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This work established the fracture probability equation for JIS SM490A steel using the computational 
model supported by the local approach and the standard Crack Tip Opening Displacement (CTOD) 
fracture toughness experiments. As the experiments were conducted at a low temperature providing 
conditions for the brittle fracture, the specimen suffers a small plastic deformation until its failure. 
The computational model tries to represent the experiment results, estimating the scale and shape 
parameters of the Weibull distribution for the cumulative fracture probability equation. A procedure 
based on the local approach was executed to find the optimum values for the fracture probability 
equation. In addition, a plot was provided to show the distribution of likelihood values according to 
assumed values for the shape and scale parameters. In the end, a comparison between the experimental 
and predicted statistical distribution of critical CTOD was done successfully, indicating that material 
toughness can be predicted by the present model.
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1. Introduction
Pressurized vessels, boilers, pipes, and structures made 

by steel under specific environmental conditions can generate 
catastrophic structural failures when they are subjected to 
low temperature, suffering a small plastic deformation if the 
fracture toughness of the steel is very low, especially at welds. 
Identical mechanical components can also fail when they are 
submitted to different applied stresses in different environmental 
conditions. The macro and micro defects have an impact on 
the material resistance; hence they need to be investigated to 
avoid catastrophic structural failures. In the steel microstructure, 
there are micro defects that can cause variation of the material 
property values, raising the necessity to evaluate it using a 
statistical tool. The material behavior studies conducted on the 
cleavage fracture conditions investigating the toughness scatter 
play an important role in structural integrity.

As explained by Beremin et al.1, macro defects present on 
the mechanical structures independently of material type need 
to be evaluated using approaches that can support simple and 
complex cases. Due to the need to improve the performance 
of structures and to ensure safety in general, studies to predict 
material behavior are essential. The fracture mechanics study 
the mechanical processes that lead to the crack propagation and 
other “defects” and that causes the decreasing of the material 
resistance and consequently result in its fracture.

A macroscopic defect can decrease the material 
performance and motivate a failure of a mechanical part. 
For this reason, pressure vessels, boilers, pipes, and other 

equipment are periodically submitted to inspections in the 
industry. However, the inherent presence of microscopic 
defects induces a variation in the toughness values which 
can also contribute to the material failure before the expected 
stress. About the importance of microstructure and microscopic 
defects, it is important to mention that the thermo-mechanical 
process can be performed to improve fracture toughness, 
as well as the cleavage fracture behavior. Using warm 
pre-stressed material, which is a procedure that includes a 
previous loading at high temperature, Bordet et al.2 found an 
enhancement of the fracture toughness in comparison with 
the virgin material. The warm pre-stress and the conservative 
principle studied in Bordet et al.2 had a positive effect on 
the structural integrity of several types of equipment, such 
as a nuclear pressure vessel.

There is a natural dispersion of the toughness of the 
material that occurs depending on the position of the particle 
that triggers the failure. Anderson3 explains that depending 
on the distance of this particle from the crack, the toughness 
of the test piece will change. This is because if this particle is 
closer to the crack tip the energy required will be less compared 
to a case of the part having this particle at a greater distance 
from the crack tip. It is worth saying that a large scatter is 
often revealed on cleavage fracture. Beremin et al.1 examined 
the toughness scatter and presented the statistical model to 
analyze the cleavage fracture. The toughness scatter studies 
in mechanical failure were introduced by the weakest link 
probabilistic theory to obtain the material fracture toughness. 
Based on this methodology, Ruggieri et al.4, Tagawa et al.5, 
and Kawata et al.6 investigated the fracture toughness *e-mail: shinohara@ufpe.br
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distribution obtained from the CTOD test. In Lin et al.7, 
predictions for the fracture toughness are shown, taking 
into account the microstructure and temperature, using a 
quantitative weakest-link model. These results can infer 
that there is a variation of the fracture toughness values for 
a fixed or variant temperature.

Temperature and loading conditions are also factors to 
be considered in the fracture behavior of ferritic steels, with 
low alloy, or high alloy grades. When a mechanical part is 
subjected to a load higher than the yield and rupture points 
at a temperature that does not affect the material’s behavior, 
a ductile fracture can occur with the part since it is probably 
working in the stability zone. However, if a high load is 
applied to this mechanical part at a lower temperature, its 
fracture can become unstable by cleavage which may cause 
unexpected failure and accidents. Lin et al.7 predicted the 
variation of the fracture toughness value in function of the 
temperature when showing that this value decreases according 
to the temperature reduction, which means the material can 
be embrittled depending on the working temperature. There 
is a temperature range that sets the material in the ductile-to-
brittle transition causing difficulties to predict the toughness, 
consequently scattering of its values.

Studies have been conducted by many researchers 
through experiments that use the standard three-point bend 
specimen in the ductile-to-brittle transition or brittle region 
to investigate constraint effects on the fracture toughness8. 
As explained by Ruggieri9, the geometry of the specimen, 
which has a high ratio of crack depth and specimen height 
(a/W ≥ 0.5), can contribute to the stress triaxiality ahead of 
the crack front, as well as to the cleavage fracture conditions 
limiting the plasticity scale.

Due to the variation in the cleavage fracture toughness 
data and the weakest link trigger, it is important to use a 
statistical model to assess the cleavage fracture as conducted 
by Beremin et al.1. Studies based on fracture probability have 
been widely applied with the Weibull distribution. Sih10 explains 
that Weibull initiated this work which was characterized as 
a statistical function that is an important tool to evaluate the 
failure probability of a material submitted to macro defects. 
Kunigita et al.11 mentioned that the fracture toughness can 
be successfully explained by the stochastic behavior of the 
toughness, which can be shown through the Weibull stress 
distributions. In order to provide a computational model 
that predicts the steel toughness taking into account the 
microstructure influence, it is necessary to use the data from 
multiple specimens to calibrate the parameters of the critical 
Weibull stress distributions as quoted in Kunigita et al.11.

Through a probabilistic model that takes into 
account the effects of plastic strain on cleavage fracture, 
Ruggieri9 demonstrates that the fracture toughness values 
can attain geometry independence with the application of 
the modified Weibull stress methodology.

Gao et al.12 propose a new calibration manner to find 
the parameters for the Weibull distribution using the 
toughness values measured under specific experimental 
conditions. Thereby, a strong sensitivity with the Weibull 
shape parameter was revealed by this new procedure, as well 
as the necessary micromechanical values to assess flawed 
structural components.

The fracture mechanics tests conducted in laboratories 
provide some material properties which are relevant information 
for describing a mechanical part fracture resistance when 
it contains a crack. The fracture toughness, which is a 
parameter that can be quantified, plays an important role 
to characterize the material, evaluate the performance, and 
assure the material quality used in many kinds of structures.

There are many parameters related to fracture mechanics 
studies, such as the stress intensity factor (K), the crack-tip 
opening displacement (CTOD), the elastic energy release rate 
(G), the J-integral, and the crack-tip opening angle (CTOA). 
However, this work concentrates on the standard CTOD 
test dealing with CTOD values and fracture probability to 
portray the toughness scatter.

The target of this work is to represent the dispersion of the 
tested material toughness obtained by CTOD tests performed 
in the laboratory through a computational model based on a 
local approach. The Weibull statistical equation is employed 
to describe the fracture toughness scatter and the distribution 
of critical CTOD of the experiments. The present model 
was executed to predict the cumulative failure probability 
equation finding optimum values for its parameters, which 
are the scale and shape parameters related to the Weibull 
distribution equation. Through the developed procedure, it 
was possible to derive the Weibull parameters that portray 
the CTOD laboratory test results.

2. Analysis Methods

2.1. Local approach
It is assumed that the fracture initiation point occurs 

close to the discontinuity and the stress distribution behaves 
in a non-linear manner depending on the distance from the 
crack tip. Figure 1 shows the stress distribution considering 

Figure 1. Elements and stress pattern near the crack tip.
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a view of the element arrangement near the crack tip. It is 
worth mentioning that these elements are not developed by 
the finite-element analysis, they were right generated using a 
computational model to represent a material unit for calculating 
the probability of fracture with the weakest-link theory. 
Furthermore, the computational model, which represents 
the present model, adopted this element arrangement to 
predict fracture location near the crack tip, considering the 
maximum principal stress for each element.

A volume element subjected to cleavage fracture 
conditions fails when the maximum principal stress acting 
on the volume element ( 1σ ) is higher than the fracture 
stress ( fσ ) in a characteristic distance from the crack tip. 
Lin et al.7 evidence that the crack starts with the highest 
probability at a critical radial distance from the crack tip. 
However, the exact point of fracture initiation is a matter 
to be addressed by statistical analysis, because it tends to 
be very scattered.

Differing from the type of fracture that initiates at 
many sites due to the micro-void growth and coalescence, 
the cleavage fracture abruptly happens when the fracture 
initiation condition is reached in the failure of the first 
volume element resulting in crack propagation across the 
specimen or the structural member. That is the weakest-link 
mechanism in which the nucleation takes place and generates 
an unstable propagation of a critical flaw of a part or structure 
subjected to a load.

The cleavage fracture can be controlled by the dimensions 
of the flaws and by the stress condition, although the random 
nature of the micro defects affects the scatter of fracture stress 
and fracture toughness values. Considering this phenomenon, 
Beremin et al.1 introduced the local approach, which tries 
to explain the scatter of fracture toughness based on the 
weakest-link mechanism. Based on the local approach, the 
probabilistic model of fracture initiation helps to describe 
this scattering.

This model is explained by Beremin et al.1 also utilized 
the Weibull distribution for describing fracture toughness 
scatter. The Weibull theory is a local criterion that takes 
account of plastic strain. The scattering in the experimental 
results can explain the fracture toughness variation of the 
material. It is assumed that the fracture material behavior 
obeys a statistical distribution of stress through the Weibull 
distribution, as shown in Equation 1.
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( )fP σ  represents the statistical distribution of the fracture 
stress, fσ , while m is the Weibull shape parameter, and fβ  is 
the Weibull scale parameter. The Weibull distribution shown 
by Equation 1 is used to represent the statistical variation of 
the fracture stress, in order to predict the toughness scattering.

Considering Equation 1, the probability of specimen 
fracture can be expressed based on the weakest link assumption, 
as shown in Equation 2:
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Where 1iσ  is maximum principal stress acting on the i-th 
volume element, which is determined by the HRR (Hutchinson-
Rice-Rogengren non-linear crack-tip stress-strain analysis), 
as shown by Rice and Rosengren13 and Hutchinson14. N is 
the total number of the volume elements.

It is generally accepted that cleavage crack initiation in 
steels is triggered by microcrack nucleation from hard second 
phase particles. The microcrack nucleation is controlled by 
strain, and linear dependence of the probability of microcrack 
nucleation on applied strain was found by Gurland15. Since 
Equation 2 does not ponder the strain effect, the stress-strain 
criterion was applied to evaluate it. Equation 3, which 
incorporates the strain effect, takes into account the linear 
dependence of the probability of microcrack nucleation.

This present work incorporates in Equation 2 the effect 
of strain on crack initiation as considered by Bordet et al.2, 
which also uses a statistical fracture model based on the 
Weibull stress criterion. Through Equation 3, it is assumed 
that the microcrack formation is led by a compound of stress 
and strain, which influences the probability of fracture of 
a volume element.

( )1( )element f pP P P dσ σ ε= <  (3)

The term ( )pP dε  represents the microcrack nucleation 
probability in a volume element during a time step increment. 
The studies of Gurland15 was used to assume it as a linear 
expression, ( ) 1.0 p pP d dε ε= , where pdε  is the plastic strain 
increment during the time step and it can be calculated 
from the HRR solution13,14. Hence, the specimen fracture 
probability can be alternatively expressed by Equation 4:
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= − − <∏ σ σ ε  (4)

It is possible to calculate the specimen fracture probability, 
specimenP  through Equations 2 and 4, which are expressions 

for the stress-only criterion and the stress-strain criterion, 
respectively.

In the CTOD test, each volume element near the specimen’s 
crack tip is exposed to the stress, 1iσ , and the set of these 
elements can be related to a parameter. The Weibull stress, 

Wσ , is calculated through a sum of each stress, taking into 
account the parameter m, as shown in Equation 5. It can be 
used as a probability fracture parameter for Weibull stress 
distribution.
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It is necessary to assume values to m in order to calculate 
the Weibull stress, Wσ . If a number of fracture toughness 
values are obtained by an experiment, values of m and fβ  
can be determined, using Equation 5 by, e.g., the most-
likelihood method.

The probability of specimen fracture, specimenP , can be 
calculated as a function of δ , assuming values for { }, fm β , 
although, critical CTOD values, cδ , were obtained through 
the experiments. Then, Equation 6 can be used as the 
likelihood function:
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( )( )1
log M

c nn
L P

=
= ∏ δ  (6)

Focusing on the maximum values for likelihood, it is 
possible to plot the values of L in the 2-dimensional graphic 
as a function of { }, fm β , hence the optimum values of { }, fm β  
can be found.

It is worth mentioning that, the statistical distribution 
of critical CTOD can be written as Equation 7, including 
CTOD parameters mδ  and bδ , which was also used in the 
studies of Ruggieri et al.4.
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The fracture data acquired from experimental testing 
can be analyzed using Weibull statistics. Despite the initial 
crack length and specimen width can be changed depending 
on the sample, the Weibull shape parameter mδ is near 2, 
the theoretical value for cleavage fracture, as mentioned by 
Ruggieri et al.. The shape parameter and the Weibull scale 
parameter of the computational model can be calibrated 
using the experimental data explained previously from the 
fracture probability equation. Considering the computational 
and experimental results, a Weibull distribution plot can be 
provided in a logarithmic graphic, in order to compare their 
failure probability equations.

2.2. Present model
The Hutchinson-Rice-Rosengren (HRR) proposed a 

method to portray the non-linear stress-strain distribution near 
a crack-tip, and its equation is known as the HRR singularity 
which assumes form for plane stress and plane strain3,13,14. 
Since this work uses Equation 4 instead of Equation 5, a 
method can be applied to express the stress distribution for 
each element near the crack-tip. HRR singularity or even 
the finite element method, FEM, could be also employed 
to obtain it. However, HRR singularity is considered in this 
work for simplicity. Hence the maximum principal stress 
acting on a volume element ( 1σ ) is expressed by Equation 8:
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Equation 8 is an expression for a plane strain condition 
in planar-polar coordinates centered and aligned ahead in 
the crack-tip. It uses the yield stress ( 0σ ), Young’s modulus 
(E), a strain hardening exponent (n), and a dimensionless 
constant (α ). The constant expressed as I  is related to the 
value of n, and the dimensionless function, ijσ , is dependent 
on n and θ .

For the calculation procedure, the tensile behavior 
is represented by the temperature which was considered 
the same for the tested material (-130o C), therefore 0σ  
and n are assumed equal to 500 MPa and 5; respectively. 
The crack-tip opening displacement (CTOD), δ , is used to 
calculate J  integral through Equation 9, in order to use it for 
the maximum principal stress calculation for each element. 

In Equation 9, the factor 2 that multiplies 0σ δ  was applied 
since it accounts for strain-hardening, while factor 1 is used 
for the Dugdale’s strip-yield model.

02J σ δ=  (9)

The present model uses Equations 8 and 9, considering the 
critical CTOD values from the experiments, that are numbered 
from 1j =  to k . Then, the probability of specimen failure, 

specimenP , can be calculated considering each  cJ , which is J  
integral related to ( ) ( ) 1 ~c j j kδ = , and the maximum principal 
stress, ( ) ( )1  1 ~i i Nσ = , for each element. It is worth mentioning 
that the small distance from crack-tip, r δ< , was neglected for 
the specimenP  calculation through Equations 2 and 4 because 
the stress triaxiality is low in this region.

It is known that the toughness tends to be scattered due to 
the applied condition for the test that places the material in the 
brittle fracture zone, although the computational model can 
depict the toughness scatter in this zone through a predicted 
failure probability equation, estimating its parameters and 
evaluating them as executed by Minami et al.16. There 
are values of scale and shape parameters for the failure 
probability that can represent the material behavior in the 
CTOD testing. For this reason, a procedure is carried out 
to verify the optimum parameters for the equation based on 
the Weibull distribution of critical CTOD. Figure 2 shows 
a flow chart that explains the procedure to calculate the 
likelihood function and to plot those values for multiple 
assumed parameters. Equation 10 represents the likelihood 
function through the probability density function, which is 
calculated from the critical CTOD, cδ , and the probability 
of specimen fracture, specimenP . To obtain those functions, 
the cumulative Weibull distribution function,  WCDF , have 
to be assembled assuming that the critical CTOD obeys the 
Weibull statistical distribution, compound of shape and scale 
parameters, cmδ  and cδβ .

( ) ( )( )1 ; ,k
N NcW j N jjL log PDF

=

 
 =  
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 (10)

Regarding the region of the CTOD specimen contemplated 
on the computational calculation, it was admitted that each 
volume element was scaled as 0.02 mm and aligned at 

2.0 mmr ≤  from the crack-tip. In the specimen thickness 
direction, 500 volume elements were aligned every 10 mm 
along this direction. The calculation procedure was applied 
taking into account the same element distribution and size 
for the stress-only criterion and stress-strain criterion.

Making a summary of it, the proposed model uses 
the stress only criterion model on a computational 
simulation combining the probability Equations 1 and 2, 
which respectively represent the statistical distribution of 
local fracture stress and the weakest-link probability of 
fracture, and Equations 8 and 9, which express the stress 
distribution near crack-tip. Furthermore, the stress-strain 
criterion is applied through Equations 1 and 4, while the 
Weibull stress criterion through Equation 5 is used for 
comparison.
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2.3. CTOD Testing
The tests were carried out in the laboratory using the 

specimens of JIS SM490A steel with dimensions according 
to WES 1108-199517 testing procedure by the Japanese 
Welding Engineering Society (JWES). The laboratory 
and machine where the tests are carried out are shown in 
Figures 3. In Figure 4, the geometry of the samples and the 
fatigue pre-crack which was introduced in the specimens 
are shown. The material, properties, and chemical analysis 
of the specimen were the grade JIS SM490A ferrite-pearlite 
steel, as shown in Table 1.

The three-point bending tests were executed for 38 samples 
which provided the data independently of each other. The data 
that was collected from the test was later used for critical 
CTOD calculations and to make computational simulations 
of the sample behavior through the Mathematica Wolfram.

After performing the bending tests with all CTOD 
samples, it was possible to obtain all the data of the 
thirty-eight specimens: the load applied during the 
tests and their respective values of crack tip opening 
displacement. The experimental parameter was obtained 
using the data extracted from the experimental tests and 
from the specimen analysis; this step is exemplified by 
Figures 5 and 6.

Figure 2. Flow chart of the procedure for likelihood function plot.

Table 1. Steel chemical composition and mechanical properties.

Chemical composition (weight%)
C Si Mn P S V

0.15 0.36 1.35 0.015 0.005 0.034
Mechanical properties

Yield Point Tensile Strength Elongation (%)
415 MPa 525 MPa 30
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Then, the CTOD values are calculated for each sample 
based on the Equation 11 presented in WES1108-199517, 
and using the data extracted from the experimental tests. 
It can be seen that Equation 11 uses the crack mouth opening 
displacement ( pV ), stress intensity factor (K ), Poisson’s ratio 
(υ ), yield stress ( Yσ ), Young’s modulus (E ), specimen width 
(W ), crack length ( 0a ), knife-edge height (z ), and rotational 
factor ( pr =0.4)

Table 2 shows the results for the critical CTOD values. 
Moreover, the plastic component can be quantified throughout 
the crack mouth opening displacement in Table 2 and can 
be analyzed in Figure 7, which uses the fractured surface 
image obtained by SEM fractography showing the crack-tip 
blunting and brittle fracture region.

3. Results and Discussion
According to the procedure shown in Figure 2, the 

graphics of likelihood patterns are obtained as shown in 
Figure 8. The likelihood plot for the stress-only criterion 
is shown in Figure 8-a, while that for the stress-strain 

Figure 3. CTOD testing environment.

Figure 4. Geometry of the specimen.

Figure 5. Material behavior graphics (Load x Crack Mouth Opening Displacement).
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criterion is shown in Figure 8-b. Also, the likelihood values 
for the Weibull stress criterion are shown in Figure 9 Since 
Equation 10 represents the likelihood function, the highest 
values printed on the graphs indicate the highest likelihood 
values obtained for chosen shape and scale parameters.

To summarize, in Figures 8 and 9, there is a wide region 
having the highest value. Hence it is somewhat difficult to 
pinpoint the optimum point. In other words, the optimum 
point to m and fβ  values are still difficult to be identified 
even if the stress-strain criterion is applied. Although it is 
difficult to pinpoint the parameters that lead to the highest 
likelihood in Figure 8a, the optimum point can be determined 
as f13,  5700MPam = β = . Assuming these values, the present 
model was applied, taking into account the stress-only model, 
hence the scatter of critical CTOD can be predicted.

Through the experiment data, the statistical distribution 
of critical CTOD is assumed to obey the Weibull distribution. 
Figure 10 shows the experimentally determined critical CTOD 
distribution and regression line (solid line: 1.42mδ = , 0.065b mmδ = ). 
A set of the predicted CTOD values was approximated by 

the Weibull distribution and a dashed line was created in 
Figure 10 to represent the best-fit prediction by the stress 
only criterion ( 13, 5700fm MPaβ= = ). Shape and scale 
parameters of the dashed line were determined as 1.39 mδ =

and 0.040b mmδ = . These values are close to experimentally 
determined values: as 1.42 mδ =  and 0.065b mmδ = .

Ruggieri9 determined the parameters of critical Weibull 
stress from the statistical distribution of critical CTOD values. 
He concluded that a single set of critical CTOD values from 
the same specimen shape cannot determine the Weibull 
shape and scale parameters, but different specimen shapes 
with different plastic constraints are necessary to determine 
the Weibull parameters. The present result has shown the 
same result, as shown in Figure 9.

The Weibull stress-only criterion is based on the 
assumption that the so-called “Weibull stress” exists as a 
material parameter that represents the toughness scatter. 
And the statistical distribution of critical CTOD value can 
be predicted from the criterion. This criterion not only 
predicts the statistical distribution of critical CTOD values 
but also predicts change of the critical CTOD values with 
specimen size and shape, i.e. the change in plastic constraint. 
The essential point in this criterion is that the critical Weibull 
stress obeys the Weibull statistical distribution.

In the present analysis, the statistical distribution of the 
local fracture stress was assumed, both in the stress and 
stress-strain criterion. Both criteria predict the statistical 
distribution of critical CTOD values from the assumed 
statistical distribution of the local fracture stress. The present 
paper has confirmed that the same prediction is derived 
between the Weibull stress criterion and the local fracture 
stress criterion (stress-only criterion) if the Weibull statistical 
distribution is assumed in the latter criterion. In this case, 
both criteria seem to represent the same physical meaning of 
brittle fracture. Basically, however, it is not necessary for the 
local fracture stress (stress only and stress-strain criterion) 
to assume the Weibull statistical distribution.

It has been claimed as a problem that a unique set of shape 
and scale parameters of the critical Weibull stress is difficult 
to be determined from a single set of critical CTOD values. 
This might indicate that a one-to-one relationship between 
critical Weibull stress distribution and critical CTOD values 
does not exist. The same seems true for the local fracture stress 

Figure 6. Fatigue crack length measurement.

Table 2. List of critical CTOD values and plastic component.

Specimen No.

Load at 
fracture

Plastic 
component of 
crack mouth 

opening 
displacement

Critical 
CTOD

P Vp
kN mm mm

z-10 19.10 0.054 0.043
z-11 18.43 0.078 0.049
z-12 13.04 0.005 0.015
z-13 17.86 0.227 0.087
z-14 19.13 0.787 0.238
z-15 19.12 0.010 0.029
z-16 15.78 0.004 0.019
z-17 14.28 0.013 0.020
z-18 18.97 0.066 0.046
z-19 20.56 0.194 0.086
z-20 12.00 0.000 0.011
z-21 20.58 0.223 0.093
z-22 17.30 0.016 0.028
z-23 19.89 0.198 0.085
z-24 18.79 0.065 0.046
z-25 20.18 0.198 0.086
z-26 19.70 0.317 0.117
z-27 16.92 0.019 0.028
z-28 14.26 0.003 0.017
z-29 19.54 0.070 0.050
z-30 15.21 0.011 0.021
z-31 19.40 0.078 0.051
z-32 17.20 0.024 0.029
z-33 19.16 0.153 0.070
z-34 19.59 0.139 0.067
z-35 12.68 0.001 0.013
z-36 17.50 0.034 0.033
z-37 19.81 0.278 0.106
z-38 17.48 0.349 0.119
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and stress-strain curve. The statistical distribution of the local 
fracture stress is determined from microstructural parameters 
(grain size, brittle micro-phase size, etc.) in the model. It does 
not necessarily obey the Weibull statistical distribution but it 
is determined from the distributions of these microparameters. 
The criteria proposed by the present paper (stress only criterion 
and stress-strain criterion) might be able to apply for predicting 
the statistical distribution of fracture toughness, like CTOD.

Figure 7. SEM fractography images, showing crack-tip blunting.

Figure 8. Likelihood pattern for local fracture stress.

criterion (both stress and stress-strain criterion). Although 
it might look like a lack of the theory, it might be a natural 
consequence because different microstructure of steels can 
give the same critical CTOD distribution. If this is true, it 
might be impossible, in principle, to determine the critical 
Weibull stress parameters from a set of critical CTOD values. 
Conversely, however, the statistical distribution of the critical 
CTOD must be determined uniquely, once the microstructure 
is fixed. One of the present authors11 proposed a method to 
predict Charpy impact property from microstructural parameters 
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4. Conclusions
The results obtained by the proposed model exemplify 

the scattering of the material toughness on the presence of 
cleavage fracture. For this type of fracture, the weakest link 
theory plays an important role to explain the dispersion of 
the critical CTOD values in the experiments.

Furthermore, it is possible to mention the following 
points about the results:

• Through the present model, the likelihood function 
is used to find optimum values for shape and scale 
parameters in order to represent the failure probability 
in the experiments, although, it is difficult to pinpoint 
these values because there is a number of values, 

{ }fm,  β , that can reproduce the experimental critical 
CTOD values, even if the probability of crack 
initiation by strain is introduced.

• This work shows that when the statistical distribution 
of critical CTOD is used to obtain the shape and 
scale parameters of the critical Weibull stress, the 
determination of the parameters is not achieved 
because of the wide range of the parameter values, 
as shown in Figure 8, and 9.

• However, when the shape and scale parameters 
of the critical Weibull stress (or, the statistical 
distribution of local fracture stress) are set, the 

Figure 9. Likelihood pattern for the Weibull distribution.

statistical distribution of critical CTOD can be 
properly obtained, since this process corresponds 
to predicting critical CTOD from microstructure.

• The probability equation line was successfully 
predicted, despite the proposed model used Equation 
2 representing the stress-only criterion model, instead 
of Equation 3 that may be used for the stress-strain 
criterion model. Then, the approach provides a 
computational representation for the experimental 
results through the Weibull statistical distribution 
of critical CTOD.

• In Figure 10, the stress-only criterion was applied 
to plot the best-fit prediction. However, the stress-
strain criterion could be also assumed to represent 
the statistical distribution of critical CTOD values.

The parameters of a predicted line for the failure 
probability are into the range established by the literature 
review and their values are not far from the parameter values 
for the experimental line. However, this work proposes a 
computational model using the HRR singularity to represent 
the maximum principal stress of each element near the 
crack-tip. The use of the finite element method would be 
also effective to provide a representation for the experiments 
and portray the strain in the vicinity of the crack.
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