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1. Introduction

Agro-industrial waste is among the major environmental 
pollutants. Their microbial conversion is not only a 
solution to many environmental problems but also 
a source of suitable byproducts like food, fuel and 
chemicals (Milala et al., 2005). Wheat bran is one of 
the most abundant agricultural wastes of Pakistan food 
industries whereas fiber sludge is paper industry waste of 
no value. Microbial xylanases from high yielding strains 
of Aeromonas, Agrobacterium, Bacillus, Dictyoglomus, 
Nocardia, Pseudomonas, Thermotoga and Xanthomonas are 

grown under submerged fermentation conditions (SmF). 

The Bacilli are found to be the most important group of 

bacteria which are actively used in enzyme industry 

and are reported to produce hydrolytic enzymes quite 

significantly (Bastawde, 1992). Studies have shown that 

some nutritional factors including the sources of carbon and 

nitrogen can influence the production of xylanase enzyme 

(Farjalla et al., 2006). Besides this, some physical factors 

such as time course study, temperature, pH, substrate 
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1992). Reducing sugars liberated were measured by 
spectrophotometer at 553 nm and expressed as xylose 
equivalent. One unit enzyme activity was defined as the 
amount of enzyme required to produce 1 mM reducing 
sugar as a xylose equivalent per minute under standard 
assay conditions. Units were calculated by using following 
Formula 1.

( ) E x Vf Xylanase activity /   x Df
MW x T

IU mL ∆
=

∆
 (1)

Where,
ΔE = Absorbance at 553 nm
Vf = Final volume of reaction mixture (enzyme + substrate 
+ DNS)
MW = Molecular weight of xylose/glucose
ΔT = incubation period in minutes
Df = Dilution factor

2.7. Optimization of cultural and nutritional conditions for 
xylanase production

The various cultural conditions including time course 
of fermentation (12-120 hours), incubation temperature 
(20-45 °C), initial medium pH (3-9), substrate concentration 
(2-10%) and different nutritional conditions including 
additional carbon sources (CMC, corncobs, rice straw, 
wheat bran, xylan and xylose) and nitrogen sources (beef 
extract, urea, yeast extract and peptone) were optimized 
for enhanced production of xylanase by the tested strain 
of B. pumilus BS131 in SmF process.

2.8. Effect of cultivation period on production of xylanase

Sterilized fermentation medium with 2% waste fiber 
sludge and wheat bran (pH 5.5) was inoculated with 
B. pumilus BS131 and incubated in a shaking incubator 
at 30 °C. Production of xylanase was monitored under 
sterilized conditions. One mL of culture medium was 
withdrawn after every 24 hours and DNS assay was 
performed for the quantification of xylanase. Enzyme 
production was observed every 24 h for 5 days. Xylanase 
activity was calculated in IU/mL.

2.9. Effect of temperature on production of xylanase

Temperature effect on the production of xylanase was 
estimated by incubating fermentation media with 2% 
substrate (untreated waste fiber sludge and wheat bran; 
1:1) at pH 5.5 and temperatures between 20 and 45 °C 
with a regular interval of 5 °C. The activity of the enzyme 
was determined using DNS assay within the preset 
temperature range.

2.10. Effect of pH on production of xylanase

The initial pH for the production of enzyme was 
determined by incubating fermentation medium with 
2% substrate having different pH values set at acidic to 
alkaline pH i.e. 3.0, 5.0, 7.0 and 9.0 while using micro filtered 
solutions of 1M NaOH and 1M Tartaric Acid. Fermentation 
media was incubated for 72 h at 30 °C. After incubation 
the xylanase activity was determined using DNS assay 
and absorbance was measured at 553 nm.

concentration can significantly affect the production of 
xylanase (Bhardwaj et al., 2017).

This particular study was aimed at growth optimization 
of Bacillus pumilus strain BS131 isolated from agricultural 
soil to enhance the xylanase enzyme production using 
waste fiber sludge and wheat bran as carbon source.

2. Materials and Methods

2.1. Selection of substrates

Waste fiber sludge was obtained from Bulleh Shah 
Packaging, Kasure, Pakistan and wheat bran was collected 
from local wheat processors, Lahore, Pakistan. These solid 
wastes were used as substrate for xylanase production 
under submerged fermentation conditions.

2.2. Bacterial strain

Bacillus pumilus BS131 was locally isolated from soil as 
previously mentioned (Kalim and Ali, 2016). This strain 
was maintained on nutrient agar slants and stored at 4 °C.

2.3. Cultivation of bacterial cells

Twenty five milliliters of sterilized nutrient broth were 
inoculated with a loopful of 24 h old culture of Bacillus 
pumilus BS131 and incubated overnight at 37 °C, 120 rpm 
agitation. Vegetative cells were used as a source of inoculum 
throughout the study.

2.4. Fermentation technique

Fifty milliliters of fermentation media (g/L: Glucose 20, 
KH2PO4 5.0, MgSO4.7H2O 0.2, NH4NO3 2.0, (NH4)2SO4 4.0, 
Trisodium citrate 5.0 and Yeast extract 1.0.) with 2% substrate 
(Waste fiber sludge and Wheat bran 1:1) were sterilized in 
each 250 ml Erlenmeyer flask. After sterilization, the media 
was inoculated with 2% solution containing vegetative cells 
of 24 h old B. pumilus BS131 in each flask and incubated 
in refrigerated shaking incubator (TSS-40-250, Technico 
scientific supply, Lahore, Pakistan) at 30 °C for 5 days with 
an agitation speed of 120 rpm.

2.5. Preparation of enzyme

After incubation, the fermented broth was filtered 
through 0.45µm micro-filter membranes and finally by 
centrifugation at 4 °C, 6,708 g for 20 min to remove the 
bacterial cells and undesired particles. Clear filtrate was 
collected after centrifugation and was used as a source 
of crude enzyme.

2.6. Assay of xylanase enzyme

Xylanase enzyme in the culture filtrate was estimated 
as reported earlier (Kalim and Ali, 2016). Reaction mixture 
containing 0.5 mL of each of the appropriately diluted 
culture filtrate and 1% birchwood xylan (Sigma) solution 
prepared in 0.05 M citrate buffer (pH 5.5) was incubated 
for at 50 °C. After 15 min the reaction was terminated by 
the addition of 2.0 mL of 3,5-dinitrosalicylic acid (DNS) and 
incubating in a boiling water-bath for 10 min (Bailey et al., 
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2.11. Effect of substrate concentration

Effect of substrate concentration was determined by 
using different concentrations of waste fiber sludge and 
wheat bran (1:1) in fermentation media i.e. 1.0-6.0%. In 
250 mL flasks, 50 mL of fermentation media was autoclaved 
and inoculated under aseptic conditions. All the samples 
were incubated at 30 °C. Afterwards, cell free culture 
filtrate (CFCF) was obtained for the estimation of xylanase 
production by using DNS assay.

2.12. Effect of carbon and nitrogen sources on xylanase 
production

Effect of different carbon and nitrogen sources on 
xylanase production was observed. Different carbon 
sources (carboxymethyl cellulose (CMC), corncobs, rice 
straw, wheat bran, xylan and xylose) and nitrogen sources 
(beef extract, peptone, urea and yeast extract) were 
experimented for their effect on xylanase production. 
Thirty mL of fermentation media supplemented with 
0.5% of each of the carbon and nitrogen sources was 
autoclaved incubated at 30 °C. Release of xylose subunits 
was estimated by comparing optical density with xylose 
standard curve and enzyme activity was calculated using 
appropriate formula. Production of extracellular xylanase 
was estimated under the effect of nitrogen sources using 
DNS assay.

2.13. Statistical analysis

The data obtained after experimentation was statistically 
evaluated using ANOVA Dunken’s New Multiple Range 
Test (DNMRT) at significance level of p < 0.05 by using 
computer based program DSA STAT (Onofri, Italy).

3. Results and Discussion

3.1. Time course study for xylanase production

Ten experiments with an interval of twelve hours each 
were performed to study the optimum period for maximum 
production of xylanase under SmF process. Figure 1 
describes that xylanase production was maximum after 
72 h of fermentation at 30 °C for B. pumilus BS131. Further 
increase of fermentation period resulted in a decline of 
enzyme production which might be due to the production 
of some toxic metabolites during microbial growth which 
inhibits the enzyme synthesis. Yang et al. (1995) studied 
xylanase production by Bacillus sp. and reported maximum 
xylanase production in 72 h using wheat bran as a substrate. 
Xue et al. (2012) reported 27 h of fermentation time for 
maximum production of xylanase from Bacillus pumilus 
strain. Kumar and Satyanarayana (2014) reported 56 h of 
fermentation period was optimum for xylanase production 
by an alkaliphilic Bacillus pumilus VLK-1 in SmF using wheat 
bran as a substrate. In another study a Bacillus pumilus 
strain showed maximum xylanase production after 20 h 
using birchwood xylan (Duarte et al., 1999). Kapilan and 
Arasaratnam (2012) isolated B. subtilis from soil which 
exhibit highest xylanase activity after 42 h in SmF.

3.2. Effect of incubation temperature on xylanase 
production

For the maximum production of xylanase enzyme, BS131 
was incubated at different temperature ranges (20-45 °C) 
were tested. Figure 2 illustrates that, at 25 °C bacterial 
strains did not grow well thus resulting in decreased 
enzyme production. B. pumilus BS131 produced maximum 
titer of xylanase (6.409 ± 0.17 IU/mL) at 30 °C. Increase in 
incubation temperature up to 45 °C significantly reduced 
enzyme production. Banu and Ingale (2012) reported the 
maximum production of xylanase by B. pumilus strain 
AB-1 at 30 °C. Thomas et al., (2014) reported optimum 
temperature of 33.5 °C for the production of xylanase 
by B. pumilus MTCC 5015 in submerged fermentation. 
Different strains of Bacillus sp. gave maximum yield of 
xylanase production at incubation temperature of 45 °C and 
55 °C (Buthelezi et al., 2011). Xue et al. (2012) reported the 
incubation at 45 °C gave maximum xylanase production 
by B. pumilus.

3.3. Effect of initial medium pH for xylanase production

Most of bacterial strains are dependent on pH and 
produce xylanase under neutral to high pH (Nakamura et al., 
1994; Ratanachomsri et al., 2006). The pH of the growth 
medium strongly affects many enzymatic processes and 
transport of various components across the cell membrane 
(Kapoor et al., 2008). Different pH ranges (3.0-10.0) were 

Figure 2. Effect of temperature on cell growth and xylanase 
production by Bacillus pumilus strain BS131.

Figure 1. Effect of incubation period on cell growth and xylanase 
production by Bacillus pumilus strain BS131.
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tested for maximum xylanase production by B. pumilus 
BS131 in submerged fermentation. Figure 3 reveals that 
the bacterial strain exhibited its peak activity at pH 7.0. 
Very Low pH (3.0) and high pH (10.0) of the medium 
retards xylanase secretion. These results indicated that B. 
pumilus BS131 showed maximum xylanase production at 
neutral pH but can tolerate alkaline conditions. Identical 
results were recorded by Kumar and Satyanarayana (2014) 
showing optimum pH of 7.0 for xylanase production by 
B. pumilus strain VLK-1 in submerged fermentation. Bacillus 
pumilus strain MTCC 5015 showed maximum xylanase 
production at pH 9.0 under submerged fermentation 
(Thomas et al., 2014).

3.4. Effect of substrate concentration on xylanase 
production

Figure 4 describes the production of xylanase by 
Bacillus pumilus BS131 under submerged fermentation 
conditions using different concentrations of carbon 
source (1.0-6.0%). Results indicated that the strain BS131 
showed its peak production (6.73 ± 0.98 IU/ml) with 4% 
substrate concentration (waste fiber sludge and wheat 
bran; 1:1). Further increase in substrate concentration 
did not significantly affect the enzyme production. 
Kuhad et al. (1998) reported that the maximum amount 
of xylanase was produced at 4% concentration of wheat 
bran. Cavka et al. (2011) used waste fiber sludge for 
combined production of ethanol and xylanase. Irfan et al. 
(2012) produced xylanase from B. subtilis BS05 using 
different agricultural wastes as a substrate in submerge 
fermentation and observed maximum xylanase activity 
in 2% sugarcane bagasse. Ho (2015) produced xylanases 
from Bacillus subtilus using inexpensive agricultural wastes 
and reported higher xylanase activity while using barley 
husk under submerged fermentation and wheat bran 
in solid state fermentation. Li et al. (2006) produced 
Aspergillus awamori ZH-26 endoxylanase under submerged 
fermentation and reported wheat bran (4.93%) best for 
endoxylanase production.

3.5. Effect of additional carbon and nitrogen sources on 
xylanase production

Production of xylanase was further enhanced by 
supplementing the fermentation medium with suitable 
additional carbon and nitrogen sources. Figure 5 depicts 
that xylan followed by wheat bran were the best xylanase 
inducer by B. pumilus BS131 in submerged fermentation. 
For other carbon sources xylanase production decreased 
in the sequence of xylose>wheat-bran>corncob>rice 
straw>CMC. Rani and Nand (2000) reported that 
maximum amount of xylanase was produced in corn 
cobs (3%) when anaerobic bacterium Clostridium absonum 
CFR-702. Jorgensen et al. (2003) reported that xylose is a 
less repressing sugar and cultivation on xylose revealed 
detectable amounts of xylanase in Penicillium sp. as was 
seen in the present study. Azeri et al. (2010) produced 
extracellular xylanase from Bacilli and reported maximum 
xylanolytic activity by using birchwood xylan as a carbon 
source followed by wheat straw and wheat bran.

Peptone and yeast extract were observed to be the best 
suited organic nitrogen sources for xylanase synthesis under 
submerged fermentation by B. pumilus BS131 (Figure 6). 
The production of xylanolytic enzymes by fungi shows a 
dramatic significance with an addition of nitrogen sources, 
also the organic sources of nitrogen were observed to 
be more signifant than inorganic ones for Chaetomium 
cellulolyticum (Dubeau et al., 1987), Aspergillus awamori 
(Smith and Wood, 1991), Fusarium oxysporum (Kuhad et al., 
1998). Banu and Ingale (2012) reported that yeast extract 

Figure 3. Effect of pH on cell growth and xylanase production by 
Bacillus pumilus strain BS131.

Figure 4. Effect of substrate concentration on cell growth and 
xylanase production by Bacillus pumilus strain BS131.

Figure 5. Effect of carbon source on xylanase production by 
Bacillus pumilus strain BS131.*Less significant,**significant,***hi
ghly significant.
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have been successfully used in Bacillus pumilus as a relatively 
cheaper complex N-source.

4. Conclusion

The results of this study revealed that Bacillus pumilus 
BS131 can produce xylanase enzyme using waste fiber 
sludge and wheat bran as substrate in submerged 
fermentation which was not reported earlier. In this study 
bacterial strain was used for xylanase enzyme production 
which has advantage of short period of growth as compared 
to the fungi. Results of the present study indicated the 
pivotal role of nutrients and cultural properties played 
in enzyme production under submerged fermentation 
conditions. The optimization of all the process parameters 
are being considered as prerequisites to make the process 
of enzyme production cost effective at large scale.
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