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Abstract: This study aimed to investigate the influence of microwave drying with different power levels as 

alternative to convective drying method on drying kinetics and main quality attributes of hawthorn slice. At 

increasing microwave power values, higher drying rate and shorter drying time was observed. The page 

model was found to give best fit (R2 > 0.9961, RMSE < 0.028 and χ2 < 0.675x10-3) for all drying treatments. 

Although the minimum change of color and texture value were obtained at microwave power of 600 W, the 

convective drying caused less total color and texture change depending fresh sample. Drying process at 

microwave powers of 600 W and 360 W showed the best quality in terms of rehydration and bioactive 

properties, respectively. The findings in current work demonstrated that microwave drying at 360 W 

microwave power might be suitable for drying of hawthorn slices with high quality and bioactive properties as 

well as low operating costs.   

Keywords: hawthorn fruits; microwave drying; convective drying; drying kinetics; rehydration keyword.  

HIGHLIGHTS 
 

• Microwave drying lead to improve the drying characteristics of Hawthorn slices. 

• Page model was found as the best described the microwave drying data. 

• Microwave drying at 360 W can be applied as an effective technology for drying of hawthorn slices. 
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INTRODUCTION 

Hawthorn, belonging to the subfamily Maloideae in the Rosaceae family, is one of most important fruits 
in Turkey flora [1, 2]. Hawthorn fruits include high amounts of bioactive components such as phenolics, 
flavonoids and triterpenoid acids that is offer as anti-oxidative, free radical scavenging, anti-inflammatory, 
vasorelaxing, and hypolipidemic effects [3, 4]. So that, it has been widely use as medicinal remedies with a 
variety of biological activities like antitumor, hypotensive, anti-inflammation etc. [2]. Although leaves, flowers 
and pollen of hawthorn are rich in phenolic compounds [5], they are commonly cultivated for their fruits which 
are consumed fresh or used to produce jams, jellies, juices or alcoholic beverages [6]. The hawthorn is a 
seasonal fruit and has a limited harvest period, and also fresh hawthorns are extremely perishable within a 
week in ambient conditions due to their high moisture content [6, 7]. So that, it needs to be dried to extend 
the storage-life by preventing physiological and morphological changes that occur after harvest and also 
availability throughout the year. 

Drying is one of the primary used methods of vegetables and fruits preservation as it reduces water 
activity leading to reduction of microbial growth, obtain a good quality dried product, and reduce shipping 
weight and packaging cost [4]. Also, various products such as dried fruits, snacks and soups obtained after 
the drying process can be consumed directly or after rehydration [8]. Recently, there is an increasing interest 
in fruit chips by modern consumers due to their nutritional values with an attractive crispy taste [9]. Although 
convectional drying has been used for a long time due to its simplicity and affordability, it presents a high-
energy consumption due to long process, and also leads to loss of quality because of high temperature [8]. 
Therefore, microwave-drying method is recently being studied as alternative to convective drying method due 
to high drying velocity and better food quality [10-14]. Microwave drying is based on electromagnetic waves 
to heat the material volumetrically, which leads to remove moisture from the food due to rising of temperature 
during microwave drying by application of an electromagnetic field [15]. Several advantages including less 
processing time, a homogeneous energy distribution, low energy usage and formation of suitable dry product 
characteristics are provided during drying by microwave energy application due to the increment of 
temperature in the material’s center [16]. However, microwave drying has disadvantages such as inherent 
non-uniformity of the electromagnetic field within microwave cavity, requires constant movement in space to 
avoid hot spots, penetration depth and too rapid mass transport [17]. In the literature, there are several studies 
used microwave drying technique for drying spinach, [18] mushroom, [19] mango, [20] Trabzon Persimmon 
[13]. However, microwave drying of hawthorn slice is limited. Liu, Liu [4] and Coklar, Akbulut [5] investigated 
the changing of the bioactive compounds and antioxidant activities in hawthorn drying with different 
processes.  

Drying is a complicated process involving four prevailing transfer phenomena (internal and external heat 
transfer, internal and external mass transfer) and mathematical models are used to study and gain insights 
of these transport phenomena in the drying system [21, 22]. Theoretical, semi-theoretical and empirical 
models have recommended to describe the drying behavior of agricultural materials [23]. Semi-theoretical 
models have been widely used because they offer a compromise between theory and ease of application, 
which are mainly derived from direct solution of Fick’s second law by assuming some simplifications [24].   

The information on the impact of microwave drying compared to convective drying on the drying kinetics 
and quality of dried hawthorn fruit are scarce and still required further enrichment. Therefore, the aim of 
current study was to: (1) explore the influences of microwave drying with different power levels on drying 
characteristics and to determine the changes in quality parameters such as color, texture, rehydration and 
bioactive properties of the dried fruit: (2) to find the most appropriate thin-layer drying model for describing 
the microwave drying behavior of hawthorn. In addition, convectional drying at 60oC was evaluated and used 
as reference method due to industrially most important drying method.   

MATERIAL AND METHODS  

Material 

Fresh hawthorn fruits were procured from a local market in Karaman, Turkey during the harvest season 
in October of 2020, washed and checked carefully to discard spoiled fruits, and then sliced approximately to 
10 mm thickness using a kitchen slider. After the cutting step, sliced hawthorn samples were kept in a lid 
plate in order to prevent color change. The fresh sliced fruit samples had an average initial moisture content 
72.33±0.31%, which was determined at 105oC until the weight remained unchanged.   
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Drying Process 

Microwave drying experiments were performed with a microwave oven (NN-SD691S Panasonic inverter, 
Panasonic, Brisbane, Australia), which has a maximum power of 1100 W. The microwave power used was 
180, 360 and 600 W for each run. About 25 g of sliced fruit samples were placed in a single layer on the 
rotating glass plate fitted inside of the oven. During the microwave drying process, samples were removed 
at intervals from the driers and weighed ahead being returned to the dryer. The drying experiments were 
performed until final moisture content of samples was below 10%. The microwave drying were completed 
between 36 and 84 min depending on the microwave power level. In the conventional drying process, the 
drying experiment was performed with an oven at 60 oC under speed of 1 m/s.  In the experiments, 25 g of 
sliced fruit samples were placed on an aluminum plate and dried until the moisture content of samples was 
below 10%. The hot air drying treatment was completed about 480 min. Each drying processes was run in 
triplicate.  

Drying kinetics 

Drying kinetics was determined based on the weight losses of slice hawthorn samples. The moisture 
ratio (MR) and drying rate (DR) of the hawthorn samples during drying were calculated according to Eq. (1) 
and (2), respectively [3, 25]: 

𝑀𝑅 =
𝑀𝑡−𝑀𝑒

𝑀0−𝑀𝑒
       (1) 

𝐷𝑅 =
𝑀𝑡−𝑀𝑡+𝑑𝑡

𝑑𝑡
       (2) 

where, Mt refers the moisture content at time t,  Me refers the equilibrium moisture content, M0 refers the 
initial moisture content, Mt+dt refers the moisture content at time t+dt and dt refers the drying time. 

To describe the drying kinetics of hawthorn slice samples, the drying curves were fitted into eight thin-
layer drying kinetic models; Newton (Eq. 3), Page (Eq. 4), Modified Page (Eq. 5), Logarithmic (Eq. 6), 
Henderson and Pabis (Eq. 7), Wang and Singh (Eq. 8), Two Term (Eq. 9) and Diffusion Approach (Eq. 10), 
which are widely used in modeling drying curves of products.  

𝑀𝑅 = exp(−𝑘𝑡)        (3) 

𝑀𝑅 = exp(−𝑘𝑡𝑛)       (4) 

𝑀𝑅 = exp(−(𝑘𝑡)𝑛)       (5) 

𝑀𝑅 = 𝑎 exp(−𝑘𝑡) + 𝑏       (6) 

𝑀𝑅 = 𝑎exp(−𝑘𝑡)       (7) 

𝑀𝑅 = 1 + 𝑎𝑡 + 𝑏𝑡2       (8) 

𝑀𝑅 = 𝑎1 exp(−𝑘1𝑡) + 𝑎2 exp(−𝑘2𝑡)     (9) 

  𝑀𝑅 = 𝑎 exp(−𝑘𝑡) + (1 − 𝑎)exp(−𝑘𝑏𝑡)    (10) 

A non-linear regression procedure was used for the estimation of these model parameters. The 
goodness of fitting models used in the drying curves of hawthorn samples were evaluated using the 
determination coefficient (R2), the reduced chi-square (χ2) and the root mean square error (RMSE). These 
parameters can be determined with the following Eqs: 

𝑥2 =
∑ (𝑀𝑅𝑒𝑥𝑝,𝑖−𝑀𝑅𝑝𝑟𝑒,𝑖)

2𝑁
𝑖=1

𝑁−𝑧
      (11) 

𝑅𝑀𝑆𝐸 = [
1

𝑁
∑ (𝑀𝑅𝑝𝑟𝑒,𝑖 −𝑀𝑅𝑒𝑥𝑝,𝑖)

2𝑁
𝑖=1 ]

1/2
   (12) 

Where, MRexp,i refers the experimentally dimensionless moisture ratio for test, MRpre,i refers the estimated 
dimensionless moisture ratio for test i,  N refers the number of observation and z refers the number of 
constants in a model. The best model describing the thin layer drying characteristic was selected based on 
the lowest χ2 and RMSE values and also the highest R2 value.   
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Color analysis 

The color values of fresh and dried hawthorn samples were determined by using colorimeter (Konica 
Minolta CM-5, Osaka, Japan), which was calibrated with a black and white ceramic plate. The CIELAB scale 
was used to evaluate the L*, a*, b* color values.  To describe color changes during drying, the total color 
difference (ΔE) was calculated using Eq. (13): 

∆𝐸 = √(𝐿0 − 𝐿∗)2 + (𝑎0 − 𝑎∗)2 + (𝑏0 − 𝑏∗)2    (13) 

Texture properties 

The textural properties of fresh and dried hawthorn samples were evaluated in a texture profile analysis 
with a texture analyzer (TA.XT plus, Stable Microsystems, Godalming, UK) with a 5 kg load cell. The 
measurements were conducted by using a cylindrical probe of 3 mm diameter. The TPA was conducted at 
50% strain at a constant rate of 2 mm/s until the distance of 3 mm. The hardness was measured and 
recorded. The hardness value was calculated from the force (N) versus penetration (mm) curve. The analysis 
was conducted with four hawthorn samples for each treatment [8].  

Rehydration kinetics 

The rehydration analysis was conducted by using the method described by Santos, Guedes [8]. The 
rehydration kinetics of dried hawthorn samples was determined by soaking a weighed amount of dried 
samples into distilled water at 25oC. Each dried sample (5 g), which were wiped with filter paper to eliminate 
the superficial water, were weighed and soaked in 1 L of distilled water. At given intervals of times, the 
samples were removed from the water, drained with paper towels superficially, weighed and then immediately 
returned to the same water. Rehydration procedure was repeated until reaching constant mass. The 
rehydration ratio (RR) was calculated Eq. (14) [26]: 

𝑅𝑅 =
𝑊𝑡

𝑊0
         (14) 

where, Wt (g) refers the weight of rehydrated samples at t time and W0 (g) refers the weight of dried samples.   
For fitting rehydration kinetics of dried samples, the Peleg Model (Eq. (15)) [27] was applied: 

𝑀(𝑡) = 𝑀0 +
𝑡

𝑘1+𝑘2∗𝑡
      (15) 

where, M(t) refers the moisture content in dry basis at a specific time during rehydration, M0 refers the initial 
moisture content, k1 and k2 refer the parameters related with the water absorption rate and quantity.  

Total phenolic contents  

To determination of total phenolic contents of hawthorn samples, the extraction method described by 
Tekin and Baslar [28] was employed. The fresh and rehydrated dried samples (5 g) weighed and then mixed 
with 20 mL of aqueous methanol (80%) followed by homogenization with ultra-Turrax (IKA, T18 Basic, 
Germany) at 1500 rpm for 5 min. The samples were then incubated using a shaker overnight at room 
temperature, after which the mixture was centrifuged at 4000 rpm for 10 min. The centrifugation process was 
repeated twice, and the supernatants were collected and filtered. The extract was used both the 
determination of total phenolic content and antioxidant capacity of hawthorn samples.  

Total phenolic content of the extracts was assayed by Folin-Cioceltau method. For this, 0.5 mL of 
extracted samples was mixed with 2.5 mL of 0.2 N Folin Ciocelteau’s phenol reagent and 2 mL of aqueous 
Na2CO3. After incubation of the mixture for 30 min at room temperature, the absorbance was read at 760 nm 
using a spectrophotometer (Shimadzu UV-1800, Japan). Total phenolic content was expressed in terms of 
gallic acid equivalents per 100 g (mg GAE/g) on dry weight (d.w.) using the calibration curve (R2=0.9998). 

Antioxidant capacity  

The antioxidant activity of the hawthorn samples was based on the 2,2-diphenyl-1-picrylhydrazyl radical-
scavenging activity (DPPH) and radical cation decolorization (ABTS) assays. For the determination of DPPH 
radical scavenging activity, 0.1 mL of extracted samples (extraction performed as described in Section 2.7) 
was mixed with 4.9 mL DPPH solution (0.1 mM in methanol) [29]. The mixture was incubated at room 
temperature for 30 min and its absorbance was read at 517 nm. The results were presented as mmol Trolox 
equivalent of dry weight (mmol TE/100 g d.w.).  
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The ABTS radical cation decolorization assay was determined using the procedure described by Šamec 
and Piljac-Žegarac [30]. For this analysis, 7.4 mM ABTS radical solution and 2.45 mM potassium per sulfate 
was mixed with a volume ratio of 1:1 and allowed to stand in a dark condition for 12 h at room temperature. 
The mixture was then diluted with methanol to obtain an absorbance of 0.6 at 734 nm using the spectrometer. 
After that, 20 µL of extracted sample (extraction performed as described in section Total phenolic contents) 
was combined with 2 mL of fresh ABTS solution, and absorbance was measured at 734 nm after waiting for 
4 min. The results were expressed as mmol Trolox equivalents of dry weight (mmol TE/100 g d.w.).  

Statistical analysis 

The drying experiments and analyses were done with three replicates and all data were expressed as 
mean ± standard deviation. Results were evaluated by ANOVA and differences were determined using the 
Duncan test at a 5% significance level, which were performed by using SPSS statistical package program 
(version 21.0, SPSS Inc., Chicago). A correlation analysis between total phenolic content and antioxidant 
activity was performed with the Pearson’s test. The Sigma Plot software (version 10.0) was used to fit the 
mathematical models to experimental data by nonlinear regression analysis procedure.  

RESULTS 

Drying characteristics 

The drying curves of sliced hawthorn samples during drying using convective and microwave drying at 
180, 360 and 600 W were shown in Figure 1. The moisture content of fresh sample was 72.32%, and was 
reduced to below 10% after drying process. As expected, the loss of moisture was affected by drying 
techniques and also microwave powers. The moisture content of sliced hawthorn samples decreased 
gradually using convective drying, while a sharp linear decrease occurred by microwave drying depending 
on the increase in the microwave power. Microwave drying significantly shortened the drying time to reached 
<10% moisture content when compared to convective drying, and increasing the microwave power 
significantly lead to a decrease of the drying time (p<0.05). The total drying time for convective drying to 
achieve the target moisture content was 480 min, whereas it was reduced by 82.5%, 90% and 92.5% at 
microwave power of 180, 360 and 600 W, respectively. In the case of microwave drying, increasing 
microwave power from 180 to 600 W resulted in a more than two-fold decrease in the drying duration. Similar 
results have been observed in the microwave drying of sliced Trabzon persimmon [13], green peas [15] and 
mango ginger [20]. The electromagnetic intensity increased by the increase of microwave power and 
therefore more microwave energy was absorbed by samples, which resulted shorter drying time due to 
accelerated the moisture migration and evaporation rate [10]. 

 
Figure 1. Changes in the moisture content based on time of the hawthorn slices dried with convective drying (A) and 
microwave drying at different powers (B). 

Figure 2 presents the changes of drying rate versus drying time. The highest drying rate of convective 
drying reached to 0.032 g water g dry matter-1 min-1, while was reached to 0.041, 0.077 and 0.102 g water g 
dry matter-1 min-1 in microwave drying with the power of 180, 360 and 600 W, respectively. The drying rate 
of hawthorn samples increased with higher microwave power, in which attributed the high internal heat 
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generation due to higher absorption of microwave energy with high microwave intensity, resulted great driving 
force for heat and mass transfer inside of product [31]. These findings have also been found by Demiray, 
Seker [16] for onion, Horuz, Bozkurt [32] for sour cherries and Chahbani, Fakhfakh [15] for green peas that 
microwave drying shortened the drying time required until the equilibrium moisture content reached. In 
microwave drying, a linear trend varied from 0.65 to 1.96 g water g dry matter-1 min-1 was shown in the drying 
period when the microwave power was set 180 W. In contrast, two drying period were observed for the power 
of 360 and 600 W. In the first stage of drying treatments, the drying rate increased rapidly and then decreased 
to reach equilibrium. Similar phenomena on the drying rate was observed at high microwave power for 
microwave drying of apple [33], pomelo [34] and green coffee beans [35]. According to Soysal [36], higher 
absorption microwave power occurs due to high amount of free water inside of the material during the initial 
phase, caused to great driving force of moisture transfer. As the drying progressed, the removal moisture in 
the product leads to a reduction in the absorption capability of microwave energy due to dielectric loss factor, 
hereby resulting in the reducing drying rate [31, 36].  

 
Figure 2. Variations drying rate of hawthorn slices dried with convective drying (A) and microwave drying at different 
powers (B) 

Mathematical model 

In order to accuracy the convective and microwave drying processes of hawthorn slice samples, eight 
thin-layer drying kinetic models were adopted to fit the experimental data and the results are presented in 
Table 1. Determination coefficient (R2), reduced chi-square (χ2) and root mean square error (RMSE) were 
calculated and used to evaluate the model performance. The models were found appropriate to predict the 
drying behavior of hawthorn samples based on the statistical criteria of the high determination coefficient 
(from 0.9061 to 0.9986) and low reduced chi-square (from 0.13x10-3 to 11.784x10-3) and root mean square 
deviation (from 0.011 to 0.097) values. However,  Newton, Logarithmic, Henderson and Pabis, Two term and 
Diffusion approach models were the least compatible with the experimental data for microwave drying at all 
microwave power depending on the relatively low R2 (0.9061-0.9412). Page was found as the more suitable 
model described the drying curves for all drying treatments. These results are compatible with previous 
results reported by Horuz and Maskan [37], Zhu and Shen [38] and İlter, Akyıl [14] who reported that the 
page model gives better representation for pomegranate arils, peach slice and garlic puree, respectively.  

The kinetics parameter (k) in Page model, which is related to the velocity of mass transfer, found between 
0.001 to 0.009 and comparing to convective drying, it decreased when applied microwave drying. On the 
other hand, k values increased with an increase in microwave power. İlter, Akyıl [14] also obtained similar 
findings for drying garlic puree with convective and microwave drying processes. The n parameter, which 
can be related to mass transport during drying process [39], was found as 1.147 for convective drying and 
between 1.874 to 1.914 for microwave drying at different powers. The n values for microwave drying were 
higher than convective drying. This is in line with the findings of Carvalho, Monteiro [40] who obtained 
parameters from about 1.06 and 1.079 when used two convective drying and about 1.426 and 1.322 when 
used microwave drying processes. Simpson, Ramírez [39] stated that n parameters indicate a super-diffusive 
phenomenon when n>1. Therefore, it can be stated that the n values can be related with both water transport 
through capillarity and microwave energy in the present case. The direct conversion of microwave energy 
into heat energy in water molecules can cause an increase in mass transfer through capillaries either in liquid 
or vapor state [40]. 
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Table 1. The selected drying models, model constants and statistical results (R2, RMSE and χ2) for hawthorn samples 

Drying 
conditions 

Model R2 RMSE χ2(10-3) Model constants 

Convective 
drying at 60oC 

Newton 0.9959 0.018 0.341 k=0.017 
Page 0.9984 0.011 0.138 k=0.009; n=1.147 
Modified Page 0.9981 0.012 0.13 k=0.016; n=1.105 
Logarithmic 0.9961 0.018 0.318 k=0.017; a=1.015; b=0.008 
Henderson and Pabis 0.9909 0.019 0.306 k=0.011; a=1.052 
Wang and Singh 0.9678 0.086 9.008 k=-0.007; b=0.012 
Two term 0.9967 0.018 0.301 k1=0.097; k2=0.09;   a1=1.016;a2=0.013 
Diffusion Approach 0.9977 0.013 0.194 k=0.018; a=1.125; b=0.078 

Microwave 
drying at 180 
W 

Newton 0.9061 0.071 1.172 k=0.021 
Page 0.9961 0.022 0.675 k=0.001; n=1.914 
Modified Page 0.9949 0.019 0.642 k=0.021; n=1.904 
Logarithmic 0.9253 0.083 8.408 k=0.024; a=1.145; b=0.007 
Henderson and Pabis 0.9273 0.08 8.006 k=0.021; a=1.041 
Wang and Singh 0.992 0.047 2.276 k=-0.012; b=0.078 
Two term 0.9253 0.081 8.403 k1=0.024; k2=0.021;  a1=1.078; a2=0.066 
Diffusion Approach 0.9131 0.048 11.784 k=0.034; a=0.447; b=0.615 

Microwave 
drying at 360 
W 

Newton 0.9146 0.077 1.032 k=0.045 
Page 0.9986 0.028 0.563 k=0.003; n=1.892 
Modified Page 0.9967 0.021 0.561 k=0.043; n=1.862 
Logarithmic 0.9309 0.097 9.008 k=0.049; a=1.112; b=0.004 
Henderson and Pabis 0.9412 0.093 8.964 k=0.058; a=1.106 
Wang and Singh 0.9828 0.053 0.227 k=-0.029; b=0.002 
Two term 0.9309 0.097 9.271 k1=0.049; k2=0.019; a1=1.112; a2=0.039 
Diffusion Approach 0.9146 0.086 9.172 k=0.045; a=0.404; b=0.099 

Microwave 
drying at 600 
W 

Newton 0.9194 0.068 1.061 k=0.057 
Page 0.9985 0.024 0.518 k=0.004; n=1.874 
Modified Page 0.9974 0.012 0.581 k=0.055; n=1.807 
Logarithmic 0.931 0.095 9.106 k=0.062; a=1.089; b=0.006 
Henderson and Pabis 0.9401 0.091 9.371 k=0.057; a=1.001 
Wang and Singh 0.9874 0.041 0.165 k=-0.037; b=0.002 
Two term 0.9317 0.095 9.064 k1=0.062; k2=0.012; a1=1.088; a2=0.044 
Diffusion Approach 0.9194 0.093 10.095 k=0.271; a=1.04; b=0.211 

Rehydration kinetics 

Rehydration indicates the physical and chemical changes occurred during drying and treatments before 
dehydration [9] and therefore, it is a crucial characteristic for dried products, which can be addressed as a 
measure of the physicochemical characteristics changes [41]. The rehydration ratios of hawthorn slices dried 
with convective and microwave drying method were shown in Figure 3. Overall, the rehydration ratios 
increased steeply at the beginning of rehydration for all samples, the tendency gradually slowed down over 
time and almost completed within 6.5 h of the test. The rehydration ratio of sample possessed by convective 
method was increase slower than those of sample dried with microwave and the minimum rehydration ratio 
was observed for sample dried with convective method at the end of dehydration treatment. Similarly, Miraei 
Ashtiani, Sturm [42] stated that the rehydration ratio of nectarine slices dried with hot air was about 11.81% 
lower than the lowest rehydration ratio of samples dried using microwave method. Commonly, microwave 
drying treatment led to higher rehydration capacity compared with convective drying, which may be due to 
the intercellular gaps caused by microwave energy resulted an increment in rehydration capacity of dried 
fruits [43]. In the microwave method, the rehydration ratio increased by increasing of microwave power, and 
at the end of rehydration test, the highest value (2.99) was found for sample dried at 600W. This is in line 
with the findings of Tagawaa [44] and Aghilinategh, Rafiee [45], who observed that increasing the microwave 
led to increase in rehydration ratio. It can be explained that the less dense structure obtained during drying 
at microwave powers due to the high internal pressure causing to expansion and puffing of the product, which 
has a higher capacity to absorb water. [46] Contrary to our findings, Horuz, Bozkurt [23] and Miraei Ashtiani, 
Sturm [42] found that the rehydration capacities of samples dried with microwave decreased with the increase 
of microwave powers, which can be explained by the formation of irreversible cellular displacement and 
rupture during microwave drying. However, ANOVA results showed that the rehydration capacity of dried 
hawthorn slices at 180 and 360 W did not influenced significantly by  microwave power (p>0.05). 
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Figure 3. Rehydration ratio curves of dried hawthorn slices using convective drying and microwave drying at different 
powers. 

To describe rehydration kinetics of hawthorn slices dried with convective and microwave methods was 
employed and the estimated data of determinations of Peleg’s model, k1 and k2, were given in Table 2. 
Overall, Peleg’s model could well describe rehydration kinetics of hawthorn slices over the range of 
experiments with higher values of the coefficient of determination (R2>0.99). Peleg rate constant of k1 is 
related with the mass transfer rate and the lower k1 value, the higher the initial rate of rehydration, detected 
for sample dried at 600 W, indicating higher water absorbing capacity compared to other treatments. 
Increasing of microwave power led to decrease in value of k1, which a similar trend was reported by Dadali, 
Demirhan [47]. For estimated value of k2 that is inversely related to the absorption ability of foods, no 
significant differences (p>0.05) were determined between microwave drying at different power, however k2 
value for product dried by convective drying was higher than that of microwave drying. These results evidence 
the better rehydration capacity product dried with microwave drying method.  

Table 2. The estimated parameters and statistical analysis of Peleg’s model at rehydration 

Drying conditions R2 RMSE χ2(10-3) k1 k2 Y0 

Convective drying at 60oC 0.9952 0.035 1.193   32.064 0.512 1.005 
  Microwave drying at 180 W 0.9989 0.017 0.317   29.014 0.466 0.983 
  Microwave drying at 360 W 0.9966 0.044 1.107   20.859 0.474   0.9661 
  Microwave drying at 600 W 0.9957 0.033 1.144 8.166 0.474 0.982 

Color properties 

The color of dehydrated foods is one of the most important attribute for quality assessment, in which 
recorded by human receptors, so that it plays an important role in consumer evaluation of food quality. The 
color attributes (L*, a* and b*) and derived color parameter of ΔE values for fresh and dried hawthorn are 
present in Table 3. The L*, a* and b* values for sliced fresh sample were recorded as 71.14, 5.08 and 34.35, 
respectively and they were significantly affected by drying process (p<0.05). Overall, a considerably decrease 
in the L* value and a considerably increase in the b* and a* values were observed for all drying methods in 
comparison with the fresh hawthorn sample, indicating that the color was significantly darker, redder and 
yellower than that of non-dried sample (p<0.05). These changes of L*, a* and b* values may be due to the 
degradation of pigments and the formation of brown pigments by non-enzymatic Maillard reactions and 
enzymatic reactions [3, 48, 49]. It was observed that the convective drying led to less total color change 
(ΔE=7.16) compared to microwave treatment (ΔE=14.86 to 24.61). Similar results obtained by İzli [50] and 
Izli, Izli [51], who stated that the ΔE was the greatest in case of convective drying, whereas samples obtained 
after microwave drying were the darkest. In general, color changes of samples during drying could be 
ascribed the formation of brown compounds as a results of various reactions, including Maillard condensation 
of carbohydrates, polyphenols polymerization and pigment destruction, principally degradation of carotenoids 
[52] and the molecular changes towards the formation of this brown compounds are accelerate at the 
temperature above 120 oC [53]. In microwave drying, the minimum value of ΔE obtained for the sample at 
microwave power of 600 W and followed by those of power at 360 W, the highest ΔE observed dried samples 
at power of 180 W. These results indicate that lower microwave power increases degradations due to longer 
time exposed to heat. Similarly, Tagawaa [44] reported that the okra sample dried at the power of 800 W 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjY_IyMpJjfAhXBqZAKHdazDawQFjAAegQIAxAC&url=http%3A%2F%2Fwww.scielo.br%2Fbabt&usg=AOvVaw08BojU0LuZNEI4C434jTD4


 Aysegul, B.; et al. 9 
 

 
Brazilian Archives of Biology and Technology. Vol.65: e22210614, 2022 www.scielo.br/babt 

shows the least color change (10.3) and the highest ΔE value (16.5) obtains at the lower  microwave power 
level of 500 W. This can be explained by the fact that high microwave intensity led to faster transfer from the 
interior of the sample to its surface and this liquid quickly converted into vapor, and thus resulted less color 
change in the surface color due to no surface overheating [44, 54]. Ozkan, Akbudak [18], Horuz and Maskan 
[37] and Celen [13] reported similar observations for drying spinach, pomegranate arils and persimmon in 
microwave dryer, respectively, in which drying processes made using the high energy levels is the best option 
to preserve majority of color values considering the color values of non-dried samples. On the contrary, 
Ghanem, Mihoubi [55] and Dong, Cheng [35] stated that the ∆E value is obtained at the lower microwave 
power level and it is increased rapidly at higher microwave power settings.  

Table 3. Color and hardness values of fresh and dried hawthorn slices  

Drying conditions L* a* b* ΔE Hardness (N) 

Fresh 71.14±0.89a 5.08±0.29d 34.35±1.41b - 5.85±0.68e 

Convective drying at 60oC 65.54±2.59b 9.42±1.09c 35.46±0.64b 7.18±1.78d 7.36±0.91d 
Microwave drying at 180 W 49.18±0.22e 14.94±0.38a 39.46±0.52a 24.61±0.15a 10.13±1.53a 
Microwave drying at 360 W 54.40±0.56d 12.10±1.25b 41.16±0.09a 19.41±0.03b 8.29±0.16b 
Microwave drying at 600 W 60.03±2.01c 12.15±0.51b 41.23±0.53a 14.86±0.99c 7.69±0.06c 
a-e Values in the same column with different letters are significantly different (p < 0.05), according to Duncan's test. 

Textural properties 

The textural property of fresh and dried hawthorn samples that belonging to convective and microwave 
drying methods was described using the hardness value that shown in Table 3. The hardness value of fresh 
sample was 5.85 N and a significant increase was determined after drying process (p<0.05). Our results were 
in accordance with the finds of Miraei Ashtiani, Sturm [42] and Aamir and Boonsupthip [56] who stated more 
hardness is samples dried as compared to fresh. The hardness value of dried hawthorn slices with convective 
drying was determined as 7.36 N that was lower than that of dried samples by microwave drying. In contrary 
to the study results, Miraei Ashtiani, Sturm [42] noted that the dried nectarine slices after microwave drying 
had lower hardness than that of the samples dried with hot air. Regarding microwave drying, the hawthorn 
slices dried at 180 W exhibited more hardness (10.13 N) among all samples. When the microwave power 
increased to 600 W, the hardness value of dried hawthorn slices had reached a minimum value (7.69 N). It 
is probably the microwave treated hawthorn slice at 600 W lost its surface moisture faster than those of the 
other powers (Figure 1b), and therefore a harder external layer on the surface formed during drying, which 
caused harsher textures of dried fruits [57]. These results are consistent with findings of past studies for 
blueberries [58] and nectarine slices [42], which increased microwave power yielded products with softer 
texture.  

Total phenolic content 

The results of the total phenolic contents of the fresh and hawthorn slices dried by convective and 
microwave drying methods are shown in Table 4. The drying treatment with different drying methods led to a 
significant change in total phenolic content (p<0.05). Taking the fresh hawthorn slice as reference (215.29 
mg GAE/100 g d.w.), a significant decrease in the total phenolic content was observed in the samples dried 
with convective (126.34 mg GAE/100 g d.w.). Several research studies found that a significant loss of total 
phenolic content of convectional dried has been detected [5, 32, 34]. The loss of phenolic contents during 
the thermal processing may be explained by oxidative and thermal degradation of phenolic compounds due 
to the heat treatment [59]. Nevertheless, higher levels of phenolic contents have been found after drying 
processes depending on the type of phenolic compound [11, 60]. The increase in the phenolic content in 
dried products could be ascribed to the destroy the integrity of the cell structure of products during heating 
processes thereby promoting the extractability of the phenolic compounds because the disruption of the cell 
structure was concomitant with the breakdown of insoluble bound phenolics [4, 61].  

Table 4. Total phenolic content and antioxidant properties of fresh and dried hawthorn slices  

Drying conditions Total phenolic content 
(mg GAE/100 g d.w.) 

DPPH* 
(mmol TE/100 g d.w.) 

ABTS* 
(mmol TE/100 g d.w.) 

Fresh 215.29±2.41c 5.11±0.16c 3.15±0.29b 

Convective drying at 60oC 126.34±7.11d 4.26±0.28d 1.61±0.07c 
Microwave drying at 180 W 220.37±9.81c 5.69±0.31b 3.17±0.44b 
Microwave drying at 360 W 270.95±3.41a 6.79±0.29a 4.27±0.21a 
Microwave drying at 600 W 238.60±8.59b 6.47±0.36a 3.33±0.07b 
a-d Values in the same column with different letters are significantly different (p < 0.05), according to Duncan's test. 
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As shown in Table 4, the hawthorn slices dried with microwave had higher total phenolic contents than 
the fresh hawthorn fruits, which in accordance with the result of Ozcan, Al Juhaimi [11] and Chahbani, 
Fakhfakh [15], who reported that the degradation of fresh cells during microwave drying leads to an increment 
in the phenolic contents. The phenolic content increased by increasing microwave power from 180 to 360 W, 
but the microwave power used 600 W instead of 360 W resulted in lower total phenolic contends of the 
sample. These results were compatible with the study of Wojdyło, Figiel [59], revealed that the drying at 120 
W yields higher polyphenols content in the dried product despite the power ranging from 240 W to 480 W 
due to the lower temperatures of the material.  

Antioxidant activity 

Valadez-Carmona, Cortez-Garcia [62] stated that the antioxidant activity should be evaluated using more 
than one method due to the complexity of the composition of the phytochemical and oxidative processes, 
thereby two methods, DPPH and ABTS, were used in this study and results were given in Table 3. The 
antioxidant activity of fresh hawthorn sample was determined as 5.11 and 3.15 mmol TE/100 g d.w. in DPPH 
and ABTS assay, respectively. It was observed that the antioxidant activity of the samples was changing 
under different drying conditions. While the antioxidant activity of samples dried with convective drying was 
found lower than those of fresh sample, but was significantly increased after microwave drying processes 
(p<0.05). However, a greater decrease in the antioxidant activity was observed when the microwave over 
increased from 360 to 600 W. Similar trends was observed for both of DPPH and ABTS of hawthorn samples 
during drying. In this study, we determined a quite strong correlation between total phenolic content and 
antioxidant activity in DPPH and ABTS (r=0.938 and r=0.951, respectively), which indicate that higher 
phenolic compounds would increase the antioxidant activity. According to Mraihi, Journi [63], the antioxidant 
activity of phenolics is mainly due to their redox potentials hence allow them to act as reducing agents, 
hydrogen donors, and singlet oxygen quenchers. Our results are comparable with most published studies [3, 
4, 32, 62], which indicate that the convective drying method decrease the antioxidant activity that may be 
attributed to decrease in total phenolic content. In general, high temperatures (i.e. 60 °C and 70 °C) and long 
exposure to drying process might destroy some of the phenolic compounds during drying processes, which 
may cause loss of bioactive compounds [64]. Previous studies have noted that increases antioxidant activity 
of products after microwave drying due to shorter drying time [11, 15, 35, 65]. However, antioxidant activity 
tends to decrease when the drying is conducted at higher microwave power [35], which can be explained by 
higher temperature. Samoticha, Wojdyło [66] stated that better preservation of bioactive compounds is 
obtained at low temperature, resulting higher antioxidant activity. On the other hand, higher temperature 
during drying processes may be led to formation of Maillard reaction products that also exhibit antioxidant 
activity [66].  

CONCLUSION 

In this study, the effect of microwave drying at different microwave power levels on the drying 
characteristics and quality parameters (color, texture, rehydration and bioactive properties) of hawthorn slices 
were investigated and compared to the results obtained with convectional drying at 60oC. Hawthorn slice 
samples dried more quickly with microwave drying and the time needed to reach desired moisture content of 
<10% varied from 36 to 84 min depend on microwave power. The drying rate increased with increasing the 
microwave power and was found higher than those of convectional drying. Although eight different thin-layer 
drying kinetic models were found to be fit the experimental data well depending of high R2 and low RMSE 
and χ2 values, Page model was found as the best described the microwave drying data. Microwave drying of 
hawthorn slices at 600 W exhibited lower total color difference and higher rehydration characteristics, when 
compared to other microwave treatments. However, the highest bioactive properties were obtained after 
microwave drying at 360 W power. As a result, microwave drying at 360 W can be a potential for drying of 
hawthorn slices considering the optimal drying characteristics and high quality products.  
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