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Abstract

The genus Mesoplodon (Cetacea: Odontoceti: Ziphiidae) is one of the few cetacean genera with the karyotype 2n =
42. The 2n = 42 karyotype of M. europaeus and M. carlhubbsi is largely consistent with the general cetacean
karyotype 2n = 44, although other 2n = 42 karyotypes do not exhibit clear homologies with the general cetacean
karyotype. Therefore, the chromosomes of Mesoplodon species may be the key to understanding cetacean
karyological evolution. In the present study, the male karyotypes of M. stejnegeriand M. carlhubbsi were examined.
In both species, the diploid number of the male karyotype was 42. Both species had the following characteristics: 1) a
huge subtelocentric X chromosome with a large C-block; 2) a small metacentric Y chromosome; 3) nucleolus orga-
nizer regions (NORs) in the terminal regions of a large autosome and one or two small metacentric autosomes; 4)
small metacentric autosomes; 5) large submetacentric and subtelocentric autosomes; 6) less accumulated C-
heterochromatin in the centromeric region; and 7) heteromorphism in C-heterochromatin accumulation between
homologues. Characteristics 1 and 3 are peculiar to only the karyotypes of Mesoplodon species, whereas character-

istics 4, 5, 6, and 7 are also found in the species with the general cetacean karyotype 2n = 44.
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Two diploid chromosome numbers are known in the
order Cetacea: 2n = 44 and 2n = 42 (Arnason, 1974). Most
cetaceans have the karyotype 2n = 44, and many authors
have pointed out the uniformity in chromosome morphol-
ogy and banding pattern among cetaceans with this karyo-
type (e.g., Arnason, 1974, 1980; Duffield e al., 1991). The
karyotype 2n =42 has been described in only seven species:
Eubalaena glacialis (Pause et al., 2006), Balaena
mysticetus (Jarrell, 1979), Physeter macrocephalus (Arna-
son and Benirschke, 1973), Kogia breviceps (Arnason and
Benirschke, 1973), Ziphius cavirostris (Benirschke and
Kumamoto, 1978), Mesoplodon europaeus (Arnason et al.,
1977) and M. carlhubbsi (Arnason et al., 1977). According
to Arnason and Benirschke (1973) and Arnason (1974), the
2n = 42 karyotypes in P. macrorhynchus and K. breviceps
do not exhibit clear homologies with the general cetacean
karyotype 2n = 44. On the other hand, the 2n = 42 karyo-
types of M. europaeus and M. carlhubbsi are largely in
agreement with the general cetacean karyotype (Arnason et
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al., 1977). Therefore, the chromosomes of Mesoplodon
species are of great interest when considering karyological
evolution in the order Cetacea. However, the chromosomes
of only two out of 15 Mesoplodon species are known. The
Y chromosomes of this genus are also still unknown. The
lack of knowledge on the chromosomes of the Mesoplodon
species is due to the difficulty in collecting living cells from
these animals because of their deep sea habitat and in iden-
tifying species due to their similar external morphology
(Jefferson et al., 2008).

We obtained living cells from males of the Stejne-
ger’s beaked whale M. stejnegeri and the Hubbs’ beaked
whale M. carlhubbsi stranded in Japan. The present study
provides the first description of the male karyotypes of the
M. stejnegeri and M. carlhubbsi.

A male Mesoplodon stejnegeri (NSMT-M 42578),
which stranded in Niiya-cho, Sakaiminato-shi, Tottori pre-
fecture, Japan, on March 25, 2014, and a male M.
carlhubbsi (SNH15011), which stranded in Samani-cho,
Hokkaido, Japan, on April 14, 2015, were examined. Both
species were identified based on external morphology and
tooth shape (Figure 1). The adult male M. stejnegeri is char-
acterized by a dark gray body, a head sloping gently down
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Figure 1 - External morphology and tusks of Mesoplodon stejnegeri (a, b, and ¢) and M. carlhubbsi (d and e). The tusks of M. stejnegeri were observed af-
ter removing Conchoderma sp. from them (c).

to the beak, and a tusk of which the leading edge is nearly
straight and the pointed tip situates almost inline on the su-
perior extension of this leading edge. The adult male M.
carlhubbsi has a tusk of which the leading edge continues
to a shoulder-like curve and the tip is found well behind the
leading edge. The whole body is almost dark gray with
white portions on the tip of the beak and on a bulged frontal
region of the head.

Small pieces of the intercostal muscle from M.
stejnegeri and cartilage pieces from the pectoral fin tip of
the M. carlhubbsi were sampled within 24 hours of their re-
spective deaths and preserved at 4 °C until use. The pieces
were cultivated in a culture medium (AmnioMAX™.-II
Complete medium, Gibco®, Life Technology Inc., New
York) at 37 °C, 5% CO,. The early-passage cells were incu-
bated in hypotonic solution (0.075M KCl) at 37 °C for 18
min after the addition of Colcemid (KaryoMAX" COL-
CEMID" Solution, Gibco®, Life Technology Inc., NY) and
incubation at 37 °C for 1-2 h. The cells treated with hypo-
tonic solution were fixed with modified Carnoy’s solution
(1:3 acetic acid methanol).

C-banding was performed using the barium hydrox-
ide-saline-Giemsa (BSG) method of Sumner (1972). G-
banding was also conducted according to the technique of
Burgos et al. (1986) with some modifications in times. The
slide was dried at 95 °C for 23 min. The dried slides were
immersed in 0.0125% trypsin (2.5% Trypsin (10X), Gib-
co®, Life Technology) for 7 s, then in 70% ethanol. The
slides were treated with 2SSC at 60 °C for 10 min and
stained with 4% Giemsa (KaryoMAX® Giemsa Stain Im-
proved R66 Solution “Gurr”,Gibco”, Life Technology) for
8 min. Nucleolus organizer regions (NORs) were stained

using the one-step method of Howell and Black (1980). We
observed a total of 27 cells (conventional karyotype, 18;
C-banding, 9) and 17 cells (conventional, 7; C-banding, 4;
G-banding, 4; NOR, 2) for M. stejnegeri and M. carlhubbsi,
respectively. The chromosomes were identified as pro-
posed by Levan et al. (1964).

The males of M. stejnegeri and M. carlhubbsi had the
same diploid number of chromosomes (2n = 42) but dif-
fered in chromosomal morphology (Figures 2 and 3). The
karyotype of M. stejnegeri comprised 12 metacentric, four
submetacentric, two subtelocentric, and two acrocentric
autosomal pairs and subtelocentric X and metacentric Y
chromosomes. The karyotype of M. carlhubbsi comprised
12 metacentric, five submetacentric, and three acrocentric
autosomal pairs and subtelocentric X and metacentric Y
chromosomes. In both karyotypes, the metacentric auto-
somes were all small and the submetacentric and subtelo-
centric autosomes were relatively large. These characteris-
tics are also common throughout the general cetacean
karyotype 2n = 44 (Arnason, 1974).

The C-banding karyotypes of both species were char-
acterized by C-heterochromatin accumulation (Figures 2b
and 3b). The total lengths of the C-heterochromatic regions
of M stejnegeri and M. carlhubbsi represented 28.4% and
17.8%, respectively, of the total lengths of all chromo-
somes in the hypothetical female haploid set (autosomes +
XX). In another Mesoplodon species, M. europaeus, the
C-banding positive regions occupied 17% of all chromatic
regions (Arnason et al., 1977). According to Arnason
(1974), in general, the degree of C-heterochromatin accu-
mulation appears to be greater in mysticetes (around 25%)
than in odontocetes (12-15%). The degree of C-hetero-
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Figure 2 - Conventional (a) and C-banding karyotypes (b) of Mesoplodon stejnegeri. Bar = 10 pm.

chromatin accumulation in Mesoplodon species is similar
to that in mysticetes rather than that in odontocetes. Fur-
thermore, notably, M. stejnegeri and M. carlhubbsi had a
large X chromosome with a huge C-block in the long arm.
Similar characteristics were also reported in M. europaeus
and M. carlhubbsi by Arnason et al. (1977). This character-
istic is considered a peculiarity of the Mesoplodon species
karyotype, because it is not found in other cetaceans, e.g.,
Stenella clymene (Arnason, 1980), Phocoena phocoena
(Arnason, 1980), Physeter macrocephalus (Arnason,
1981a), and Pontoporia blainvillei (Heinzelmann et al.,
2008). C-banding karyotypes of M. stejnegeri and M.
carlhubbsi also possessed characteristics identical to those
of the general cetacean karyotype 2n = 44 described by
Arnason (1974): less accumulated C-heterochromatin in
the centromeric region and heteromorphism in the C-ban-
ding pattern, as shown in ST1 and ST2 of M. stejnegeri
(Figure 2b) and M4 of M. carlhubbsi (Figure 3b). The Y
chromosome was small, with its whole body strongly
stained in both M. stejnegeri and M. carlhubbsi. On the
other hand, some differences in C-banding pattern were
found between M. stejnegeri and M. carlhubbsi. Whereas
M. stejnegeri had large C-blocks in ST1 and ST2 (Figure
2b), M. carlhubbsi did not (Figure 3b). Interstitial C-bands
were found in SM3, SM5, A1, and A3 in M. carlhubbsi, but
only in A2 in M. stejnegeri. Therefore, it is considered that
interspecific variation in chromosomal morphology among
Mesoplodon species appears to be caused by C-hetero-
chromatin accumulation.

The G-banding karyotype of M. carlhubbsi exhibited
heteromorphisms in SM5 (Figure 3c). The distal G-band
positive region of the long arm of SM5 was larger in one of
the homologues (Figure 3c). This heteromorphism was in
agreement with the C-banding pattern and was found in all
cells examined (Figures 3b and c).

The NOR-banding karyotype of M. carlhubbsi was
obtained on the same slide as that used for the conventional
karyotype (Figure 3d). NOR regions were found at the
telomeric positions in both the long and short arms of SM1
and at the telomeric positions in the short arms of M11 and
M12. Although NORs were not stained for M. stejnegeri, a
chromosome association was found in one cell, indicating
the presence of the NOR regions (Figure 4). A small meta-
centric autosome and a large subtelocentric autosome
(ST1) were attached at the terminal positions of their short
arms. It is known that M. europaeus has two NOR pairs,
one on a large and one on a small autosomal pair (Arnason,
1981b). Therefore, the presence of NORs on a large auto-
somal pair and on the one or two small autosome pairs
would be common throughout Mesoplodon species. As
mentioned by Arnason (1981b), NORs on the terminal re-
gion of the smaller autosomes were also identical to the
general cetacean karyotype (2n = 44).

In the present study, the male karyotypes of two
whales (M. stejnegeri and M. carlhubbsi) were clarified. It
was confirmed that the karyotypes of Mesoplodon species
have some peculiarities, and their 2n = 42 karyotype pos-
sesses some characteristics identical to those of the general
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Figure 3 - Conventional (a), C-banding (b), G-banding (c), and NOR-banding karyotypes (d) of M. carlhubbsi. Bar = 10 pm.
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Figure 4 - A chromosome association between SM1 (closed arrow) and a
small metacentric autosome (open arrow) shown in a metaphase plate of
M. stejnegeri.

cetacean karyotype 2n =44. Our findings should help in un-
derstanding the cetacean karyological evolution.
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