., �237) is N
k

2

k 1

( , )0
237

��
�
� ,

where � � ��k

2

e

2

k

2� , �e

2 is the residual variance, with a scaled

inverse  2 prior distribution, and �
k

2 is the scale parameter

related to each marker. The BLR method also assumes that

the joint prior distribution for the scale parameters

( , ,... , )� � �
1

2

2

2

237

2 is the product of exponential distributions,

exp( )�
k 1�
�
237

, and that the � prior distribution is Gamma(!1,

!2). The BL method was implemented using 10,000

MCMC (Markov chain - Monte Carlo) iterations, with a

burn-in and thin of 5,000 and 2 iterations, respectively. The

plausibility of these values was assessed for each MCMC

chain separately using Raftery-Lewis and Geweke conver-

gence diagnostics in boa (Smith, 2007) R package. Since

the BLR method provides the posterior mean (� )�
k

as a

marker effect estimate, the vector of the genomic estimated

breeding values (GEBV) was obtained as

� � �u X X� �
�
� k k

k 1

�
237

�. Using this approach, the additive ge-

netic variance needed to calculate h2 was

� ��a

2

k k

k 1
k
p (1 p )2

237

2� 	
�
� because each locus presents a par-

ticular variance ( )��k

2 .

As stated earlier, the main difference between

RR-BLUP and BL is the assumption related to the equality

of marker effects variance, and some studies has used simu-

lated (Meuwissen et al., 2001) and real (Moser et al., 2009)

data to verify this assumption. However, to date no studies

have applied this assumption to real scenarios in which

known major genes are postulated as markers. For this rea-

son, the well-known halothane gene that affects growth

traits (Miller et al., 2000) was included in the analysis as a

simple marker to provide a real situation of unequal marker

effects variances. Of the 345 animals, 291 (84.3%) and 54

(15.7%) had the normal (HALNN) and heterozygous

(HALNn) halothane genotype, respectively; none of the ani-

mals had a double recessive genotype (HALnn). The allelic

frequencies of N and n were 7 and 93%, respectively.

The leave-one-out cross-validation was used to com-

pare RR-BLUP and BL. For this, the original data set with

345 animals was divided into 345 training data sets (D-i) of

344 individuals, D-1, D-2, ..., D-345, with each containing

marker and phenotypic information of all the animals, ex-

cept for animal -i. With this approach, there was no loss of

generality for each method and each phenotype. In these
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analyses, the predicted genomic breeding value of animal i

for each trait (parameter estimates ��
1
, ��

2
and ��

2
of the lo-

gistic model) was calculated as � �u
i i -i
� X � , where Xi de-

notes the SNP genotype vector of animal i and ��
-i

denotes

the estimated marker effects vector from the analysis that

considered all animals, except animal i. All codes related to

the leave-one-out cross-validation implemented for the

RR-BLUP and BL method are provided in the Supplemen-

tary Material.

The vector containing all predicted values was

� [ � ,... , � ]u � u u
1 345

and the accuracy (r) used to measure the

efficiency of RR-BLUP and BL was given by r r hyu

2� � ,

where ryu� is the correlation between observed phenotype

(y) and �u, and h2 is the estimated heritability. A linear re-

gression with y as the dependent variable and �u as the inde-

pendent variable was used to screen for bias produced by

each method; in this case, a regression coefficient of one in-

dicated an unbiased method.

Once the most appropriate method (RR-BLUP or BL)

had been chosen, the vectors of the estimated genomic

breeding values for each parameter of the logistic growth

curve where obtained, assuming that

� [ � ,... , � ]� � �u � � �1 11 1345

� u u , � [ � ,... , � ]� � �u � � �2 2 345 2 345

� u u and

� [ � ,... , � ]� � �u � � �3 31 3345

� u u . Subsequently, the “genomic

growth curve” for each animal could be estimated using the

relationship:

�
( � )

[ exp(( � ) ( �

� �

� � � �

y
u

u u
ij

1i

2i 3

�
�

� � 	 �

�

� �
� �

� � � �

1

2 3
1" #

i
t

ij
) )]

, (4)

where �y
ij

is the genomic breeding value of each animal i for

weight at each age (tij) of interest j (even for no observed

ages),� �� 1
,� �� 2

and� �� 3
are the average of each phenotype

(parameter estimates for the logistic model) and �
�u

1i� , �
�u

2i�

and �
�u

3i� are the GEBVs for these phenotypes.

Results and Discussion

Table 1 shows the performance of BL and RR-BLUP.

Overall, the two methods provided highly accurate values

(mean overall accuracy: 0.69 $ 0.09), as shown by the

strong association between the phenotypic assessment and

the true breeding values. To date, there has been no evalua-

tion of the accuracy of genomic selection for growth traits

in pigs using real data, although Akanno (2012) reported a

simulation study in which a performance trait (average

daily gain) was simulated for different populations. In this

simulation, the so-called synthetic population, which was

similar to the F2 population of the present study, showed an

accuracy of 0.61.

Comparison of the two methods showed that the BL

method yielded more accurate values than RR-BLUP for

all of the phenotypes. The mean accuracy of BL

(0.70 $ 0.09) was greater than for RR-BLUP (0.62 $ 0.06),

indicating that in a real data set in which one locus is known

to have a larger effect (in this case, the halothane gene) the

BL property of assuming different variances for markers

ensures greater efficiency in genomic selection. Although

both methods underestimated the breeding values, i.e., the

regression coefficient estimates between the observed and

predicted phenotypes were slightly greater than 1.0, for the

BL method these coefficients were closer to unity for all

phenotypes (indicating low bias) when compared to the

corresponding values for RR-BLUP. These findings agreed

with those of Ogutu et al. (2012), who used a simulated data

set to show that LASSO type regressions were more effi-

cient than RR-BLUP for genomic selection because they

provided more accurate and less biased predictions.

Table 1 also shows that the accuracy of the differ-

ences between the two methods was more pronounced for

the trait mature weight (�1) than for the traits birth weight

(�2) and growth rate (�3). This finding provides an indirect

indication that the genetic architecture of �1 is possibly

more influenced by loci that exert larger effects, such as the

halothane gene, than the other two traits. This conclusion

reflects the fact that BL works better than RR-BLUP when

the assumption of an equal contribution of genetic variance

in the latter model is violated, as was the case here with the

large-effect halothane gene that was used as a marker.

The effect of the halothane gene on estimates of

growth curve parameters has not been examined before and

this precludes a direct assessment of the effects of this ma-

jor gene on mature weight. However, Band et al. (2005) ob-

served a significant effect of the halothane gene on weight

at 105 days of age (W105) in animals from this same popu-

lation (F2 Piau X commercial). These authors also evalu-

ated the weight at birth in relation to parameter �1 and the

average daily gain in relation to parameter �3. The

halothane gene had a significant effect only on W105, indi-

cating that this gene has a greater influence on final weight

than on other performance traits.

In summary, the results in Table 1 indicate a superior-

ity of BL in providing accurate estimates and suggest that

this method can be recommended for estimating SNP ef-

fects and GEBV vectors. However, before using these vec-
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Table 1 - Accuracy and bias estimates for the Bayesian LASSO (BL) and

RR-BLUP genomic selection methods used to determine the logistic

growth curve parameters of an F2 Piau X commercial pig population eval-

uated from birth to 150 days of age.

Phenotypes Method Accuracy Regression

coefficient

Mature weight (�1) RR-BLUP 0.72 1.56

BL 0.86 1.39

Birth weight (�2) RR-BLUP 0.61 1.31

BL 0.68 1.26

Growth rate (�3) RR-BLUP 0.62 1.39

BL 0.70 1.29



tors to select markers and animals it is important to estimate

heritabilities and genetic correlations (Table 2) in order to

assess whether the three traits (�1,�2 and�3) are really rele-

vant in a breeding program.

The high values of h2 (estimated with the BL method)

in Table 2 indicate that these traits can be a viable alterna-

tive for pig breeding in which the aim is to produce efficient

high growth animals. However, direct selection for high �1

implies a selection for low �3 (as indicated by the high neg-

ative genetic correlation, -0.69, between these two parame-

ters), i.e., in general terms such selection will result in less

precocious animals (low growth rate) with a larger body

size at maturity. On the other hand, direct selection for high

�3 can result in more precocious animals with high�2 (birth

weight) but low maturity weight (�1). This negative corre-

lation is expected and has been reported in most studies of

growth curves and animal breeding, e.g., Koivula et al.

(2008) in pigs, Mignon-Grasteau et al. (1999) in chickens

and Forni et al. (2007) in beef cattle.

In practical terms, in pig breeding it is better to select

for high growth rate (�3) since slaughter is occurs at a stan-

dard slaughter weight (~65 kg for this F2 Piau X commer-

cial population). As a result, the time to slaughter will be

significantly lower with a high growth rate, resulting in

lower production costs because the slaughter weight is

practically the same for all animals (65 kg), with the differ-

ence between them reflecting the time required to reach this

standard weight. Thus, animals slaughtered at an early age

will generate substantially lower feeding costs. The high

positive correlation between �3 and �2 means that young

pigs do not show a loss in early growth and consequently

guarantees good nutrition and health for subsequent growth

phases.

As mentioned earlier, the main focus of this paper

was to construct genomic growth curves using the genomic

estimated breeding values (GEBVs) for each parameter of a

logistic growth curve (Eq. (4)). Figure 1 shows the genomic

growth curve for each animal of the F2 population.

The sigmoidal behavior of the curves in Figure 1 was

ensured by the average estimates of the growth curve pa-

rameters (� �� 1
,� �� 2

and� �� 3
) and the GEBVs ( � �u

1i� , �
�u

2i� and

�
�u

3i� ); the latter parameters do not predict this behavior as

they may have positive or negative values and are thus out-

side the limits of the logistic model. The estimates for� �� 1
,

� �� 2
and � �� 3

were, respectively, 118 kg, 1.4 kg and

0.03 kg/day. There are no data in the literature regarding

maturity weight (� �� 1
) of the present F2 population because

the animals are slaughtered at a live weight of 60-65 kg.

One of the advantages of nonlinear growth curve

models (such as the logistic curve) is the ability to predict

maturity weight using partial weight-age data, i.e., it is pos-

sible to estimate the maturity weight before this weight is

reached. The value observed here (118 kg) was lower than

in other populations such as Yorkshire pigs (201 kg;

Koivula et al., 2008) and 4-way-cross pigs (160 kg; Kusec

et al., 2007). This lower weight reflects the characteristi-

cally small body size of the Piau breed compared to com-

mercial breeds. The estimated growth rate (� �� 3
)

(0.03 kg/day) was higher than that reported by Koivula et

al. (2008) (0.016 kg/day) and lower than that reported by

Kusec et al. (2007) (0.05 kg/day) for Yorkshire pigs and

commercial crosses, respectively. Kusec et al. (2007) also

reported estimates for the time until maximum gain (time to

inflection point), which were ~120 and 105 days, respec-

tively, for intensive and restrictive feeding systems. In

summary, even though the values cited above were ob-

tained in different populations, the comparisons neverthe-

less provide a useful means of obtaining a general charac-

terization of the growth patterns in the F2 population.

Furthermore, as mentioned earlier, there are no data on the

growth behavior of this experimental population, which

was initially developed to combine the precocity of com-

524 Pig growth and SNP markers

Figure 1 - Genomic growth curves for 345 pigs of an F2 Piau X commer-

cial outbred population from birth to 150 days of age.

Table 2 - Heritabilities (diagonal) and genetic correlations (above the di-

agonal) for the parameters �1, �2 and �3 estimated by the Bayesian

LASSO genomic selection method from the logistic growth curve of an F2

Piau X commercial pig population evaluated from birth to 150 days of age.

Phenotypes

�1 �2 �3

�1
* 0.42 -0.45 -0.69

Phenotypes �2 - 0.34 0.92

�3 - - 0.36

*Mature weight (�1), birth weight (�2) and growth rate (�3).



mercial lines with the resistance and fat attributes of Piau, a

native Brazilian breed.

From a genetic point of view, Figure 1 shows that the

weight differences among GEBVs were accentuated over

time such that the genetic variance for weight increased

with age. This finding may be related to the greater

heritability of mature weight (�1) compared to birth weight

(�2) (Table 2) since this value is directly proportional to ge-

netic variance for a given value of residual variance. Simi-

lar curves can be obtained using other approaches, e.g.,

random regression (Meyer, 1998), but in the present study a

different approach was used in which (1) the plotted values

were GEBVs that had been estimated by a sophisticated

method (Bayesian LASSO) that simultaneously considered

regularization and variable selection (SNP markers) and (2)

the use of a nonlinear (logistic) growth model allowed esti-

mation of the genetic parameters for traits with direct bio-

logical interpretation, e.g., maturity weight and growth

rate, that could not been estimated by random regression. In

practical terms, Figure 1 shows that the greatest genetic dif-

ference (based on GEBV) among animals at slaughter was

10 days since the animals were killed at a live weight of

~65 kg.

Since there have been no reports on QTL detection

for the three phenotypes considered in this study and since

genomic selection is based on SNP marker estimates, the

5% most relevant SNPs (12 SNPs out of 237 SNPs) for each

phenotype (�1, �2 and �3) were used to assess whether their

chromosomal positions coincided with others already re-

ported in the literature as being QTLs related to general

growth traits. Table 3 shows these selected SNP markers

and the absolute values of their estimated effects and chro-

mosomal positions in cM.

The SNPs with the greatest effects on �1 were located

mainly on chromosomes SSC6, SSC7, SSC17 and SSCX,

with particular emphasis on the magnitude of the effect of

the halothane gene (0.9114) on this phenotype, as already

mentioned for Table 1. The position of marker

ALGA0042216 at SSC7 (60.4 cM) agreed with Yue et al.

(2003), who found a significant QTL for weight at slaugh-

ter at position 65.2 cM in crosses between Meishan (M),

Pietrain (P) and European Wild Boar (W). Pierzchala et al.

(2003), using a population similar to those studied by Yue

et al. (2003), found a significant QTL for weight at slaugh-

ter at position 51.1 cM of SSC17, i.e., close to position

45.2 cM for marker ALGA0095662. In general, in the ab-

sence of QTL detection for mature weight (�1), these refer-

ences to weight at slaughter may be useful for validating the

relevance of the identified SNPs for this phenotype.

In relation to trait �2, other studies have identified

QTLs associated with birth weight at positions close to

those of SNPs indicated in Table 3. Su et al. (2002) ana-

lyzed data from a Large White (LW) x M intercross popula-

tion and found a significant QTL at position 153 cM of

SSC1, which coincided with the position of marker

ALGA0010089. Cepica et al. (2003) used F2 families

based on crosses of M, W and P breeds and identified a sig-

nificant QTL at position 117 cM of SSCX, close to the posi-

tion of marker MARC0051258 (112.2 cM).
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Table 3 - Absolute values of the estimated effects of the 5% most relevant

SNPs on parameters (�1, �2 and �3) determined from the logistic growth

curve of an F2 Piau X commercial pig population evaluated from birth to

150 days of age. SNPs shaded in gray correspond to putative QTLs based

on previous literature reports (see text for details).

Phenotype SNP marker Estimated

effect (abs)

Chromosome Position

(cM)

Mature

weight (�1)

HALOTANO 0.9114 SSC6 112.0

ALGA0042216 0.0148 SSC7 60.4

ALGA0099785 0.0092 SSCX 35.1

ALGA0095662 0.0092 SSC17 45.2

ALGA0024031 0.0084 SSC4 20.2

ALGA0039607 0.0080 SSC7 26.4

ALGA0098944 0.0080 SSCX 0.06

ALGA0042327 0.0078 SSC7 65.5

ALGA0111404 0.0076 SSCX 100.7

ALGA0026446 0.0067 SSC4 85.0

ALGA0044519 0.0066 SSC7 115.2

ALGA0000022 0.0065 SSC1 0.3

Birth weight

(�2)

ALGA0010089 0.0169 SSC1 153.3

ALGA0049219 0.0152 SSC8 55.0

ALGA0021973 0.0132 SSC4 0.3

MARC0051258 0.0110 SSCX 112.2

ALGA0044984 0.0098 SSC7 120.6

ALGA0049546 0.0097 SSC8 60.0

ALGA0029483 0.0092 SSC4 123.2

ALGA0025813 0.0087 SSC4 70.3

ALGA0021974 0.0084 SSC4 0.3

ALGA0006708 0.0084 SSC1 141.3

ALGA0047440 0.0081 SSC8 15.0

ALGA0027861 0.0079 SSC4 105.0

Growth rate

(�3)

ALGA0047440 0.000180 SSC8 15.0

ALGA0010089 0.000134 SSC1 153.3

MARC0051258 0.000118 SSCX 112.2

ALGA0029483 0.000076 SSC4 123.3

ALGA0006708 0.000064 SSC1 141.4

ALGA0093254 0.000059 SSC17 10.3

ALGA0037853 0.000056 SSC7 0.4

ALGA0006721 0.000051 SSC1 142.0

ALGA0047444 0.000049 SSC8 15.2

ALGA0029781 0.000049 SSC4 127.9

ALGA0026787 0.000049 SSC4 90.3

ALGA0050287 0.000048 SSC8 66.5



With respect to phenotype �3, the SNPs positions in

Table 3 were compared with significant QTL positions for

the trait average daily gain (ADG), which is frequently

mentioned in the literature and is highly related to the esti-

mated growth (�3) rate in the present study. The position of

marker ALGA0047440 on SSC8 (15 cM) was close to posi-

tion 10 cM reported by de Koning et al. (2001) who used

data from an experimental cross between M and Dutch

commercial lines. Sanchez et al. (2006) used data from a

backcross M x LW and found a significant QTL at position

143 cM of SSC1, close to marker ALGA0010089

(1553.3 cM).

Five SNPs (ALGA0006708, ALGA0010089,

ALGA0029483, ALGA0047440 and MARC0051258) in

Table 3 were simultaneously among the most important for

�2 and �3, which could perhaps explain the greater genetic

correlation between birth weight and growth rate in Table

2. In summary, the relevant SNPs listed in Table 3 were as-

sociated with QTL regions for growth traits previously re-

ported in the literature. This finding indicates that these

regions can be exploited molecularly to enhance pig breed-

ing.

As a general conclusion, Bayesian LASSO provided

more accurate values than RR-BLUP for all of the pheno-

types evaluated and worked best when the assumption of an

equal contribution to genetic variance was violated, e.g.,

when the halothane major gene was used as a marker in this

study. The GEBV vectors allowed the construction of

genomic growth curves that revealed substantial genetic

discrimination among animals in the final phase of growth.

Estimates of the effects of SNPs allowed identification of

the most relevant markers for each phenotype, the positions

of which coincided with already well-known QTL regions

for growth traits.
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