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Preparation of Nickel Ferrite/Carbon Nanotubes Composite by Microwave Irradiation 
Technique for Use as Catalyst in Photo-Fenton Reaction
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Nickel ferrite/multi-walled carbon nanotubes (NiFe2O4/MWCNTs) composite has been rapidly 
synthesized via microwave irradiation technique. The structural properties of the product was 
investigated by X-ray diffraction (XRD), N2 adsorption/desorption isotherms, thermogravimetric 
analysis (TGA), Raman spectroscopy and, scanning electron microscopy (SEM). Catalytic behavior 
of the composite material on the advanced photo-Fenton degradation of Amaranth dye was evaluated. 
The synthesis conditions employed on the microwave system were: temperature (235 °C), power (500 
W), pressure (600 psi) and irradiation time (30 min). Characterization results showed the formation of 
hybrid material, containing a predominantly microporous structure, with surface area and total pore 
volume of 54 m2 g-1 and 0.2249 cm3 g-1, respectively. The composite exhibited higher catalytic activity 
compared to the pure NiFe2O4, reaching 100% of decolorization at 60 min of reaction, which can be 
attributed to a synergism between NiFe2O4 and MWCNTs. Therefore, NiFe2O4/MWCNTs composite 
can be used as a promising photo-Fenton catalyst to degrade Amaranth dye from aqueous solutions.
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1. Introduction

Advanced oxidation processes (AOPs) are alternative 
emerging techniques for the degradation of organic pollutants 
in wastewater1-6. AOPs are divided in a variety of methods, 
and among them, heterogeneous Fenton reaction is one of the 
most interests, which to use iron-based solid catalyst, whose 
major advantage is its easy recovery from the solution by a 
field magnetic for further reutilization7-9. In the presence of a 
light source, known as photo-Fenton reaction, the pollutant 
degradation rate substantially increases10,11. The photo-Fenton 
process applies the combination of hydrogen peroxide, 
iron ions and light irradiation in an acidic aqueous medium 
(pH ≤ 3)12, producing highly oxidative radicals (HO•)10, 
leading to degradation of pollutant molecules. Therefore, a 
simplified mechanism for the heterogeneous photo-Fenton 
degradation of organic pollutant under light irradiation can 
be depicted as follows (Equations 1-3):

					             (1)

					             (2)

						    
					              (3)

where, ≡ FeIII and ≡ FeII corresponds to iron species on 
the surface of a heterogeneous catalyst.

Recently, coupling of multi-walled carbon nanotubes 
(MWCNTs) with ferrite have been reported as a potential 
catalyst for degradation of organic pollutant. This coupling 
may favor the separation of electron–hole pairs on the catalyst, 
avoiding their recombination and generating more oxidative 
radicals (HO•), leading to a high catalytic performance13.

Several ferrite/carbon nanotubes composites have been 
used for different applications14-19, but very few them have 
been used for application in OAPs13,20-23. Recently, nickel 
ferrite (NiFe2O4)/carbon nanotubes (MWCNTs) composite 
has been prepared via a conventional route using teflon-lined 
stainless autoclave at 180 oC for 20 h, being applied as 
photocatalyst for the degradation of phenol under UV 
irradiation13. NiFe2O4/MWCNTs hybrids were prepared via 
one-step hydrothermal method at 180 oC for 20 h, and their 
photocatalytic activity was investigated for the decolorization 
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of Congo Red dye in aqueous solution under simulated solar 
light irradiation23. However, no work has yet been developed 
using NiFe2O4/MWCNTs composite prepared via microwave 
route for application as a photo-Fenton catalyst under visible 
light irradiation. It is well known that the use of microwave 
route for the preparation of powdered catalysts presents as 
great advantages short synthesis time and production of high 
surface area particles, being this last characteristic of great 
importance for catalytic purposes24,25.

NiFe2O4 is a cubic oxide with a typical inverse spinel 
structure and has attracted much interest because of its 
fascinating magnetic and electromagnetic properties26, while 
the MWCNTs have attracted increasing research interest as 
dye adsorbent27, support for enzyme immobilization28 and 
catalyst support29.

In this work, nickel ferrite (NiFe2O4)/carbon nanotubes 
(MWCNTs) composite was prepared via a rapid alternative 
method (microwave route) for application as catalyst on 
degradation of amaranth dye using heterogeneous photo-Fenton 
process under visible light irradiation.

2. Materials and Methods

2.1 Materials, procedures and characterization 
techniques

Multi-walled carbon nanotubes (MWNTs-COOH 
functionalized) (Purity ˃  95 wt%, outside diameter: 10-20 nm, 
inside diameter: 5-10 nm, Length: 10-30 mm) were purchased 
from Nanostructured & Amorphous Materials, Inc., USA. 
Amaranth dye (CAS number: 915-67-3; chemical formula: 
C20H11N2Na3O10S3; molecular weight: 604.47 g mol-1) was 
used as a model pollutant. Nickel nitrate [Ni(NO3)2.6H2O], 
iron nitrate [Fe(NO3)3.9H2O] and anhydrous ethyl alcohol 
were utilized without any further treatment.

A modified procedure for the preparation of NiFe2O4/
MWCNTs composite was employed in this work, which was 
based on a previously reported work13, where a hydrothermal 
conventional method has been employed for the synthesis 
process13. From hydrothermal route, 20 h of reaction time 
has been necessary for the production of the respective 
composite13. Therefore, this present work aims to use 
microwave irradiation as heat source in order to accelerate 
the formation of material. For the obtaining the composite 
sample containing 25 wt% of MWCNTs, nickel nitrate (1.45 
g) and iron nitrate (4.04 g) were firstly dissolved in 100 mL 
of ethyl alcohol. Then, 0.40 g of MWCNTs was dispersed in 
600 mL of ethyl alcohol. After, the ethyl alcohol/MWCNTs 
suspension was added into the saline solution under stirring 
for 30 min at room temperature (25 oC). This suspension was 
adjusted to a pH value of 14 using 10 M NaOH solution, and 
kept under stirring for 15 min. Then, 100 ml of deionized 
water was added to previous suspension, and kept under 
vigorous stirring for 30 min. Posteriorly, the final suspension 
was transferred to several high-pressure reaction vessels and 

submitted to microwave irradiation (MARS 6 Microwave 
equipment, ESP 1500 plus, USA), under the following 
conditions: temperature (235 °C), power (500 W), pressure 
(600 psi) and irradiation time (30 min). The obtained composite 
was collected and washed with deionized water for several 
times, and then, dried at 110 oC for 12 h. For comparison 
purposes of the catalytic activity, pure NiFe2O4 particles 
were prepared using the same previous mentioned procedure 
without the addition of MWCNTs. The concentration of 
free Fe ions in the solution after irradiation was measured 
by atomic absorption spectroscopy (Agilent Technologies, 
200 series AA) to monitor their leaching from the catalysts.

Characterization of the materials was identified using 
an X-ray diffractometer (Rigaku Miniflex 300), with Cu-Kα 
radiation, powered at 30 kV and 10 mA. Scans were performed 
over 2θ angles ranging from 15 to 65o. Thermogravimetric 
analysis was carried out on a TGA-50 Shimadzu analyzer at 
a heating rate of 10 oC min-1 in presence of an air flow rate 
of 50 mL min-1, in the temperature range from 25 to 900 °C. 
Nitrogen adsorption–desorption isotherms were obtained 
at 77 K carried out on an ASAP 2020 apparatus at relative 
pressure (P/P0) ranging from 0 to 0.99. Specific surface areas 
were calculated according to the Brunauer–Emmett–Teller 
(BET) method and, the pore-size distributions were obtained 
according to the Barret–Joyner–Halenda (BJH) method. 
Raman spectroscopy measurements were performed at room 
temperature using a micro-positioning system B&WTek and 
an Andor Shamrock 303i monochromator. The morphology 
of the composite was examined by a scanning electron 
microscope (SEM, JEOL JSM–6610LV) at 15 kV, and its 
chemical composition was obtained by energy dispersive 
X-ray spectroscopy (EDS), which is coupled to the SEM 
equipment.

2.2 Photo-Fenton experiment

For the degradation tests of 50 mL Amaranth dye solution 
at room temperature (50 mg L-1) and pH 2.5 (adjusted using 
0.1 M H2SO4), the catalyst amount (NiFe2O4 and NiFe2O4/
MWCNTs composite) used was 0.05 g and the H2O2 (30% 
v/v) volume was 50 µL. Prior to illumination, the aqueous 
suspension containing catalyst and dye was magnetically 
stirred in the dark until to achieve the adsorption equilibrium. 
In order to avoid adherence of the magnetic catalyst on the 
magnetic bar, a vigorous agitation (150 rpm) was employed. 
It was found that an agitation rate above this value is 
adequate for to obtain a homogeneous suspension during 
the stirring step. Then the suspension was exposed to visible 
light irradiation under stirring. The visible-light source was 
commercial fluorescent lamp (85 W, Empalux) positioned 
10 cm above the liquid surface. Samples were taken at set 
intervals using a syringe and, filtered immediately through 
a PVDF membrane (0.45 µm). The dye concentration in the 
filtered suspension was determined by the absorbance reading 
on an UV–vis spectrophotometer (Shimadzu, UV-2600), at 
a maximum absorption wavelength of 520 nm.
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3. Results and Discussion

XRD diffraction patterns of MWCNTs, pure NiFe2O4 
and NiFe2O4/MWCNTs composite are shown in Figure 1. 
The major peaks corresponding to the planes (0 0 2) and 
(1 0 1) at 2θ positions of 26.5 and 43.4o are characteristic 
peaks of MWCNTs30 (Figure 1a). In Figure 1b, the peaks 
located at 18.4, 30.3, 35.7, 37.3, 43.3, 53.8, 57.3, and 63.0° 
can be indexed to the (111), (220), (311), (222), (400), 
(422), (511) and (440) crystal planes of NiFe2O4 spinel, 
respectively, according to the JCPDS Card No. 54-0964 
(Bars inset to Figure 1 correspond to reference NiFe2O4). 
From Figure 1c, the presence of the peak to 26.5° (which 
corresponds to MWCNTs material) on the XRD pattern of 
the NiFe2O4/MWCNTs composite, indicates the successful 
formation of respective hybrid material.

Figure 1. X-ray diffractograms of (a) MWCNTs, (b) pure NiFe2O4 
and, (c) NiFe2O4/MWCNTs composite. Bars inset correspond to 
reference NiFe2O4, according to the JCPDS Card No. 54-0964.

Raman spectra of MWNTs, NiFe2O4/MWNTs composite 
and pure NiFe2O4 are shown in Figure 2. The peaks at 
1350 cm-1 (band D) and 1580 cm-1 (band D) are typical 
of MWCNTs31 (Figure 2a), while the peaks to 470 cm-1 
and 690 cm-1 correspond to typical peaks of NiFe2O4

32 
(Figure 2b). All peaks above mentioned are presents on 
the Raman spectrum of the NiFe2O4/MWCNTs composite 
(Figure 2c), demonstrating the successful preparation of the 
NiFe2O4/MWNTs hybrid composite.

Thermogravimetric analysis (TGA) was used to evaluate 
the amount of MWCNTs incorporated on the prepared 
NiFe2O4/MWCNTs composite. Figure 3 shows the TGA of 
the pure NiFe2O4 (Figure 3a), NiFe2O4/MWCNTs composite 
(Figure 3b) and MWCNTs (Figure 3c). According to Figure 
3, the MWCNTs have total mass loss at 800 °C (Figure 3c), 
while the pure NiFe2O4 remains stable up to 900 °C (Figure 
3a). From Figure 3b, it is possible to observe a mass loss 
about 25%, corresponding to thermal oxidation of MWNTs 

Figure 2. Raman spectra of (a) MWCNTs, (b) pure NiFe2O4 and, 
(c) NiFe2O4/MWCNTs composite.

presents in the NiFe2O4/MWCNTs composite. This result 
indicates that the procedure used in this work for the composite 
preparation was done successfully.

Figure 3. Thermogravimetric analysis of (a) pure NiFe2O4, (b) 
NiFe2O4/MWCNTs composite, and (c) MWCNTs.

Representation of the nitrogen adsorption-desorption 
isotherms and pore-size distributions for MWCNTs, pure 
NiFe2O4 and NiFe2O4/MWCNTs samples are shown in 
Figure 4. The isotherms for the all the samples shown in 
Figure 4a are similar and can be classified as type II. The 
shape of these isotherms indicates that all the samples 
possess predominantly microporous structure. In addition, 
the microporous structure was confirmed by the analysis of 
pore-size distribution (Figure 4b), which shows spectra of 
pore-size distributed on the microporous region (pore-size 
less than 2 nm). Pore properties of the samples are shown 
in Table 1. Values of surface area and total pore volume of 
NiFe2O4/MWCNTs composite are between those of MWCNTs 
and pure NiFe2O4.
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Table 1. Pore properties of the samples.

Sample Surface area 
(m2 g-1)

Total pore volume 
(cm3 g-1)

NiFe2O4 32 0.1684

MWCNTs 103 0.4881

NiFe2O4/MWCNTs 54 0.2249

Figure 4. (a) Nitrogen adsorption/desorption isotherms of MWCNTs, 
NiFe2O4/MWCNTs and NiFe2O4 and, their (b) pore-size distributions.

Figure 5 shows SEM images of NiFe2O4/MWCNTs 
composite (Figures (5a) and (5b) under different magnifications), 
NiFe2O4 (Figure (5c)) and MWCNTs (Figure (5d)). In Figure 
(5e), it is showed the chemical composition of composite 
obtained from EDS analysis. Particles with irregular shape 
can be observed on the respective images of the composite 
(Figure (5a)) and NiFe2O4 (Figure (5c)), whereas nanotubes 
well adhered on the surface of the NiFe2O4 particle can be 
observed in Figure (5b). In addition, it is possible to observe 
that the nanotubes maintained their morphology after the 
microwave process. From Figure (5e), it was found an 
atomic ratio of 1:2 (Ni:Fe), which confirms the formation 
of NiFe2O4 spinel.

Preliminary tests on the presence of catalyst in the dark 
without H2O2 (catalyst/dark), without catalyst (H2O2/light) 

Figure 5. SEM images of NiFe2O4/MWCNTs composite [Magnification: 
500 X (a); 20,000 X (b)], NiFe2O4 (Magnification: 500 X) (c) and 
MWCNTs (Magnification: 20,000 X) (d), and EDS analysis (e) of 
NiFe2O4/MWCNTs composite.

and without H2O2 (catalyst/light) showed negligible 
decolorization results, whereas the Fenton process (catalyst/
H2O2/dark) exhibited about 7.0% of decolorization at 60 min 
of reaction time. Therefore, the effective dye degradation is 
attributed to the synergetic effect of the combination among 
catalyst/H2O2/visible light (photo-Fenton process). As shown 
in Figure 6, the linear relationship of C/C0 versus reaction 
time shows that the dye decolorization via photo-Fenton 
process followed the zero-order kinetics3,8,33 for both the 
catalysts. The slopes of lines correspond to the reaction 
rate constants (kcomposite = 0.017 mg L-1 min-1 and kferrite = 
0.001 mg L-1 min-1). This result indicates that the composite 
shows higher activity compared to pure ferrite. The dye was 
substantially degraded from the aqueous solution, reaching 
100% at 60 min of reaction time. On the other hand, 60% of 
decolorization was obtained at 60 min using pure ferrite. The 
significant enhancement in catalytic activity by the NiFe2O4/
MWCNTs composite can be attributed to the synergistic 
effect between NiFe2O4 and MWNTs that reduce the rate 
of recombination of photoinduced electrons and holes, 
leading to high catalytic performance13,30. In addition, the 
higher surface area and pore volume of NiFe2O4/MWCNTs 
composite compared to the pure NiFe2O4 could offer a larger 
contact and diffusion of dye molecules within the pores of 
its particles, contributing to the close contact between the 
HO• radicals and dye molecules, which leads to an increasing 
reaction rate.
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4. Conclusions
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be employed as an efficient catalyst for the treatment of 
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